Chapter 2: Reflection and
Refraction of Light
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Figure 23.02

Nature of Light: Waves vs Particles

Early beliefs:

Light Is a stream of particles emitted either by the object being
viewed or emanating from the eyes of the viewer.

1 Newton was the chief architect of the particle theory of light: He
believed the particles left the object and stimulated the sense of sight
upon entering the eyes.

 Christian Huygens argued that light might be some sort of a
wave motion.

 Thomas Young (1801) provided the first clear demonstration of
the wave nature of light: Because of their interference properties.

d Einstein (in 1905) proposed an explanation of the photoelectric
effect that used the idea of quantization.

The quantization model assumes that the energy of a light wave is
present in particles called photons.



Figure 23.02
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Figure 23.03

Wavefronts and Rays,
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Figure 23.04

Wavefronts and Rays, Huygen’s Principle
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« Huygens assumed that light is a form of wave motion rather than
a stream of particles

 Huygens’s Principle is a geometric construction for determining
the position of a new wave at some point based on the knowledge
of the wave front that preceded it

i




Figure 23.05

Constuction of Plane Waves: Example 23.1
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Figure 23.06

Reflection of Light:
Specular and Diffuse Reflection
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Figure 23.08

The Laws of Reflection
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surface perpendicular to the surface
| : .
Incident ray Reflected ray — It is at the point where

the incident ray strikes
the surface

|
|
|
| « The incident ray makes an

O angle of 6; with the normal
6; = 6, * The reflected ray makes an
/ VA y angle of 6, with the normal
l y

Laws of Reflection
« The angle of reflection is equal to the angle of incidence ;= 6,
« The incident ray, the reflected ray and the normal are all in the same plane



Figure 23.09

The Refraction of Light: Snell’s Law

 Light may refract into a material
where its speed is lower

« The angle of refraction is less
than the angle of incidence
— The ray bends toward the normal

Sin (9i . A
sin 8, A,

A olf v clny  ny

A, olf O c/n, M

Snell’s Law

n; sin &, = n, sin 6,
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Snell’s Law — Example

Incident
- Light is refracted into a crown gy Norlmal
glass slab \ :
. 9,=30.0° 0, =7 \ :
 n,=1.00and n, =1.52 X)’ﬁ|
|
— From Table 23.1 (page 844) \ |
« 0,=sinY(n,/n,)sin g, = %
19.2° Ain \
« The ray bends toward the Glass K
normal, as expected
by
Y
Refracted

ray
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Figure 23.12

Physics at Home
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Figure 23.13

Mirages
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Figure 23.13b

Mirages
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Figure 23.14

Mirages

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

—_—
- -
Es —
= b
-—
—
- — -
- 20 —— T .
- L i Image of house
e Warmer air
S 1er d

e s

3 Cooler air

House

(a) (b)



Figure 23.15

Dispersion in a Prism
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« For a given material, the index of refraction varies with the wavelength
of the light passing through the material

« This dependence of non 4 is called dispersion

* Snell’s law indicates light of different wavelengths 1s bent at different
angles when incident on a refracting material
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Total Internal Reflection
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Figure 23.16cd

Total Internal Reflection
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Double Rainbow

« The secondary rainbow is
fainter than the primary

« The secondary rainbow arises
from light that makes two
reflections from the interior
surface before exiting the
raindrop

« Higher-order rainbows are
possible, but their intensity is
low

© 2004 Thomson - Brooks/Cole



Figure 23.17

Partial and Total Internal Reflection

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

I No ray is
# | | transmitted | n=1.00 (air)
.><. o
fl]OOO(O reflection
L
reflection i
Source (glass)

« There iIs a particular angle of incidence that will result in an
angle of refraction of 90°
— This angle of incidence is called the critical angle, 6,

Critical angle:
am no transmitted ray for &, > 6.

6. =sin =



Fiber Optics

« An application of internal reflection
» Plastic or glass rods are used to “pipe” light from one place to another
« Applications include:

— medical use of fiber optic cables for diagnosis and correction of medical
problems

— Telecommunications

©2004 Thomson - Brooks/Cole
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Figure 23.24

Polarization by Reflection: Brewster’s Angle
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A 2-component unpolarized Light:

At some angle, the reflected and refracted rays would be perpendicular to
each other => 6; + 6, = 90°

The reflected beam is fully polarized: one component only.
Brewster’s angle:

Og=tan — (23-6)



Figure 23.25

Formation of Images Through
Reflection or Refraction
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Notation for Mirrors and Lenses

The object distance is the distance from the object to the mirror or lens:
— Denoted by p
The image distance is the distance from the image to the mirror or lens:
— Denoted by q
— Images are formed at the point where rays actually intersect or appear to
originate

The lateral magnification of the mirror or lens is the ratio of the image height to
the object height:

— Denoted by M

A real image is one in which light actually passes through the image point: Real
Images can be displayed on screens

A virtual image is one in which the light does not pass through the image point
— Virtual images cannot be displayed on screens
— The light appears to diverge from that point

To find where an image is formed, it is always necessary to follow at least two
rays of light as they reflect from the mirror



Figure 23.26

Example 23.4
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Figure 23.27

Plane Mirrors
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Figure 23.30

Convex Spherical Mirrors
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The focal point of a convex mirror is on the
principal axis a distance R/2 behind the mirror



Figure 23.31

Convex Spherical Mirrors:
How do they work?
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Figure 23.32

Convex Spherical Mirrors:
How do they work?
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Principal rays for convex mirrors

I. A ray parallel to the principal axis is reflected as if it came from a
focal point.

2. A ray along a radius is reflected back upon itself.

3. A ray directed toward the focal point is reflected parallel to the
principal axis.

4. A ray incident on the vertex of the mirror reflects at an equal angle to
the axis.




Figure 23.34

Concave Spherical Mirrors
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Figure 23.35
[

Concave Spherical Mirrors.
How do they work?
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Principal rays for concave mirrors

. A ray parallel to the principal axis is reflected through the focal point.

I
2. A ray along a radius is reflected back upon itself.
3. A ray along the direction from the focal point to the mirror is reflected

parallel to the principal axis.
4. A ray incident on the vertex of the mirror reflects at an equal angle to

the axis.




Figure 23.36
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Figure 23.38

Transverse Magnification
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Figure 23.39

The Mirror Equation

Copyright @ The McGraw-Hill Compan

ies, Inc. Permission requ

ired for reproduction or display.

Mirror equation:




Figure 23.40

Objects Located at Infinity or at Large Distances




Table 23.02

Sign Conventions
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Table 23.2 Emmm——————

Sign Conventions for Mirrors

Quantity When Positive (+) When Negative (-)

Object distance p Always* Never*

Image distance ¢ Real image Virtual image

Focal length f Converging mirror Diverging mirror
(concave): f= %R (convex): f= —%R

Magnification m Upright image Inverted image )

*In Chapter 23, we consider only real objects. Chapter 24 discusses multiple-lens systems, in which virtual
objects are possible.



Figure 23.42

Thin Lenses
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Figure 23.44

Focal Points and Principal Rays
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Figure 23.46

Shapes of Some Diverging &

Converging Lenses
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Figure 23.47a

Forming Real Images
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Table 23.3 L

Principal Rays and Principal Focal Points for Thin Lenses

Converging Lens Diverging Lens
Ray 1. An incident ray parallel to the Passes through the principal focal point Appears to come from the principal focal
principal axis point
Ray 2. A ray incident at the optical center Passes straight through the lens Passes straight through the lens
Ray 3. A ray that emerges parallel to the Appears to come from the secondary focal Appears to have been heading for the
principal axis point secondary focal point

Location of the principal focal point Past the lens Before the lens




Figure 23.47b

Forming Virtual Images
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Table 23.3 T

Principal Rays and Principal Focal Points for Thin Lenses

Converging Lens Diverging Lens
Ray 1. An incident ray parallel to the Passes through the principal focal point Appears to come from the principal focal
principal axis point
Ray 2. A ray incident at the optical center Passes straight through the lens Passes straight through the lens
Ray 3. A ray that emerges parallel to the Appears to come from the secondary focal Appears to have been heading for the
principal axis point secondary focal point

Location of the principal focal point Past the lens Before the lens




Figure 23.49

The Magnification & Thin Lens Equation
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Table 23.04

Sign Conventions for Mirrors and Lenses
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Table 23.4 ————E

Sign Conventions for Mirrors and Lenses

Quantity When Positive (+) When Negative (-)
Object distance p Always (for now) Never (for now)

Image distance ¢ Real image Virtual image

Focal length f Converging lens or mirror Diverging lens or mirror

Magnification m Upright image Inverted image




Lens and Mirror Aberrations

* One of the basic problems is the imperfect quality of
the images

— Largely the result of defects in shape and form
« Two common types of aberrations exist

— Spherical aberration
— Chromatic aberration



Spherical Aberration

 Results from the focal
points of light rays far
from the principle axis
are different from the
focal points of rays
passing near the axis

 For a mirror, parabolic
shapes can be used to -
correct for spherical
aberration >




Chromatic Aberration

Different wavelengths of light
refracted by a lens focus at
different points

— Violet rays are refracted more
than red rays

— The focal length for red light is
greater than the focal length for
violet light

Chromatic aberration can be
minimized by the use of a
combination of converging and
diverging lenses

Red

>
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Figure 23.49

End of Chapter 2



