Association between categorical variables (Percentages) Chi square (x²) test

Dr Abubakir Majeed Assist. Prof. of Community Medicine

Outline

 Construct 2-way table to examine association between two categorical variables.

 Conduct Chi Square (χ2) test to assess evidence for association between two or more categorical variables.

Constructing a two-way table

- Shows distribution of (relationship between) 2 categorical variables.
- Example: Relationship between physical exercise and the sex of individuals?
- If rows are independent variable, use row %'s.
- 2x2 table

Sex	Exercise		No ex	No exercise		Total	
	No.	%	No.	%	No.	%	
Male	31	75.6	10	24.4	41	100	
Female	101	83.5	20	16.5	121	100	
Total	132	81.5	30	18.5	162	100	

- Drug A: Of 93 patients, 49 had response
- Drug B: Of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor response				Total	
	Ye	es	No			0 (
	No.	%	No.	%	No.	%
Drug A						
Drug B						
Total						

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Т	umor r	Total			
	Ye	es	No		NLa	0/
	No.	%	No.	%	INO.	%
Drug A	49				93	
Drug B	18				91	
Total	67				184	

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Т	umor r	Total			
	Ye	es	No		Nia	0/
	No.	%	No.	%	INO.	70
Drug A	49		44		93	
Drug B	18		73		91	
Total	67		117		184	

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	٦	Fumor re	Total			
	Y	es	No		NLa	(0/)
	No.	(%)	No.	(%)	INO.	(%)
Drug A	49	(53%)	44	(47%)	93	(100%)
Drug B	18	(20%)	73	(80%)	91	(100%)
Total	67	(36%)	117	(64%)	184	(100%)

Larger tables

3x3 table

Age	Fever after operation						Total	
group	Mi	ld	Moderate Sev		Sev	ere		
	No.	%	No.	%	No.	%	No.	%
<30 Y	37	59	14	22	12	19	63	100
30-45 Y	18	33	17	31	19	35	54	100
>45 Y	24	50	14	29	10	21	48	100
Total	79		45		41		165	

Association between two variables

- Two variables are associated if distribution of one varies according to value of other
- Knowing value of one variable tells us something about value of other
- In example,

Knowing sex of student will tell us something about physical exercise (association).

- Usually examine distribution of dependent variable according to levels of independent variable
- Distribution of physical exercise (dependent) across sex (independent)

Sex	Exercise		No ex	No exercise		Total	
	No.	%	No.	%	No.	%	
Male	31	75.6	10	24.4	41	100	
Female	101	83.5	20	16.5	121	100	
Total	132	81.5	30	18.5	162	100	

 Distribution of physical exercise differs according to sex but....by more than we expect by chance??....

Example: <u>Gender</u> and <u>Exercise</u> among students

Sex	Exercise		No ex	No exercise		Total	
	No.	%	No.	%	No.	%	
Male	31	75.6	10	24.4	41	100	
Female	101	83.5	20	16.5	121	100	
Total	132	81.5	30	18.5	162	100	

75.6% of male students exercise regularly83.5% of female students exercise regularly

Is there a real difference or it is due to chance?

If no association, H₀:

Sex	Exercise		No ex	No exercise		Total	
	No.	%	No.	%	No.	%	
Male		?		?	41	100	
Female		?		?	121	100	
Total	132	81.5	30	18.5	162	100	

If no association, H₀:

Sex	Exercise		No exercise		Total	
	No.	%	No.	%	No.	%
Male		81.5		18.5	41	100
Female		81.5		18.5	121	100
Total	132	81.5	30	18.5	162	100

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a significance test.
- Null hypothesis (H₀): "no association between the two variables"
- H₀: distribution of physical exercise is same in each group (male and female).

Significance test for comparing proportions

- The test is called Chi Square (χ2) test
- Step 1 Calculate expected table
 - For H_0 , as there is no real association
 - Difficult way
 - Quick way
- Step 2 Calculate $\chi 2$
- Step 3 Obtain p-value and interpret it

Note: Steps 1 & 2 can be done in one quick step only for 2x2 tables

Step 1 – Calculate expected table

Sex	Exercise		No exercise		Total	
	No.	%	No.	%	No.	%
Male		81.5		18.5	41	100
Female		81.5		18.5	121	100
Total	132	81.5	30	18.5	162	100

132/162 (81.5%) exercise 30/162 (18.5%) do not exercise Under H_0 expect same percentage for both sexes

Sex	Exercise		No exercise		Total	
	No.	%	No.	%	No.	%
Male		81.5		18.5	41	100
Female		81.5		18.5	121	100
Total	132	81.5	30	18.5	162	100

Difficult way

Male

Expect 81.5% of male to exercise (81.5% of 41=81.5x41/100=33.4)

Expect 18.5% of male to not exercise (18.5% of 41=18.5x41/100=7.6)

Female

Expect 81.5% of female to exercise (81.5% of 121=81.5x121/100=98.6) Expect 18.5% of male to not exercise (18.5% of 121=18.5x121/100=22.4)

Sex	Exercise		No exercise		Total	
	No.	%	No.	%	No.	%
Male	33.4	81.5	7.6	18.5	41	100
Female	98.6	81.5	22.4	18.5	121	100
Total	132	81.5	30	18.5	162	100

Expected table

• Only numbers, without percentages

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Total	132	30	162

Overall total

Observed

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

41x132/162=33.4

Sex	Exercise	No exercise	Total
Male	33.4		41
Female			121
Total	132	30	162

Overall total

Observed

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

41x132/162=33.4 41x30/162=7.6

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female			121
Total	132	30	162

Overall total

Observed

Sex	Exercise	No exercise	Total
Male	31	10	41
Female	101	20	121
Total	132	30	162

41x132/162=33.4 41x30/162=7.6 **121x132/162=98.6**

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6		121
Total	132	30	162

Overall total

Observed

Sex	Exercise	No exercise	Total	41x132/162=33.4
Male	31	10	41	41x30/162=7.6
Female	101	20	121	121x132/162=98.6
Total	132	30	162	121x30/162=22.4

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Total	132	30	162

Step 2 – calculate χ2

Compare each observed value with each expected

value

	Sex	Exercise	No exercise	Total
Observed	Male	31	10	41
	Female	101	20	121
	Total	132	30	162

	Sex	Exercise	No exercise	Total
Expected	Male	33.4	7.6	41
	Female	98.6	22.4	121
	Total	132	30	162

and obtain χ^2 test statistic. $\chi^2 = \Sigma \{(O-E)^2/E\}$

- Compare each observed value with each expected value and obtain χ^2 test statistic.
- $\chi 2 = \Sigma \{ (O-E)^2 / E \}$
- Calculate (O-E)2/E for each cell and sum over all cells
- $\chi 2 = (31 33.4)^2/33.4 + (10 7.6)^2/7.6 + (101 98.6)^2/98.6 + (20 22.4)^2/22.4 =$ **1.25**

Step 3 - Obtain p-value

- Refer $\chi 2$ value to tables of chi-squared distribution
- Need "degrees of freedom", v
- v = (r 1) x (c 1)
 r = no. of rows, c = no. of columns.
- In example, r = c = 2, so v = (2-1) x (2-1) = 1
- Refer to table, $\chi 2 = 1.25$, d.f. =1

				<i>P</i> val	lue			3. 52
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

Percentage points of the χ^2 distribution.

- In example, r = c = 2, so v = (2-1) x (2-1) = 1
- From table, χ2 value of 1.25, P > 0.05

Step 4 - Interpret p-value

- No evidence of association
- Accept H₀

Quick method for $\chi 2$

- There is a quick formula to test for association in 2x2 table
- If we label cells of 2x2 table as follows:

able odlf	Sex	Exercise	No exercise	Total
	Male	31 (a)	10 (b)	41(e)
ahIN	Female	101 (c)	20 (d)	121 (f)
3	Total	132 (g)	30 (h)	162 (N)

• Then easiest way to calculate χ^2 is using: $\chi^2 = (|ad - bc|)^2 \times N = (31x20-101x10)^2x162$ efgh 41x121x132x30

= 1.25

SUMMARY

What to do when confronted with categorical data?

6 Step Guide....

Step 1: Construct 2-way table to display data

Step 2: Calculate row (independent) %'s

Step 3: Carry out (O-E) χ^2 test of association (or quick formula for 2x2 tables only)

Step 4: Calculate degrees of freedom for χ^2 test

Step 5: Refer to tables to obtain P-value

Step 6: Interpret p-value

Another example – Tumor response

Observed

Drug	Tumor res	Total	
	Yes	No	
Drug A	49 (53%)	44	93
Drug B	18 (20%)	73	91
Total	67 (36%)	117	184

Expected

Drug	Tumor res	Total	
	Yes	No	
Drug A			93
Drug B			91
Total	67 (36%)	117	184

Another example – Tumor response

Observed

	Drug	Tumor res	Total	
		Yes	No	
	Drug A	49 (53%)	44	93
	Drug B	18 (20%)	73	91
	Total	67 (36%)	117	184
E	xpected			

Drug	Tumor res	Tumor response				
	Yes	No				
Drug A	33.86	59.4	93			
Drug B	33.14	57.86	91			
Total	67 (36%)	117	184			

 $\chi^2 = (49 - 33.86)^2/33.86 + (18 - 33.14)^2/33.14 + (44 - 59.14)^2/59.14 + (73 - 57.86)^2/57.86 = 21.52.$

	Drug	Tumor res	ponse	Total	
Quick formula		Yes	No		
	Drug A	49 (53%)	44	93	
	Drug B	18 (20%)	73	91	
	Total	67 (36%)	117	184	

$$\chi^2 = (|ad - bc|)^2 \times N = (49x73-44x18)^2x184$$

efgh 93x91x67x117
= 21.51

- r = c = 2, so (2-1) x (2-1) = 1 d.f.
- p<0.05

	a successive distance in the second secon	<i>P</i> value								
d.f.	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001		
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83		
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82		
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27		
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47		
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52		
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46		
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32		
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13		
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88		
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59		
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26		
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91		
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53		
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12		
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70		
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25		
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79		
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31		
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82		
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32		

Percentage points of the χ^2 distribution.

Another example – More than 2X2

Age	F	eve	Total					
group	Mi	ld	Mod	derate	Sev	ere		
	No.	%	No.	%	No.	%	No.	%
<30 Y	37		14		12		63	
30-45 Y	18		17		19		54	
>45 Y	24		14		10		48	
Total	79		45		41		165	

- Distribution of fever after operation differs according to age group
- but....by more than we expect by chance??....

Age		Fev	Total					
group	Mi	ld	Mode	rate	Severe			
	No.	%	No.	%	No.	%	No.	%
<30 Y	37	59	14	22	12	19	63	100
30-45 Y	18	33	17	31	19	35	54	100
>45 Y	24	50	14	29	10	21	48	100
Total	79		45		41		165	

Observed

Age	Fever af	ter operati	Total	
group	Mild	Moderate	Sever	
<30 Y	37	14	12	63
30-45 Y	18	17	19	54
>45 Y	24	14	10	48
Total	79	45	41	165

Age	Fever af	ter operati	Total	
group	Mild	Moderate	Sever	
<30 Y	30.16	17.18	15.65	63
30-45 Y	25.85	14.73	13.42	54
>45 Y	22.98	13.09	11.93	48
Total	79	45	41	165

 Compare each expected value with each observed value and obtain x2 test statistic.

- Calculate (O-E)²/E for each cell and sum over all cells
- $\chi 2 = (37 30.16)^2/30.16 + (18 25.85)^2/25.85 + + (10 11.93)^2/11.93 = 8.47$

- Degrees of freedom
 v = (r 1) x (c 1)
 r = no. of rows, c = no. of columns.
- In example, r = c = 3, so $v = (3-1) \times (3-1) = 4$
- Refer to table, $\chi^2 = 8.47$, d.f. =4
- From table, χ2 value of 8.47, 0.05 < P < 0.10
- No evidence of association
- Note: We can not use quick formula here (not 2x2 table)

d.f.	<i>P</i> value							
	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

Percentage points of the χ^2 distribution.

Questions??