Numerical Analysis with Python

LECTURE 01

Introduction to Numerical Modelling with Python

Introduction to Numerical Analysis

 ‘Numerical methods are techniques by which mathematical
problems are formulated so that they can be solved with arithmetic
operations™.

e There are many kinds of numerical methods, they have one common
characteristic: they invariably involve large numbers of tedious
arithmetic calculations.

 The role of numerical methods in engineering modelling and
problem solving has increased dramatically in recent years due to
the development of fast and efficient Digital Computers

Non-computer Approach to Numerical Analysis

1. Analytical or Exact methods:

“ provided excellent insight into the behavior of some systems.
However, analytical solutions can be derived for only a limited class
of problems. These include those that can be approximated with linear
models and those that have simple geometry and low dimensionality.”

Non-computer Approach to Numerical Analysis

2. Graphical Methods:

“These graphical solutions usually took the form of plots or
nomographs. Although graphical techniques can often be used to solve
complex problems, the results are not very precise. Furthermore,
graphical solutions (without the aid of computers) are extremely
tedious and awkward to implement.|”

Non-computer Approach to Numerical Analysis

3. Calculator and slides rules:

“Manual calculations are slow and tedious. Furthermore, consistent
results are elusive because of simple blunders that arise when
numerous manual tasks are performed.”

Merits of Numerical Methods in Engineering

They are capable of handling large systems of equations,
nonlinearities, and complicated geometries that are often
impossible to solve analytically.

They can be commercially produced as prepackaged software that
can be use by even non-expert to solve engineering problems.

Expert with underlining knowledge of system models can produce
their own numerical software to solve particular problem.

Numerical methods are an efficient vehicle for learning to use
computers.

Numerical methods provide a vehicle for you to reinforce your
understanding of mathematics.

Mathematical background for NA

(@) Part 2: Roots of equations
Solve fix) = O for x.

(b) Pari 3: Linear algebraic equations
Given the a's and the ¢’'s, solve
Qg4 + dqpip = Oy
Gzl + QX3 = C3
for the x's.

() Part 4: Optimization

Determine x that gives optimum f{x).

(d) Part 3: Curve fitting
Jix)

Regression

(&) Part 6: Integration

I=J®fix) dx
Find the area under the curve.

Jfix)
Root
X
X2
—————— Solution
£
Six)
Minimum
X
i
X
Sfix)
I\

X

(f) Part 7: Ordinary differential equations
Given
dy Ay
Pyt {L)]
solve for y as a function of 1.
Yip1 =i+l) At

(g) Part 8: Partial differential equations
Given
8, 8% _ g
a2 * g2 Y

solve for u as a function of
xandy

e —

Slope

r_f(fjs v

—Af—=
I I

it

I

i+

-

Mathematical Modeling & Problem solving

* What is a mathematical Model ?

“’1s broadly defined as a formulation or equation that expresses the
essential features of a physical system or process in mathematical
terms”’

It can take the form;

independent, parameters, forcing)

Dependent variable = f (variable functions

* Dependent variable: characteristic that usually reflects the behavior
or state of the system

* Independent variable: are usually dimensions, such as time and
space, along which the system’s behavior 1s being determined

* Forcing Functions: are external influences acting upon the system

* Parameters: are reflective of the system s properties or composition

Mathematical Modeling & Problem solving

* Traffic mathematical Model as system of linear equations

= ouT
total: 85 + x4 = 120 + x5
@ A: 85 =x14+x2
@B:] x+x3+45=120
@ C:| X2+ x4 =704+ x3
@D: 70 =45 + x5

Mathematical Modeling & Problem solving

* Electrical circuit mathematical Model as system of linear
equations

11_12+I3=0

71, + 41, — 15 = 0

_R0V

Model of a falling Object

* Assume a free falling object near the earth surface F,

Newtons Second law, net force,on the object F,
F =ma

Or
F
— (1.1)

a =

Where F, net force in N
M, is the mass of the body in Kg
A, is acceleration in m/s?

Substituting a = % and net force F = Fp + F, in (1.1)

dv_FD+FV
dt m

(1.2)

Model of a falling Object

* The Net force F acting on the body consist of two components
1. The downward force Fp due to the gravitational drag

2. The upward force Fy due to air resistance

Fp =mg where g is accelaration due to gravity
F, = —cv
where c is a constant called drag coef ficient and v is the air velocity
Or
F=Fy,+ F,=mg—cv (1.3)

Hence substituting (1.3) in (1.2) we have (1.4)

v 1.4

C
g m

Analytical solution to falling Object model

 The model that relates the acceleration of a falling object to the
forces acting on it.

* It is a differential equation because it i1s written in terms of the
. . d . .
differential rate of change (d—‘t’) of the variable that we are interested
in predicting.

* Simple algebraic manipulation can not solve the equation (1.4),
hence advanced techniques in calculus 1s required.

Analytical solution to falling Object model

 For example, if the parachutist is initially at rest (v=0 at t=0),
calculus can be used to solve Eq. (1.4) for V(t).

V() = @ (1— e~ @") (1.5)

Exercise: prove (1.5)

Analytical solution to falling Object model

Problem statement 1:

* A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Using analytical solution of Eq. (1.5) to compute velocity
prior to opening the chute. The drag coefficient is equal to 12.5

kg/s.

Solution: Substituting the parameters in the equation below

V(t) = @ (1 - e GR))

0BG (; _ e~ (651)0)

V(t) =

V(t) = 53_44(1 _ e—0.18355t)

Analytical solution to falling Object model

* Computing velocities at different times yields the following results

V(t) = 53.44(1 — e~ 0183351) !
&
Time(s) Velocity (m/s)
0 0
2 16.41995476
4 27.79472025
6 35.67447948
8 41.13310679 Analytical Method to Falling Object
10 44.91451827
12 47.53405465
14 49.34871325
16 50.60580051 40
18 51.47663561 E: .
20 52.07989823 g
22 52.4978026 e
24 52.78730183
26 52.98784963
28 53.12677718
30 53.22301791 30 40

Time (s)

© 53.44

Numerical solution to falling Object model

 To solve the problem modelled by Eq. (1.4) numerically, we can use
v

finite difference method (Euler's Method) to approximate % in Eq.
(1.4)

dv _Av v(tiyq) —v(ty)

dt At tivi — t; (1.6)
* Now using (1.6) in Eq. 1.4 we have,
v(tiv1) —v(t) c
=g ——V Fp
tivi — L m

* On rearranging the equation above

v(tiq) = v(t) + [g - %V(ti)] (tiv1 — ti) (1.7)

Numerical solution to falling Object model

e v(t;;1) is new velocity
* v(t;) is old velocity,

e (t;;1 — t;) = step size or time dif ference

Problem statement 2

* A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use numerical solution of Eq. (1.7) to compute velocity
prior to opening the chute. The drag coefficient is equal to 12.5
kg/s. Use t;i = 0 and t; 1 = 2s .

Solution: Substituting the parameters in the equation below
Step 1. t; = O,U(ti) =0

stepsize (t;;1 —t;)) =2—0=2s

v(tiyq) =v(t;) + [g — %v(ti)] (tir1 — ;)

Numerical solution to falling Object model

68.1
v(t;p1) =19.62 m/s Fy

Step 2: nowat,t; = 2s,v(t;) = 19.62m/s

68.1
v(t;11) =32.04m/s

12.5
v(t;y) =19.62 4+ [9.81 — —=—x19.62| x 2

Step 3: : nowat,t; =4s,v(t;) = 32.04m/s

68.1

v(t;, 1) = 32.04 + [9. 81 — x 32. 04] x 2

v(t;11) =39.90m/s
* Repeating at subsequent intervals will yield the results below

Numerical solution to falling Object model

Time(s) Velocity (m/s)
0 0
2 19.62
4 32.03735683
6 39.89621262
8 44.8700259
10 48.01791654
12 50.01019387 Numerical methods to falling Object
14 51.27109186
16 52.06910513
18 52.57416198 P
20 52.89380883 %
8
22 53.09611102 2
24 53.22414662
26 53.30517943
28 53.35646452 30 40

Time m/s .

30 53.38892248

Numerical Methods with Python

* Given the two approaches (analytical and numerical), its obvious
that the numerical approach can find solution similar to the exact
solution.

* Tedious computation 1s needed to get more accurate results, but
fortunately this can easily be done using computer.

 The numerical solution to falling object problem can be
implemented using a software package like PYTHON and
MATLAB to easily fine solution.

* Throughout the course PYTHON will be used for numerical
analysis

Numerical Methods with Python

* Python IDE and Installation: There many Integrated development
environment (IDE) use to create python program.

* In this course Python SPYDER IDE distributed by Anaconda is
recommended

* For instructions on how to download and install python SPYDER
on different operating systems visit the link below:

1. https://www.anaconda.com/distribution/

* Anaconda 1s one of several Python distributors. Python
distributions provide the Python interpreter, together with a list of
Python packages and sometimes other related tools, such as editors.

https://www.anaconda.com/distribution/

Numerical Methods with Python

Python packages: For scientific computing and computational
modelling, we need additional libraries (so called packages) that are
not part of the Python standard library.

The packages we generally need are:

NumPy: (Numeric Python): For matrices and linear algebra
Pandas: Python data science tools (Series and Dataframes)
SciPy: (Scientific Python): many numerical routines
matplotlib: (Plotting Library) creating plots of data
Sympy: (Symbolic Python): symbolic computation

Pytest: (Python Testing): a code testing framework

Numerical Methods with Python

Python Spyder IDE

Major Components

Editor

file {dn Search Sourge Bun Debug Cgnsoles Jools Yiew MHelp
] ,HM P e H l* plia> % 2 Hh E [}9 ® :1 A L) & CusersienanbermuderDocments \GitH.b \Smulatons . < 3

from_jacep oy & X Objectinspector & x
vSeuctw

iy

Editor - C:\User

gautnor: keriasbermude: Here you can get heip of any object by peessng Ctri+1 n front of £,

L Ob . t efther an the Ediar or the Console
import pandas as pd Jec H romatically after wrtng a keft parenthess

S v poodes e Variable s mnga i srenses
:‘,wth- Y David_Femyos)\\Image 3
0 ‘FI Ie

General measurement

'. tables = []

for 1 in os.listdir(path): to:
a ardnt(d)
toble = pd.read_table(pathei,seps’\n", headersticne, names=[1[:-8]], skipr
erpadid - / Explorer

17 toble = taple.transpose()
18 tables.append(table)

2% all_table = pd.concat(tables)

3 [Consoie 1A B3 -

string 2.8 = (3,5,11] Python 2.7.10 |Asaconda 2.3.8 (64-bit)| (default, May 28 2015, 16:44:52) [M5C v.1500 64 bit (A'Ds4))
4 8- T2 2 Type “copyright™, "credits™ or “license™ for more inforsation.
IPythen 3.2.8 «- An enhanced Interactive Pythen.
Anaconda is brought to you by Continuum Analytics.
for 1 in steing.2 Fleue check cut: http://continuum.io/thanks and https://asaconda.org
= 2.8 -> Introduction and overview of IPython's features.
test = al) fable.ix(:,4]. etxf2:8] xq..sckref > Quick reference. <
oS s DESELSXLS reph:e(.) help -> Python's own help systes
- A floi 3 . . e ‘abd '
::t“b;:‘:‘;f'{‘]’:(‘i,;‘) object? -> Details about "object’, use ‘object??' for extra cetails.
- Ax[:, P Z <
11 table.ix[1,1] Xguiref > A brief reference about the graphical user interface.

In [1):

string 3.8 = [7,8,13,14,16,17,19,28]

for i in string 3 8:

:8) <
e = = Console | Hstorykg | Python console

IPython Console

Numerical Methods with Python

* Packages Installation: all python packages can be installed via the
python installation manager found in python version 3.4 and above.

* In python command window or Ipython (Spyder):
>> pip install numpy
* Will download and install NumPy packages

* In the program script:

iImport numpy as np

* Will import all libraries from NumPy packages and create an object
np of those libraries.

Numerical Methods with Python

 Flowchart and Pseudocodes

Flowchart Pseudocode

I'F condition; THEN

B Block;
Condition, Block, ELSEIF condition;
Blocks
ELSETF condifiong
Condition, - _f.':i ocks
[=
Block,
ENDIF
Block, Block,
I -

() Multialternative structure (IF, THEMN/ELSEIF)

SELECT CASE Test Expression
CASE Value;
Block;
CASE Valuep
BTocks
".-’alue.,‘ "u'aluezlr ".Faluea‘ Elsel» Lr-d-:?l:l Value;
Block, Elock, Block, Block, CASE ELSE

Block,
I I I I END SELECT

]

(H) CASE structure (SELECT or SWITCH)

Test
expression

Numerical Methods with Python

* Pseudocodes for solving falling Object Using Euler’s Numerical
Approach

v(tip1) = v(t;) + lg - %v(ti)] (tip1 — t;)

[. Input g, c, m, stepsize

2. Initialize v(t;) = 0,andt; = 0

3. Compute v(ti+1) = v(t;) + [g - %v(ti)] * stepsize

4. Replace v(t;) with new velocity computed in step 3

5. If stoppage criteria is not met GOTO step 3 Else GOTO 6
6. Return v(tjyq)

7. Stop

Numerical Methods with Python

* Python function for solving falling Object Using Euler’s Numerical

Approach

v(tir1) = v(t;) + [g - %v(ti)] (tiv1 — L)

Project explorer & X Editor - C:\Users\OZERENDesktopTIUCourses\SPRIMG Wumerical_Analysis\MumericalAnalysisPython\Chapter 1\FalingObject. py F X Variable explorer o X
v B Numericalfnal{ [temp.py FalingObject.py [6 & B . &
v B Chapterl 1 L MName Type Size Value
(2 Falling 2m (e, 2, 4, 6, 8, 18, 12, 14, 16, 18
3 Created on Fri Jan 10 21:02:81 2620 Time DT -
- @author: ASHIR velocity 1list 51 [®, 19.62, 32.837355828193836, 39.80.
cC tuple 2 (3@, 28)
8
=]
1@ impert matplotlib.pyplot as mpl
12
L3 p(t_(i+1) J=v(t_i)+[g-c/m wit_i)](t_{(i+1)-t_i) """
15
16
7 ize,* :
- Euler_Method(g,c,m,stepsize, *argy) Variable explorer File explorer Help Profiler
8
_: :I.I" cﬁate list to hold the values of time and corresponding wvelocity """ IPython console 8 x
20 ime=
21 velocity=[] [l Console ya B N
22 """ initialize time and velocities to """ UETETT REYWOrd argumEntT. LT SUCh & TTuata ~
23 t=8 argument iz given, the
24 vV t=8 following arguments are replaced by
25 time.append(t) **data[<arg>]**:
26 velocity.append(V_t)
27 * all arguments with the following names:
28 for iter in range(argv[@]): ‘colors’, 'x', 'ymax', 'ymin'.
29 V_t_1=V_t+(g-((c/m)*V_t))*stepsize
38 Objects passed as **data** must suppert item
31 """ update time and velocity and move to next step™"" access (" “data[<arg>]"") and
32 t=t+stepsize membership test (" <arg> in data’).
33 V_t=V_t_1
34 waitforbuttonpress(*args, **kwargs)
35 """ add new time and velocity in their list container """ Blocking call to interact with the figure.
36 time.append(t)
37 velocity.append(V_t) Thiz will return True iz a key was pressed, False
38 - if a mouse
39 button was pressed and None if *timeout® was
48 return time, velocity reached without
41 either being pressed.
42
43 Time, Velocity=Euler_Methed(9.81,12.5,68.1,2,58) If *timeout® is negative, does not timeout.
45 """ plot the results for 5@ iterations """ winter()
46 Set the colermap to "winter”.
47 mpl.plot(Time, Velocity)]
48 This changes the default colormap as well as the
49 colormap of the current
5@ image if there iz one. See " “help(colormaps)””
51 for more information.
52
53 xcorr(x, Yy, normed=True, detrend=<function w
= N 54 w | IPythonconsole | History log

Numerical Methods with Python

* Python function for solving falling Object Using Euler’s Numerical
Approach

v(tir1) = v(t;) + [g - %V(ti)] (tiv1 — L)

-

