Association between categorical variables (Percentages) Chi square (X^{2}) test

Dr Abubakir Majeed Assist. Prof. of Community Medicine

Outline

1) Construct 2-way table to examine association between two categorical variables.
2) Conduct Chi Square ($x 2$) test to assess evidence for association between two or more categorical variables.

Constructing a two-way table

- Shows distribution of (relationship between) 2 categorical variables.
- Example: Relationship between physical exercise and the sex of individuals?
- If rows are independent variable, use row \%'s.
- 2x2 table

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male	31	$\mathbf{7 5 . 6}$	10	$\mathbf{2 4 . 4}$	41	100
Female	101	$\mathbf{8 3 . 5}$	20	$\mathbf{1 6 . 5}$	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

Another example

- Drug A: Of 93 patients, 49 had response
- Drug B: Of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor response		Total		
	Yes		No		No.
	No.	$\%$	No.	$\%$	\%
Drug A					
Drug B					
Total					

Another example

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor response		Total		
	Yes		No		No.
	No.	$\%$	No.	$\%$	
Drug A	49				93
Drug B	18				
Total	67				184

Another example

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor response		Total		
	Yes		No		No.
	No.	$\%$	No.	$\%$	
Drug A	49		44		93
Drug B	18		73		
Total	67	117		184	

Another example

- Drug A: out of 93 patients, 49 had response
- Drug B: Out of 91 patients, 18 had response
- Construct a two-way table
- 2x2 table

Drug	Tumor response			Total		
	Yes		No		No.	(\%)
	No.	$(\%)$	No.	$(\%)$		
Drug A	49	(53%)	44	(47%)	93	(100%)
Drug B	18	(20%)	73	(80%)	91	(100%)
Total	67	(36%)	117	(64%)	184	(100%)

Larger tables

- 3×3 table

Age group	Fever after operation					Total		
	Mild		Moderate		Severe			
	No.	$\%$	No.	$\%$	No.	$\%$	No.	$\%$
<30 Y	37	$\mathbf{5 9}$	14	$\mathbf{2 2}$	12	19	63	100
$30-45$ Y	18	$\mathbf{3 3}$	17	$\mathbf{3 1}$	19	$\mathbf{3 5}$	54	100
$\mathbf{4 5}$ Y	24	$\mathbf{5 0}$	14	$\mathbf{2 9}$	10	$\mathbf{2 1}$	48	100
Total	79		45		41		165	

Association between two variables

- Two variables are associated if distribution of one varies according to value of other
- Knowing value of one variable tells us something about value of other
- In example,

Knowing sex of student will tell us something about physical exercise (association).

- Usually examine distribution of dependent variable according to levels of independent variable
- Distribution of physical exercise (dependent) across sex (independent)

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male	31	$\mathbf{7 5 . 6}$	10	$\mathbf{2 4 . 4}$	41	100
Female	101	$\mathbf{8 3 . 5}$	20	$\mathbf{1 6 . 5}$	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

- Distribution of physical exercise differs according to sex but.....by more than we expect by chance??....

Example: Gender and Exercise among students

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	\%	No.	$\%$
Male	31	75.6	10	24.4	41	100
Female	101	83.5	20	16.5	121	100
Total	132	81.5	30	18.5	162	100

75.6\% of male students exercise regularly 83.5\% of female students exercise regularly

Is there a real difference or it is due to chance?

If no association, H_{0} :

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male		$\boldsymbol{?}$		$\boldsymbol{?}$	41	100
Female		$\boldsymbol{?}$		$\boldsymbol{?}$	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

If no association, H_{0} :

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male		$\mathbf{8 1 . 5}$		18.5	41	100
Female		$\mathbf{8 1 . 5}$		18.5	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a

Significance test for association

- Examining percentages indicates whether association may exist between exposure and disease
- But is association likely to be real or due to sampling variability?
- Need a significance test.
- Null hypothesis $\left(\mathrm{H}_{0}\right)$: "no association between the two variables"
- H_{0} : distribution of physical exercise is same in each group (male and female).

Significance test for comparing proportions

- The test is called Chi Square (x 2) test
- Step 1 - Calculate expected table

For H_{0}, as there is no real association

- Difficult way
- Quick way
- Step 2 - Calculate x 2
- Step 3 - Obtain p-value and interpret it

Note: Steps $1 \& 2$ can be done in one quick step only for 2×2 tables

Step 1 - Calculate expected table

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male		81.5		18.5	41	100
Female		81.5		18.5	121	100
Total	132	81.5	30	18.5	162	100

132/162 (81.5\%) exercise
30/162 (18.5\%) do not exercise
Under H_{0} expect same percentage for both sexes

Sex	Exercise		No exercise		Total	
	No.	$\%$	No.	$\%$	No.	$\%$
Male		$\mathbf{8 1 . 5}$		$\mathbf{1 8 . 5}$	41	100
Female		$\mathbf{8 1 . 5}$		$\mathbf{1 8 . 5}$	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

Difficult way

Male

Expect 81.5% of male to exercise (81.5% of $41=81.5 \times 41 / 100=33.4$)
Expect 18.5% of male to not exercise (18.5% of $41=18.5 \times 41 / 100=7.6$)
Female
Expect 81.5% of female to exercise (81.5% of $121=81.5 \times 121 / 100=98.6$)
Expect 18.5% of male to not exercise (18.5% of $121=18.5 \times 121 / 100=22.4$)

Sex	Exercise		No exercise	Total		
	No.	$\%$	No.	$\%$	No.	$\%$
Male	33.4	$\mathbf{8 1 . 5}$	7.6	$\mathbf{1 8 . 5}$	41	100
Female	98.6	$\mathbf{8 1 . 5}$	22.4	$\mathbf{1 8 . 5}$	121	100
Total	132	$\mathbf{8 1 . 5}$	30	$\mathbf{1 8 . 5}$	162	100

Expected table

- Only numbers, without percentages

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	22.4	121
Total	132	30	162

Quick way

Expected number = Row total x Column total Overall total

Observed

Sex	Exercise	No exercise	Total	41x132/162=33.4
Male	$\mathbf{3 1}$	10	$\mathbf{4 1}$	
Female	101	20	121	
Total	132	30	162	

Sex	Exercise	No exercise	Total
Male	33.4		41
Female			121
Total	132	30	162

Quick way

Expected number = Row total \times Column total Overall total

Observed

Sex	Exercise	No exercise	Total	41x132/162=33.4
Male	31	$\mathbf{1 0}$	$\mathbf{4 1}$	$\mathbf{4 1 x 3 0 / 1 6 2 = 7 . 6}$
Female	101	20	121	
Total	132	$\mathbf{3 0}$	$\mathbf{1 6 2}$	

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female			121
Total	132	30	162

Quick way

Expected number = Row total \times Column total Overall total

Observed

Sex	Exercise	No exercise	Total	$41 \times 132 / 162=33.4$
Male	31	10	41	$41 \times 30 / 162=7.6$
Female	101	20	121	$121 \times 132 / 162=98.6$
Total	132	30	162	

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6		121
Total	132	30	162

Quick way

Expected number = Row total x Column total
 Overall total

Observed

Sex	Exercise	No exercise	Total	$\mathbf{4 1 \times 1 3 2 / 1 6 2 = 3 3 . 4}$
Male	31	10	41	$\mathbf{4 1 \times 3 0 / 1 6 2 = 7 . 6}$
Female	101	20	$\mathbf{1 2 1}$	$\mathbf{1 2 1 \times 1 3 2 / 1 6 2 = 9 8 . 6}$
Total	132	$\mathbf{3 0}$	$\mathbf{1 6 2}$	$\mathbf{1 2 1 \times 3 0 / 1 6 2 = 2 2 . 4}$

Expected

Sex	Exercise	No exercise	Total
Male	33.4	7.6	41
Female	98.6	$\mathbf{2 2 . 4}$	121
Total	132	30	162

Step 2 - calculate X2
Compare each observed value with each expected value

Observed

Sex	Exercise	No exercise	Total
Male	$\mathbf{3 1}$	$\mathbf{1 0}$	41
Female	$\mathbf{1 0 1}$	$\mathbf{2 0}$	121
Total	132	30	162

Expected

Sex	Exercise	No exercise	Total
Male	$\mathbf{3 3 . 4}$	$\mathbf{7 . 6}$	41
Female	$\mathbf{9 8 . 6}$	$\mathbf{2 2 . 4}$	121
Total	132	30	162

and obtain X 2 test statistic. $\quad \mathrm{X} 2=\Sigma\left\{(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}\right\}$

- Compare each observed value with each expected value and obtain x 2 test statistic.
- $\mathrm{X} 2=\Sigma\left\{(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}\right\}$
- Calculate (O-E)2/E for each cell and sum over all cells
- $\mathrm{x} 2=(31-33.4)^{2} / 33.4+(10-7.6)^{2} / 7.6+$ $(101-98.6)^{2} / 98.6+(20-22.4)^{2} / 22.4=1.25$

Step 3 - Obtain p -value

- Refer x2 value to tables of chi-squared distribution
- Need "degrees of freedom", v
- $v=(r-1) \times(c-1)$
$r=$ no. of rows, $\quad c=$ no. of columns.
- In example, $r=c=2$, so $v=(2-1) \times(2-1)=1$
- Refer to table, $x 2=1.25$, d.f. $=1$

Percentage points of the χ^{2} distribution.

	P value							
d f.	0.5	0.25	0.1	$\underline{0.05}$	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

- In example, $r=c=2$, so $v=(2-1) \times(2-1)=1$
- From table, x 2 value of $1.25, \mathrm{P}>0.05$

Step 4 - Interpret p-value

- No evidence of association
- Accept H_{0}

Quick method for x^{2}

- There is a quick formula to test for association in $2 x 2$ table
- If we label cells of 2×2 table as follows:
$a b \mid e$
$c d \mid f$
gh | N

Sex	Exercise	No exercise	Total
Male	$31(\mathrm{a})$	$10(\mathrm{~b})$	$41(\mathrm{e})$
Female	$101(\mathrm{c})$	$20(\mathrm{~d})$	$121(\mathrm{f})$
Total	$132(\mathrm{~g})$	$30(\mathrm{~h})$	$162(\mathrm{~N})$

- Then easiest way to calculate $\chi 2$ is using:

$$
\begin{aligned}
x^{2}=\frac{(|a d-b c|)^{2} \times N}{\text { efgh }} & =\frac{(31 \times 20-101 \times 10)^{2} \times 162}{41 \times 121 \times 132 \times 30} \\
& =1.25
\end{aligned}
$$

SUMMARY

What to do when confronted with categorical data?

- 6 Step Guide....

Step 1: Construct 2-way table to display data
Step 2: Calculate row (independent) \%'s
Step 3: Carry out (O-E) X^{2} test of association (or quick formula for 2×2 tables only)

Step 4: Calculate degrees of freedom for x^{2} test
Step 5: Refer to tables to obtain P-value
Step 6: Interpret p-value

Another example - Tumor response

Observed

Drug	Tumor response		Total
	Yes	No	
Drug A	$\mathbf{4 9}(\mathbf{5 3 \%})$	44	93
Drug B	$18(20 \%)$	73	91
Total	$67(36 \%)$	117	184

Expected

Drug	Tumor response		Total
	Yes	No	
Drug A			93
Drug B			91
Total	$67(36 \%)$	117	184

Another example - Tumor response

Observed

Drug	Tumor response		Total
	Yes	No	
Drug A	49 (53\%)	44	93
Drug B	18 (20\%)	73	91
Total	67 (36\%)	117	184
Expected			
Drug	Tumor response		Total
	Yes	No	
Drug A	33.86	59.4	93
Drug B	33.14	57.86	91
Total	67 (36\%)	117	184
$\begin{aligned} X^{2} & =(49-33.86)^{2} / 33.86+(18-33.14)^{2} / 33.14+(44-59.14)^{2} / 59.14 \\ & +(73-57.86)^{2} / 57.86=21.52 . \end{aligned}$			

Quick formula

Drug	Tumor response		Total
	Yes	No	
Drug A	$\mathbf{4 9}(53 \%)$	44	93
Drug B	$18(20 \%)$	73	91
Total	$67(36 \%)$	117	184

$$
\begin{aligned}
X^{2}=\frac{(|a d-b c|)^{2} \times N}{e f g h} & =\frac{(49 \times 73-44 \times 18)^{2} \times 184}{93 \times 91 \times 67 \times 117} \\
& =21.51
\end{aligned}
$$

- X^{2} of 21.52
- $r=c=2$, so (2-1) $x(2-1)=1$ d.f.
- $p<0.05$

Percentage points of the \boldsymbol{x}^{2} distribution.

	P value							
$\mathrm{d} . \mathrm{f}$	0.5	0.25	0.1	$\underline{0.05}$	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

Another example - More than 2X2

Age group	Fever after operation						Total	
	Mild		Moderate		Severe			
	No.	\%	No.	\%	No.	\%	No.	\%
$<30 \mathrm{Y}$	37		14		12		63	
30-45 Y	18		17		19		54	
>45 Y	24		14		10		48	
Total	79		45		41		165	

- Distribution of fever after operation differs according to age group
- but.....by more than we expect by chance??....

Age group	Fever after operation						Total	
	Mild		Moderate		Severe			
	No.	\%	No.	\%	No.	\%	No.	\%
<30 Y	37	59	14	22	12	19	63	100
$30-45 \mathrm{Y}$	18	33	17	31	19	35	54	100
>45 Y	24	50	14	29	10	21	48	100
Total	79		45		41		165	

Observed

Age group	Fever after operation			Total
	Mild	Moderate	Sever	
<30 Y	37	14	12	63
$30-45 \mathrm{Y}$	18	17	19	54
$>45 \mathrm{Y}$	24	14	10	48
Total	79	45	41	165

Expected

Age group	Fever after operation			Total
$<30 \mathrm{Y}$	30.16	17.18	15.65	63
$30-45 \mathrm{Y}$	25.85	14.73	13.42	54
$>45 \mathrm{Y}$	22.98	13.09	11.93	48
Total	79	45	41	165

- Compare each expected value with each observed value and obtain X 2 test statistic.
- $\mathrm{X} 2=\Sigma\left\{(\mathrm{O}-\mathrm{E})^{2} / \mathrm{E}\right\}$
- Calculate (O-E) ${ }^{2} / E$ for each cell and sum over all cells
- $\mathrm{x} 2=(37-30.16)^{2} / 30.16+(18-25.85)^{2} / 25.85+$ $\ldots . . .+(10-11.93)^{2} / 11.93=8.47$
- Degrees of freedom $v=(r-1) x(c-1) \quad r=n o$. of rows, $c=n o$. of columns.
- In example, $r=c=3$, so $v=(3-1) \times(3-1)=4$
- Refer to table, $\mathrm{X} 2=8.47$, d.f. $=4$
- From table, X 2 value of $8.47,0.05<\mathrm{P}<0.10$
- No evidence of association
- Note: We can not use quick formula here (not 2×2 table)

Percentage points of the χ^{2} distribution.

	P value							
$\mathrm{d} . \mathrm{f}$	0.5	0.25	0.1	$\underline{0.05}$	0.025	0.01	0.005	0.001
1	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	3.36	5.39	7.78	\mathbf{y}	$\underline{9.49}$	11.14	13.28	14.86
18.47								
5	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.13
9	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	10.34	13.70	17.28	19.68	21.92	24.73	26.76	31.26
12	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	16.34	20.49	24.77	27.59	30.19	33.41	35.72	40.79
18	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32

Questions??

