Convex and Concave Lenses Types of Lenses

- A lens is a piece of transparent material, such as glass or plastic, that is used to focus light and form an image.
- Each of a lens's two faces might be either curved or flat.

Convex and Concave Lenses

Types of Lenses

- The lens shown in the figure is called a convex lens shown in the figure is called a convex lens shown in the because it is thicker at the center than at the edges.
- A convex lens often is called a converging lens because when surrounded by material with a lower index of refraction, it refracts parallel light rays so that the rays meet at a point.

Convex and Concave Lenses

Types of Lenses

- The lens shown in the figure is called a concave lens because it is thinner in the middle than at the edges.
- A concave lens often is called a diverging lens because when surrounded by material with a lower index of refraction, rays passing through it spread out.

Ray diagrams for lenses

- Ray diagrams are drawings of the different situations for lenses.
- For the ray diagrams, assume that the lenses are thin.

Converging Lenses

Ray Diagrams F B

Convex and Concave Lenses

Convex Lenses and Real Images

- Paper can be ignited by producing a real image of the Sun on the paper.
- The rays of the Sun are almost exactly parallel when they reach Earth.

Convex Lenses and Real Images

- After being refracted by the lens, the rays converge at the focal point, *F*, of the lens.
- The figure shows two focal points, one on each side of the lens.
- You could turn the lens around, and it will work the same.

Ray diagrams for a double convex lensObject is at infinity

<u>Case 1 – Object at Infinity</u>

Object beyond 2F

Case 2 - Object beyond 2F

- Real
- Inverted
- Located between F and 2F
- On the opposite side of the lens
 Smaller than object

Object at 2F

Case 3 - Object at 2F

- Real
- Inverted
- Located at 2F
- On the opposite side of the lens
- Same Size as object

Object between F and 2F

Case 4 - Object between F and 2F

- Real
- Inverted
- Located beyond 2F
- On the opposite side of the lens
 - Magnified

Object at F

<u>Case 5 – Object at F</u>

Object between F and the lens

Case 6 – Object between F and the lens

- Virtual
- Upright
- On the same
 - side of the lens
 - Magnified

Images Formed by Lens

Object	Type of image	Uses
distance		
$u = \infty$	Inverted, smaller, real	Telescope
u > 2f	Inverted, smaller, real	Camera, eye
u = 2f	Inverted, same size, real	Photocopier
f < u < 2f	Inverted, magnified, real	Projector
u = f	upright, magnified, real	Spotlight
u < f	upright, magnified, virtual	Magnifying glass

Lens Equations

The thin lens equation relates the focal length of a spherical thin lens to the object position and the image position.

The inverse of the focal length of a spherical lens is equal to the sum of the inverses of the image position and the object position.

Thin Lens Equation

The thin lens equation is stated as follows:

where

d_o is the distance (measured along the axis) from the object to the center of the lens d_i is the distance (measured along the axis) from the image to the center of the lens f is the focal length of the lens

The expression 1/f is called the power of a lens. It is measured in Diopters, where $1 D = 1 m^{-1}$.

Lens Equations

- The magnification equation for spherical mirrors also can be used for spherical thin lenses.
- It is used to determine the height and orientation of the image formed by a spherical thin lens.

$$m \equiv \frac{h_{\rm i}}{h_{\rm o}} = \frac{-d_{\rm i}}{d_{\rm o}}$$

The magnification of an object by a spherical lens, defined as the image height divided by the object height, is equal to the negative of the image position divided by the object position. • d, is always positive with a single lens **d**_i is positive for real images, negative for virtual images f is positive for converging lenses, negative for diverging lenses

When using this equation, signs are very important: Remember that d_o , d_v , and f must be measured in the same unit - usually meters is preferred.

		when the object is
d _o	positive	placed "in front of the
		lens"
		when real images are
d _i	positive	formed (inverted,
		"behind the lens")
		when virtual images
di	negative	are formed (upright,
		"in front of the lens")
		when the lens is
f	positive	converging
		when the leng is
f	negative	
		aiverging

- A concave lens causes all rays to diverge.
- The figure shows how such a lens forms a virtual image.

- The image is located at the point from where the two rays apparently diverge.
- The image also is upright and smaller compared to the object.

Convex and Concave Lenses

- Ray 1 approaches the lens parallel to the principal axis, and leaves the lens along a line that extends back through the focal point.
- Ray 2 approaches the lens as if it is going to pass through the focal point on the opposite side, and leaves the lens parallel to the principal axis.

- The sight lines of rays 1 and 2 intersect on the same side of the lens as the object.
- Because the rays diverge, they produce a virtual image.

