Chapter 4: Matrix Eigenvalue Problems

Introduction

Eigenvalue problems (*"Eigen" is German and means "proper" or "characteristic."*) come up all the time in engineering, physics, geometry, numerics, theoretical mathematics, environmental science, urban planning, economics, and other areas

A matrix eigenvalue problem considers the vector equation:

$$\mathbf{A}\mathbf{x} = \mathbf{\lambda}\mathbf{x}$$

Here A is a given square matrix, λ an unknown scalar, and x an unknown vector. In a matrix eigenvalue problem, the task is to determine λ 's and x's that satisfy (1). we only admit solutions with $x \neq 0$.

The solutions to (1) are given the following names: The λ 's that satisfy (1) are called **eigenvalues of A** and The corresponding nonzero **x**'s that also satisfy (1) are called **eigenvectors of A**.

Determining Eigenvalues and Eigenvectors

The problem of systematically finding such λ 's and nonzero vectors for a given square matrix is called the *matrix eigenvalue problem* or, more commonly, the *eigenvalue problem*.

1. Consider multiplying nonzero vectors by a given square matrix

6	3]	5		[33]
4	7]	1	=	33 27

The new vector is with a different direction and different length when compared to the original vector. This is of no interest.

2. Now, Consider this matrix:

$$\begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \end{bmatrix}$$
$$[30 \quad 40]^{\mathsf{T}} = 10 \begin{bmatrix} 3 & 4 \end{bmatrix}^{\mathsf{T}}$$

In the second case something interesting happens. The multiplication produces a vector which means the new vector has the same direction as the original vector. The scale constant, which we denote by λ is 10.

A value of for which (1) has a solution is called an **eigenvalue** or *characteristic value* of the matrix **A**.

Example 1: Determination of Eigenvalues and Eigenvectors

Given the matrix below, determine its Eigenvalues and Eigenvectors

$$\mathbf{A} = \begin{bmatrix} -5 & 2\\ 2 & -2 \end{bmatrix}.$$

a) <u>Eigenvalues</u>.

$$Ax = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \text{ in components,} \qquad \begin{array}{c} -5x_1 + 2x_2 = \lambda x_1 \\ 2x_1 - 2x_2 = \lambda x_2. \end{array}$$
$$(-5 - \lambda)x_1 + 2x_2 = 0$$
$$2x_1 + (-2 - \lambda)x_2 = 0.$$

In matrix form:

$$(A - \lambda I)x = 0$$

"homogeneous system". It has a nontrivial solution $\mathbf{x} \neq \mathbf{0}$, Determinant $\mathbf{D} = 0$ (Cramer's theorem)

$$D(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = (-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 6 = 0.$$

Thus, $\lambda_1 = -1$, $\lambda_2 = -6$ are the eigenvalues of matrix **A**.

b) Eigenvectors

Eigenvectors of **A** corresponding to $\lambda_1 = -1$:

$$-4x_1 + 2x_2 = 0$$
$$2x_1 - x_2 = 0.$$

A solution is $x_2 = 2x_1$, as we see from either of the two equations, so that we need only one of them. This determines an eigenvector corresponding to $\lambda_1 = -1$ up to a scalar multiple. If we choose $x_1 = 1$, we obtain the eigenvector

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, Check: $\mathbf{A}\mathbf{x}_1 = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \end{bmatrix} = (-1)\mathbf{x}_1 = \lambda_1 \mathbf{x}_1$.

Eigenvectors of A corresponding to $\lambda_2 = -6$:

$$x_1 + 2x_2 = 0$$

 $2x_1 + 4x_2 = 0.$

A solution is $x_2 = -x_1/2$ with arbitrary x_1 . If we choose $x_1 = 2$, we get $x_2 = -1$. Thus an eigenvector of A corresponding to $\lambda_2 = -6$ is

$$\mathbf{x}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \qquad \text{Check:} \qquad \mathbf{A}\mathbf{x}_2 = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -12 \\ 6 \end{bmatrix} = (-6)\mathbf{x}_2 = \lambda_2 \mathbf{x}_2.$$

Example 2: Find eigenvalues and Eigenvectors of

$$\begin{bmatrix} 6 & 3 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 30 \\ 40 \end{bmatrix}.$$

Ans: $\lambda^2 - 13\lambda + 30 = 0$; $(\lambda - 10)(\lambda - 3) = 0$; Thus eigenvalues (10, 3) Eigenvectors $\begin{bmatrix} 3 \\ 4 \end{bmatrix}^T$ and $\begin{bmatrix} -1 \\ 1 \end{bmatrix}^T$

The General Case of the Ejgenvalue Problem

Matrix eq. $Ax = \lambda x$ can be written as $a_{11}x_1 + \cdots + a_{1n}x_n = \lambda x_1$ $a_{21}x_1 + \cdots + a_{2n}x_n = \lambda x_2$ $a_{n1}x_1 + \cdots + a_{nn}x_n = \lambda x_n$... (1) Then $(a_{11} - \lambda)x_1 + a_{12}x_2 + \cdots + a_{1n}x_n$ = 0 $a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n$ = 0 $a_{n1}x_1 + a_{n2}x_2 + \cdots + (a_{nn} - \lambda)x_n = 0.$... (2)

In matrix notation:

 $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}.$... (3)

By Cramer's rule this system has a nontrivial solution iff:

$$D(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 ... (4)

 $A - \lambda I$ is called the characteristic matrix and $D(\lambda)$ the characteristic determinant of A. Equation (4) is called the characteristic equation of A. By developing $D(\lambda)$ we obtain a polynomial of *n*th degree in λ . This is called the **characteristic polynomial** of A.

Theorem: eigenvalues

Eigenvalues

The eigenvalues of a square matrix \mathbf{A} are the roots of the characteristic equation (4) of \mathbf{A} .

Hence an $n \times n$ matrix has at least one eigenvalue and at most n numerically different eigenvalues.

The eigenvalues must be determined first. Then the corresponding eigenvectors are obtained, for instance, by Gauss Elimination.

Theorem: eigenvectors

Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue λ , so are w + x (provided $x \neq -w$) and kx for any $k \neq 0$.

Hence the eigenvectors corresponding to one and the same eigenvalue λ of A, together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A corresponding to that λ .

Example 3: Multiple eigenvalues

Find the eigenvalues and eigenvectors of

$$\mathbf{A} = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$$

Solution. For our matrix, the characteristic determinant gives the characteristic equation

$$-\lambda^3 - \lambda^2 + 21\lambda + 45 = 0.$$
 Check it!

The roots (eigenvalues of A) are $\lambda_1 = 5$, $\lambda_2 = \lambda_3 = -3$. Try Newton Raphson method to find them!

To find eigenvectors we apply GEM:

For $\lambda = 5$;

$$\mathbf{A} - \lambda \mathbf{I} = \mathbf{A} - 5\mathbf{I} = \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix}.$$
 It row-reduces to
$$\begin{bmatrix} -7 & 2 & -3 \\ 0 & -\frac{24}{7} & -\frac{48}{7} \\ 0 & 0 & 0 \end{bmatrix}$$

Hence it has rank 2. Choosing $x_3 = -1$ we have $x_2 = 2$ from $-\frac{24}{7}x_2 - \frac{48}{7}x_3 = 0$ and then $x_1 = 1$ from $-7x_1 + 2x_2 - 3x_3 = 0$. Hence an eigenvector of A corresponding to $\lambda = 5$ is $x_1 = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}^T$.

For $\lambda = -3$;

$$\mathbf{A} - \lambda \mathbf{I} = \mathbf{A} + 3\mathbf{I} = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ -1 & -2 & 3 \end{bmatrix} \quad \text{row-reduces to} \quad \begin{bmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence it has rank 1. From $x_1 + 2x_2 - 3x_3 = 0$ we have $x_1 = -2x_2 + 3x_3$. Choosing $x_2 = 1$, $x_3 = 0$ and $x_2 = 0$, $x_3 = 1$, we obtain two linearly independent eigenvectors of A corresponding to $\lambda = -3$ [as they must exist by (5), Sec. 7.5, with rank = 1 and n = 3],

$$\mathbf{x}_{2} = \begin{bmatrix} -2\\1\\0 \end{bmatrix} \quad \text{and} \quad \mathbf{x}_{3} = \begin{bmatrix} 3\\0\\1 \end{bmatrix}$$

Example 4:

The characteristic equation of the matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{is} \quad \det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = \lambda^2 = 0.$$

Hence $\lambda = 0$ is an eigenvalue of algebraic multiplicity $M_0 = 2$. But its geometric multiplicity is only $m_0 = 1$, since eigenvectors result from $-0x_1 + x_2 = 0$, hence $x_2 = 0$, in the form $[x_1 \ 0]^T$. Hence for $\lambda = 0$ the defect is $\Delta_0 = 1$.

Similarly, the characteristic equation of the matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} \quad \text{is} \quad \det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 = 0.$$

Hence $\lambda = 3$ is an eigenvalue of algebraic multiplicity $M_3 = 2$, but its geometric multiplicity is only $m_3 = 1$, since eigenvectors result from $0x_1 + 2x_2 = 0$ in the form $\begin{bmatrix} x_1 & 0 \end{bmatrix}^T$.

PROBLEM SET 8.1

1–16 EIGENVALUES, EIGENVECTORS

Find the eigenvalues. Find the corresponding eigenvectors. Use the given λ or factor in Probs. 11 and 15.

$$\mathbf{1} \begin{bmatrix} 3.0 & 0 \\ 0 & -0.6 \end{bmatrix} \qquad \mathbf{2} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\mathbf{3} \begin{bmatrix} 5 & -2 \\ 9 & -6 \end{bmatrix} \qquad \mathbf{4} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
$$\mathbf{5} \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix} \qquad \mathbf{6} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
$$\mathbf{7} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \mathbf{8} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
$$\mathbf{7} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \mathbf{8} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
$$\mathbf{9} \begin{bmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{bmatrix} \qquad \mathbf{10} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{11} \begin{bmatrix} 6 & 2 & -2 \\ 2 & 5 & 0 \\ -2 & 0 & 7 \end{bmatrix}, \quad \lambda = 3$$

$$15.\begin{bmatrix} -1 & 0 & 12 & 0 \\ 0 & -1 & 0 & 12 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & -4 & -1 \end{bmatrix}, \quad (\lambda + 1)^2$$
$$16.\begin{bmatrix} -3 & 0 & 4 & 2 \\ 0 & 1 & -2 & 4 \\ 2 & 4 & -1 & -2 \\ 0 & 2 & -2 & 3 \end{bmatrix}$$

Some Applications of Eigenvalue Problems

Example 5:

Vibrating System of Two Masses on Two Springs (Fig. 161)

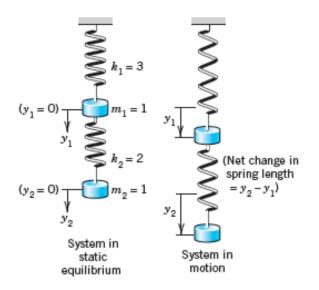
Mass-spring systems involving several masses and springs can be treated as eigenvalue problems. For instance, the mechanical system in Fig. 161 is governed by the system of ODEs

(6)
$$y_1'' = -3y_1 - 2(y_1 - y_2) = -5y_1 + 2y_2$$

 $y_2'' = -2(y_2 - y_1) = 2y_1 - 2y_2$

where y_1 and y_2 are the displacements of the masses from rest, as shown in the figure, and primes denote derivatives with respect to time t. In vector form, this becomes

(7)
$$y'' = \begin{bmatrix} y_1'' \\ y_2'' \end{bmatrix} = \mathbf{A}\mathbf{y} = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$



We try a vector solution of the form

(8)
$$y = xe^{\omega t}$$
.

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by exponential functions (and sines and cosines). Substitution into (7) gives

$$\omega^2 x e^{\omega t} = A x e^{\omega t}$$
.

Dividing by $e^{\omega t}$ and writing $\omega^2 = \lambda$, we see that our mechanical system leads to the eigenvalue problem

(9)
$$Ax = \lambda x$$
 where $\lambda = \omega^2$.

The eigenvalues of A are $\lambda_1 = -1$, $\lambda_2 = -6$, then

 $\omega = \pm \sqrt{-1} = \pm i$ and $\sqrt{-6} = \pm i\sqrt{6}$, respectively. Corresponding eigenvectors are

(10)
$$\mathbf{x_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\mathbf{x_2} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

From (8):

$$\begin{aligned} \mathbf{x}_1 e^{\pm it} &= \mathbf{x}_1(\cos t \pm i \sin t), \\ \mathbf{x}_2 e^{\pm i\sqrt{6}t} &= \mathbf{x}_2(\cos \sqrt{6}t \pm i \sin \sqrt{6}t) \end{aligned}$$

A general solution is obtained by taking a linear combination of these,

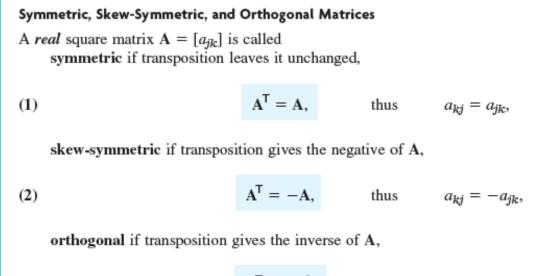
$$y = x_1(a_1 \cos t + b_1 \sin t) + x_2(a_2 \cos \sqrt{6}t + b_2 \sin \sqrt{6}t)$$

By (10), we get the solution components:

$$y_1 = a_1 \cos t + b_1 \sin t + 2a_2 \cos \sqrt{6} t + 2b_2 \sin \sqrt{6} t$$

$$y_2 = 2a_1 \cos t + 2b_1 \sin t - a_2 \cos \sqrt{6} t - b_2 \sin \sqrt{6} t.$$

Symmetric, Skew-Symmetric, and Orthogonal Matrices



$$A^{\mathsf{T}} = A^{-1}$$

Example 6:

Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

-3	1	5	٦ (I	9	-12 20 0	23	$\frac{1}{3}$	23
1	0	-2,	-9	0	20 ,	$-\frac{2}{3}$	23	$\frac{1}{3}$
5	-2	4	12	-20	0	$\frac{1}{3}$	$\frac{2}{3}$	$-\frac{2}{3}$

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-symmetric matrix has all main diagonal entries zero. (Can you prove this?)

Problems:

1–10 SPECTRUM

Are the following matrices symmetric, skew-symmetric, or orthogonal? Find the spectrum of each, thereby illustrating Theorems 1 and 5. Show your work in detail.

-	0.8 •0.6	-	2.	$\begin{bmatrix} a \\ -b \end{bmatrix}$	$\begin{bmatrix} b \\ a \end{bmatrix}$	
3.	2 8 ·8 2		4.	$\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$	-s	$\begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}$
5. 6 0 0	0 2 -2	$\begin{bmatrix} 0\\ -2\\ 5 \end{bmatrix}$	6.	$\begin{bmatrix} a \\ k \\ k \end{bmatrix}$	k a k	k k a
7	0 9 2 -2	9 -12 0 20 0 0_	8.	0	$\cos \theta$ sin θ	$-\sin \theta$ $\cos \theta$
9.	0 0 0 1 1 0	1 0 0	10.	$\begin{bmatrix} \frac{4}{9} \\ -\frac{7}{9} \\ -\frac{4}{9} \end{bmatrix}$	89 49 19	19 -49 89