

Binary Numbers

- The binary number system is used. Binary has a radix of two and uses the digits o and 1 to represent quantities.
- The column weights of binary numbers are powers of two that increase from right to left beginning with 2° $=1: \quad . .2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$.
- For fractional binary numbers, the column weights are negative powers of two that decrease from left to right: $\quad 2^{2} 2^{1} 2^{0} .2^{-1} 2^{-2} 2^{-3} 2^{-4} \ldots$

Converting decimal to Binary

- You can convert a decimal whole number to binary by reversing the procedure. Write the decimal weight of each column and place 1's in the columns that sum to the decimal number.
Example: Convert the decimal number 49 to binary.
- The column weights double in each position to the right. Write down column weights until the last number is larger than the one you want to convert.

$$
\begin{array}{cccccccc}
2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
04 & 2 & 1 & 8 & 4 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 .
\end{array}
$$

Example Subtract the binary number 00111 from 10101 and show the equivalent decimal subtraction.

$$
\begin{aligned}
& 10101 \\
& 00111 \\
& \frac{11110}{211}=\frac{7}{14}
\end{aligned}
$$

Binary Multiplication

The four basic rules for multiplying bits are as follows:

$$
\begin{aligned}
& 0 \times 0=0 \\
& 0 \times 1=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

Complements

- Complements are used for simplifying the subtraction operation and for logical manipulations and representation the negative numbers.
- There are two types of complements for each base-r system:
- The r's complement
- The (r-1)'s complement

2's complement

System 1

01001010 Binary number
10110110 2's complement
System 2
01001010 Binary number
$\begin{array}{lllllllll}1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \text { 's complement }\end{array}$
$+1$
101110110 2's complement

Octal Numbers			
O	Decimal	Octal	Binary
	0	0	0000
Octal uses eight characters the numbers 0 through 7 to represent numbers. There is no 8 or 9 character in octal.	1	1	0001
	2	2	0010 0011
	4	4	0100
	5	5	0101
	6	6	0110
	7	7	0111
Binary number can easily be converted to octal by grouping bits 3 at a time and writing the equivalent octal character for each group.	8	10	1000
	9	11	1001
	10	12 13	1010 1011
	12	14	1100
	13	15	1101
	14	16	1110
	15	17	1111

Hexadecimal to Binary

$\left(\begin{array}{cccc}3 & 0 & 6 & .\end{array}\right)_{16}$ to binary
$(0011$
$(306 . D)_{16}=(001100000110.1101)_{2}$

Binary to octal
(10 110 001 101. 111100000$)_{2}$ to octal
$\left(\begin{array}{llllllll}2 & 6 & 1 & 5 & . & 7 & 4 & 0\end{array}\right)_{8}$
$(10110001101.111100000)_{2}=(2615.740)_{8}$

Binary to Hexadecimal ($10110001101011 \cdot 11110010)_{2}$ to Hexadecimal $\left(\begin{array}{lllllll}2 & C & 6 & B & F & 2\end{array}\right)_{16}$

Example
$(185)_{10}=(00011000 \text { 0101 })_{\mathrm{BCD}}$
Is the binary equivalent of $(185)_{10}$ will be the same as
BCD ?
$\quad$$(185)_{10}=(10111001)_{2}$

