
Chapter 2 – Software Processes

Lecture 1

1Chapter 2 Software Processes

Topics covered

 Software process models

 Process activities

 Coping with change

 The Rational Unified Process

▪ An example of a modern software process.

2Chapter 2 Software Processes

The software process

 A structured set of activities required to develop a

software system.

 Many different software processes but all involve:

▪ Specification – defining what the system should do;

▪ Design and implementation – defining the organization of the

system and implementing the system;

▪ Validation – checking that it does what the customer wants;

▪ Evolution – changing the system in response to changing

customer needs.

 A software process model is an abstract representation

of a process. It presents a description of a process from

some particular perspective.

3Chapter 2 Software Processes

Software process descriptions

 When we describe and discuss processes, we usually

talk about the activities in these processes such as

specifying a data model, designing a user interface, etc.

and the ordering of these activities.

 Process descriptions may also include:

▪ Products, which are the outcomes of a process activity;

▪ Roles, which reflect the responsibilities of the people involved in

the process;

▪ Pre- and post-conditions, which are statements that are true

before and after a process activity has been enacted or a

product produced.

4Chapter 2 Software Processes

Plan-driven and agile processes

 Plan-driven processes are processes where all of the

process activities are planned in advance and progress

is measured against this plan.

 In agile processes, planning is incremental and it is

easier to change the process to reflect changing

customer requirements.

 In practice, most practical processes include elements of

both plan-driven and agile approaches.

 There are no right or wrong software processes.

5Chapter 2 Software Processes

Software process models

 The waterfall model

▪ Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

▪ Specification, development and validation are interleaved. May

be plan-driven or agile.

 Reuse-oriented software engineering

▪ The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from all of these

models.
6Chapter 2 Software Processes

The waterfall model

7Chapter 2 Software Processes

Waterfall model phases

 There are separate identified phases in the waterfall

model:

▪ Requirements analysis and definition

▪ System and software design

▪ Implementation and unit testing

▪ Integration and system testing

▪ Operation and maintenance

 The main drawback of the waterfall model is the difficulty

of accommodating change after the process is

underway. In principle, a phase has to be complete

before moving onto the next phase.

8Chapter 2 Software Processes

Waterfall model problems

 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer

requirements.

▪ Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the

design process.

▪ Few business systems have stable requirements.

 The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites.

▪ In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

9Chapter 2 Software Processes

Incremental development

10Chapter 2 Software Processes

Incremental development benefits

 The cost of accommodating changing customer

requirements is reduced.

▪ The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.

 It is easier to get customer feedback on the development

work that has been done.

▪ Customers can comment on demonstrations of the software and

see how much has been implemented.

 More rapid delivery and deployment of useful software to

the customer is possible.

▪ Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

11Chapter 2 Software Processes

Incremental development problems

 The process is not visible.

▪ Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

 System structure tends to degrade as new increments

are added.

▪ Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.

Incorporating further software changes becomes increasingly

difficult and costly.

12Chapter 2 Software Processes

Reuse-oriented software engineering

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Process stages

▪ Component analysis;

▪ Requirements modification;

▪ System design with reuse;

▪ Development and integration.

 Reuse is now the standard approach for building many

types of business system

▪ Reuse covered in more depth in Chapter 16.

13Chapter 2 Software Processes

Reuse-oriented software engineering

14Chapter 2 Software Processes

Types of software component

 Web services that are developed according to service

standards and which are available for remote invocation.

 Collections of objects that are developed as a package

to be integrated with a component framework such as

.NET or J2EE.

 Stand-alone software systems (COTS) that are

configured for use in a particular environment.

15Chapter 2 Software Processes

Process activities

 Real software processes are inter-leaved sequences of

technical, collaborative and managerial activities with the

overall goal of specifying, designing, implementing and

testing a software system.

 The four basic process activities of specification,

development, validation and evolution are organized

differently in different development processes. In the

waterfall model, they are organized in sequence,

whereas in incremental development they are inter-

leaved.

16Chapter 2 Software Processes

Software specification

 The process of establishing what services are required

and the constraints on the system’s operation and

development.

 Requirements engineering process

▪ Feasibility study

• Is it technically and financially feasible to build the system?

▪ Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?

▪ Requirements specification

• Defining the requirements in detail

▪ Requirements validation

• Checking the validity of the requirements

17Chapter 2 Software Processes

The requirements engineering process

18Chapter 2 Software Processes

Software design and implementation

 The process of converting the system specification into

an executable system.

 Software design

▪ Design a software structure that realises the specification;

 Implementation

▪ Translate this structure into an executable program;

 The activities of design and implementation are closely

related and may be inter-leaved.

19Chapter 2 Software Processes

A general model of the design process

20Chapter 2 Software Processes

Design activities

 Architectural design, where you identify the overall

structure of the system, the principal components

(sometimes called sub-systems or modules), their

relationships and how they are distributed.

 Interface design, where you define the interfaces

between system components.

 Component design, where you take each system

component and design how it will operate.

 Database design, where you design the system data

structures and how these are to be represented in a

database.

21Chapter 2 Software Processes

Software validation

 Verification and validation (V & V) is intended to show

that a system conforms to its specification and meets the

requirements of the system customer.

 Involves checking and review processes and system

testing.

 System testing involves executing the system with test

cases that are derived from the specification of the real

data to be processed by the system.

 Testing is the most commonly used V & V activity.

22Chapter 2 Software Processes

Stages of testing

23Chapter 2 Software Processes

Testing stages

 Development or component testing

▪ Individual components are tested independently;

▪ Components may be functions or objects or coherent groupings

of these entities.

 System testing

▪ Testing of the system as a whole. Testing of emergent properties

is particularly important.

 Acceptance testing

▪ Testing with customer data to check that the system meets the

customer’s needs.

24Chapter 2 Software Processes

Testing phases in a plan-driven software

process

25Chapter 2 Software Processes

Software evolution

 Software is inherently flexible and can change.

 As requirements change through changing business

circumstances, the software that supports the business

must also evolve and change.

 Although there has been a demarcation between

development and evolution (maintenance) this is

increasingly irrelevant as fewer and fewer systems are

completely new.

26Chapter 2 Software Processes

System evolution

27Chapter 2 Software Processes

Key points

 Software processes are the activities involved in

producing a software system. Software process models

are abstract representations of these processes.

 General process models describe the organization of

software processes. Examples of these general models

include the ‘waterfall’ model, incremental development,

and reuse-oriented development.

28Chapter 2 Software Processes

Key points

 Requirements engineering is the process of developing a

software specification.

 Design and implementation processes are concerned

with transforming a requirements specification into an

executable software system.

 Software validation is the process of checking that the

system conforms to its specification and that it meets the

real needs of the users of the system.

 Software evolution takes place when you change

existing software systems to meet new requirements.

The software must evolve to remain useful.

29Chapter 2 Software Processes

Coping with change

 Change is inevitable in all large software projects.

▪ Business changes lead to new and changed system

requirements

▪ New technologies open up new possibilities for improving

implementations

▪ Changing platforms require application changes

 Change leads to rework so the costs of change include

both rework (e.g. re-analysing requirements) as well as

the costs of implementing new functionality

30Chapter 2 Software Processes

Reducing the costs of rework

 Change avoidance, where the software process includes

activities that can anticipate possible changes before

significant rework is required.

▪ For example, a prototype system may be developed to show

some key features of the system to customers.

 Change tolerance, where the process is designed so that

changes can be accommodated at relatively low cost.

▪ This normally involves some form of incremental development.

Proposed changes may be implemented in increments that have

not yet been developed. If this is impossible, then only a single

increment (a small part of the system) may have be altered to

incorporate the change.

31Chapter 2 Software Processes

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

▪ The requirements engineering process to help with requirements

elicitation and validation;

▪ In design processes to explore options and develop a UI design;

▪ In the testing process to run back-to-back tests.

32Chapter 2 Software Processes

Benefits of prototyping

 Improved system usability.

 A closer match to users’ real needs.

 Improved design quality.

 Improved maintainability.

 Reduced development effort.

33Chapter 2 Software Processes

The process of prototype development

34Chapter 2 Software Processes

Prototype development

 May be based on rapid prototyping languages or tools

 May involve leaving out functionality

▪ Prototype should focus on areas of the product that are not well-

understood;

▪ Error checking and recovery may not be included in the

prototype;

▪ Focus on functional rather than non-functional requirements

such as reliability and security

Chapter 2 Software Processes 35

Throw-away prototypes

 Prototypes should be discarded after development as

they are not a good basis for a production system:

▪ It may be impossible to tune the system to meet non-functional

requirements;

▪ Prototypes are normally undocumented;

▪ The prototype structure is usually degraded through rapid

change;

▪ The prototype probably will not meet normal organisational

quality standards.

36Chapter 2 Software Processes

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest priority

requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

37Chapter 2 Software Processes

Incremental development and delivery

 Incremental development

▪ Develop the system in increments and evaluate each increment

before proceeding to the development of the next increment;

▪ Normal approach used in agile methods;

▪ Evaluation done by user/customer proxy.

 Incremental delivery

▪ Deploy an increment for use by end-users;

▪ More realistic evaluation about practical use of software;

▪ Difficult to implement for replacement systems as increments

have less functionality than the system being replaced.

Chapter 2 Software Processes 38

Incremental delivery

39Chapter 2 Software Processes

Incremental delivery advantages

 Customer value can be delivered with each increment so

system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most testing.

40Chapter 2 Software Processes

Incremental delivery problems

 Most systems require a set of basic facilities that are

used by different parts of the system.

▪ As requirements are not defined in detail until an increment is to

be implemented, it can be hard to identify common facilities that

are needed by all increments.

 The essence of iterative processes is that the

specification is developed in conjunction with the

software.

▪ However, this conflicts with the procurement model of many

organizations, where the complete system specification is part of

the system development contract.

41Chapter 2 Software Processes

