
CHAPTER 24 INFECTIONS OF THE CENTRAL NERVOUS SYSTEM

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

OVERVIEW

- In some cases, the CNS is the main target
- In others, the CNS is a secondary target
- Infections of CNS can be caused by:
 - Bacteria, viruses, fungi, and parasites, like other body systems
 - Infectious proteins, called prions, that only infect the CNS

OVERVIEW

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

ANATOMY OF THE CNS

- CNS has two major parts
 - Brain
 - Spinal cord
- Both surrounded by three layers of connective tissue meninges
- Cerebrospinal fluid is found in the subarachnoid space
- The brain and spinal cord are protected from the body by the blood-brain barrier
 - Protects against infectious disease
 - ^I Some pathogens can pass through the blood-brain barrier

ANATOMY OF THE CNS

- No room for swelling in the CNS
- Inflammation is one of the first and most formidable responses
 - Always causes swelling
- Vasogenic edema swelling caused by inflammatory response in the subarachnoid space
- Cytotoxic edema swelling from toxic substances produced by bacteria and neutrophil invasion

ANATOMY OF THE CNS

- Infection can also affect proper brain function through:
 - Acidosis
 - Hypoxia
 - Destruction of neurons
- Effects of infection can be profound and irreversible
- Blood-brain barrier can make it difficult to treat CNS infections

- Organisms reach the brain and spinal cord in a variety of ways
- Organisms in blood can enter the cerebrospinal fluid and cause meningitis
- Infections in the sinuses and mastoid air spaces eventually cause erosion of the skull bone
 - Pathogens can then enter the brain and cause abscesses
- Most CNS infections result from the passage of pathogens across the blood-brain barrier

- CNS infections can be caused by:
 - Normal bacterial flora
 - Pathogens acquired through ingestion
 - Pathogens acquired during the birthing process
 - Contamination of shunts

COMMON PATHOGENS OF THE CNS

- Bacterial meningitis usually caused by:
 - 1 H. influenzae
 - N. meningitidis
 - S. pneumoniae
 - L. monocytogenes
 - Staphylococcus
- Group B streptococci often involved in meningitis in newborns
 - Acquired through the birthing process

COMMON PATHOGENS OF THE CNS

Deep fungal mycoses Cryptococcus neoformans and Coccidioides immitis

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

COMMON PATHOGENS OF THE CNS

- Most common viral causes of acute CNS infections:
 - Enterovirus
 - Herpes simplex virus
 - I HIV
 - Epstein-Barr virus
 - Also several arthropod-borne viruses
- Viral infections manifest as aseptic meningitis, encephalitis, and poliomyelitis

- Initial source of a CNS infection is either:
 - Occult infection of mononuclear phagocytic system cells
 - ^I Overt from complications of other infections
 - Pneumonia
 - Pharyngitis
 - Skin abscesses
 - Infectious endocarditis

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

- The infection site can be close to or in direct contact with the CNS
- ^I Pathogens can enter the CNS through:
 - Defects in the structures that encase the CNS
 - Opening left by surgical, traumatic, or congenital developmental abnormalities

- Intraneural pathways are the least common route to the CNS
- Exceptions are:
 - Rabies virus uses peripheral sensory nerves
 - Herpesvirus uses trigeminal nerve

- Brain abscesses are relatively rare, but present a special problem
- ^I They can be found in:
 - Subdural space
 - Epidural space
 - Directly in the brain tissue
- ^I Commonly formed by bacteria or fungi from a distant site
- Also result from:
 - Extensions of pathogens located at the site of mastoiditis or sinusitis
 - Surgical complications

GENERAL TREATMENT OF CNS INFECTIONS

- Bacterial and fungal infections require prompt and aggressive treatment
- Treatment periods vary depending on the type of infection
 - ¹ 10 days to 12 months for uncomplicated cases
 - ^I Longer if the infection is caused by *M. tuberculosis*
 - ¹ Treatment of fungal infections can last for years
 - ^I Treatment of viral infections is mostly supportive

MENINGITIS

- Broad category of infections of the fluid surrounding spinal cord and brain
- Usually caused by virus or bacteria important to know which
 - Severity of illness differs
 - Treatments differ

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

MENINGITIS: Bacterial

- Bacterial meningitis can be severe and cause:
 - Brain damage
 - Hearing loss
 - Learning disability
- Important to know type of bacterium
 - ^I Antibiotic therapy can prevent its spread

MENINGITIS: Bacterial

- Some forms of bacterial meningitis are contagious
 - Spread by exchange of respiratory and throat secretions
 - Not as contagious as the common cold
- N. meningitidis can spread to other people via close or prolonged contact
 - Bacterial meningitis concern for daycare centers and schools

MENINGITIS: Viral

- ^I Viral meningitis is generally less severe:
 - Usually resolves without treatment
- Caused by several types of virus:
 - ¹ 90% of cases by enterovirus
 - ^I Also herpesvirus and mumps virus
- Viral meningitis rarely fatal if there is a competent immune system:
 - Patient usually recovers completely

MENINGITIS: Diagnosis and Treatment

- Patients with any symptoms of meningitis should see a doctor immediately
- Diagnosis of the bacterial strain is usually made by growing bacteria from spinal fluid
 - Identification helps in selecting the most effective antibiotic therapy
- Early antibiotic therapy limits risk of death to 15%
- Viral meningitis is also diagnosed using spinal fluid
 - No antibiotic therapy
 - Bed rest, plenty of fluids, medicines to relieve fever and headache

NON-MENINGITIS BACTERIAL INFECTIONS OF THE CNS

- Tetanus and botulism infections affect the CNS in different ways
 - Produce exotoxins with an affinity for CNS tissue
 - Antibiotic therapy is ineffective once the exotoxin has been produced

- ^I Tetanus is caused by *Clostridium tetani*
 - Gram-positive
 - Anaerobic
 - Rod shaped
 - Produces a terminal spore

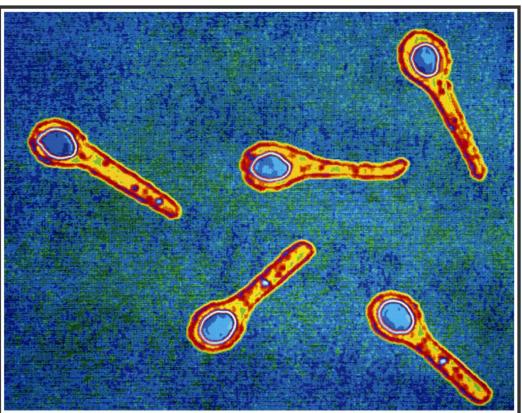


Figure 24.5 Microbiology: A Clinical Approach 2e (© Garland Science 2016)

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

- C. *tetani* is a strict anaerobe
 - ^I Cannot survive in the presence of oxygen
- Commonly found in the soil
 - Spores can survive there for years
 - Gets into wounds via contaminated soil
- Spores are very resistant to disinfectants and can withstand boiling

- Toxin produced by *C. tetani* is neurogenic
 Affinity for and targets nervous tissue
- Called tetanospasmin or tetanus toxin
- Acts by enzymatically degrading proteins required for normal physiology

- Tetanus spores require areas of low oxygen to germinate
 - Area of necrosis around tissue injury is perfect
 - ^I Spores germinate and *Clostridium* begins to grow
- Bacteria do not cause damage to the tissue where they reside
 - Produce their neurogenic toxin
 - Toxin enters the presynaptic terminals of the lower motor neurons
 - ^I From there, it gets into the CNS

- Toxin acts at the anterior horn cells in the spinal cord
 - Blocks postsynaptic inhibition of the spinal motor reflexes
- Produces spasmodic contraction of the muscles
 - Occur locally at first
 - ^I May extend up and down the spinal cord

- Incubation period can vary between 4 days and several weeks
 - ¹ The shorter the incubation period, the more severe the infection
- I Tetanus toxin is systemic for muscles
 - ^I Masseter muscle of the jaw usually first to be affected
 - ^I Mouth cannot be opened (sometimes called lockjaw)
 - Muscles for respiration and swallowing can eventually be compromised
 - ¹ Severe cases can suffer from opisthotonos
 - ^I Head and heels move toward each other

Figure 24.6 Microbiology: A Clinical Approach 2e (© Garland Science 2016)

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

- Death results from exhaustion and respiratory failure
 - ^{\square} Mortality for untreated tetanus is 15 60%
- Several factors affect mortality:
 - Location of lesion
 - Incubation period
 - □ Age
 - ¹ Mortality is highest in infants and the elderly

TETANUS: Treatment

- Antibiotics are not effective once toxin is produced
- Neutralization of the toxin with human tetanus immunoglobulin is important
- Additional supportive measures are:
 - ^I Maintenance of a dark, quiet environment
 - Sedation
 - ^I Provision of an adequate airway for breathing

BOTULISM (CLOSTRIDIUM BOTULINUM)

- Etiologic agent is *Clostridium botulinum*
 - Gram-positive
 - Anaerobic
 - Spore-forming
 - Rod-shaped
- Found naturally in soil and sediments of ponds and lakes

BOTULISM (CLOSTRIDIUM BOTULINUM)

- Spores contaminate food under anaerobic conditions
 - Spores convert to the vegetative state and begin to produce toxin.
- Contamination of food with botulinum toxin does not affect the smell, taste, or color
 - ^I Commonly seen in cases of home canning
- Botulinum toxin is among the most poisonous toxins in the world

BOTULISM: Pathogenesis

Begins with cranial nerve palsy

- Develops into a descending symmetrical motor paralysis
- May involve the respiratory muscles
- No fever or inflammation
- No obvious sign of infection

BOTULISM: Pathogenesis

- ^I Time course of the infection depends on:
 - Amount of toxin
 - Whether toxin was ingested in a preformed state, or produced in the intestinal tract

- Foodborne botulism is classified as intoxication not infection
- Toxin is absorbed directly through the intestinal tract
 - Reaches a neuromuscular junction via bloodstream
 - ^I Binds and inhibits the release of acetylcholine
 - Causes muscular paralysis

- ^I Symptoms depend on which nerves are damaged
 - Damage is permanent
- Foodborne botulism usually starts 12-36 hours after ingestion of toxin
 - First symptoms are nausea, dry mouth, and sometimes diarrhea
- Nervous system dysfunction starts later
 - Includes blurred vision, pupillary dilation, and rapid eye movements

- Symmetrical paralysis begins with ocular, laryngeal, and respiratory muscles
 - ^I Spreads to trunk and extremities
- Most serious complication is complete respiratory paralysis
 - Mortality rates are 10 20%

^I Two other forms of botulism:

- Infant form
- Wound form
- Infant botulism is the most commonly diagnosed form

- Infant botulism occurs in infants between 3 weeks and 8 months old
 - Organism introduced on weaning or through dietary supplements, particularly honey
 - Multiplies in colon
 - Toxin is absorbed into the blood
- Symptoms are constipation, poor muscle tone, lethargy, and feeding problems
 - ^I Severe cases can cause vision problems and paralysis

- Wound botulism is very rare
 - ¹ Usually seen in intravenous drug users
- Symptoms are similar to those of food poisoning
 - Usually begin with muscle weakness in extremities used for injection

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

BOTULISM: Treatment

- Single most important determinant in survival is availability of intensive support measures, particularly mechanical ventilation
 - ^I Mortality is less than 10% with proper ventilation
- Antibiotic therapy is only given to patients with the wound form

VIRAL INFECTIONS OF THE CENTRAL NERVOUS SYSTEM

- Viruses can cause encephalitis
- Viruses can also cause other symptoms
- ^I Such viral CNS infections can be split into:
 - Acute
 - Persistent

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

- Rabies is an acute and fatal viral CNS infection
- Can affect all mammals
- Transmitted by infected secretions (usually through a bite)
- ^I Virus is large and bullet-shaped
 - ^I Glycoproteins cover the entire virion

- Rabies involves severe neurological symptoms
- CNS abnormalities include:
 - Relentless progression of excess motor activity
 - Agitation
 - Hallucinations
- Also overproduction of saliva
 - Can be an inability to swallow

- Rabies exists in two forms:
 - Urban
 - Sylvatic
- Urban form is associated with unimmunized dogs and cats
- ^I Sylvatic form is seen in wild animals
- Infection in humans incidental
 - Does not contribute to maintenance or transmission of infection

- First event of rabies infection is introduction of the virus
 - ^I Usually through the epidermis via an animal bite
 - Also through inhalation of heavily contaminated material such as bat droppings

- ^I Virus replicates at the site of infection
 - Immunization immediately after infection keeps
 virus from migrating into the nervous tissue
- Without intervention, virus moves into peripheral nervous system
 - Spreads into the CNS
 - Replicates exclusively in gray matter

- After replication, virus moves into other tissues
 - Adrenal medulla, kidneys, lungs, and salivary glands
- Lymphocytes and plasma cells infiltrate into the CNS
 - Destroy nerve cells
 - Primary lesion is the Negri body

- Incubation period varies from 10 days to as long as a year, depending on:
 - Amount of virus initially introduced
 - Amount of tissue infected
 - Host's immune response
 - Innervation at the site
 - Distance virus must travel to reach CNS

- Rabies presents as acute, fatal encephalitis
 - Once symptoms appear the infection is irreversibly fatal
- Illness begins with nonspecific fever, headache, malaise, nausea, and vomiting
- Onset of encephalitis is marked by:
 - Periods of excessive motor activity
 - Agitation accompanied by hallucinations
 - Combativeness
 - Muscle spasms
 - Seizures followed by coma

- ^I There can also be:
 - Excessive salivation
 - Dysfunction of brain and cranial nerves
 - Double vision, facial palsy, and difficulty in swallowing
- Involvement of respiratory centers causes respiratory paralysis
 - Major cause of death
- Median survival after the onset of symptoms is 4 days

RABIES: Treatment

- Prevention is the best cure
- I Treatment consists of a course of injections
 - Only beneficial if administered before the onset of symptoms
- Mortality for rabies is 90%

POLIO

- Condition first known as infantile paralysis
 - Risk of paralysis actually increases with age
- Poliomyelitis is essentially nonexistent in most modern countries
 - ^I There is an effective vaccine
- Still a major problem in underdeveloped countries

- Virus is an enterovirus with an affinity for the CNS
 - Normally crosses the blood-brain barrier
 - Can also use axons or the perineural sheath of the peripheral nervous system
- Motor neurons are particularly vulnerable

- ^I Various levels of neuronal destruction cause:
 - Necrosis of neural tissue
 - Infiltration by mononuclear cells, primarily lymphocytes
- 90% of poliomyelitis infections are very mild and subclinical
- Incubation time varies from 4 to 35 days
 - Average is about 10 days

^I Three types of polio infection:

- Abortive poliomyelitis
- Nonparalytic poliomyelitis (aseptic meningitis)
- Paralytic poliomyelitis

Abortive poliomyelitis:

- Nonspecific febrile illness
- Lasts two to three days
- No signs or symptoms

- Nonparalytic poliomyelitis (aseptic meningitis):
 - Characterized by meningeal irritation, stiff neck, back pain, and back stiffness
 - Rapid and complete recovery

- Paralytic poliomyelitis:
 - Occurs in 2% of persons infected
 - ¹ Characterized by asymmetric flaccid paralysis
 - Extent varies from case to case
 - ^I Temporarily damaged neurons can regain function
 - Recovery can take six months
 - ¹ Paralysis persisting after this period is permanent

POLIO: Prevention

- Polio vaccine essentially wiped out this infection
- Two types of vaccine:
 - Inactive form
 - ^I Live attenuated form

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

- Neurological infections classified as viral encephalitis are caused by arboviruses
 - Not a microbial taxonomic group
 - ^I There is a variety of clinical types
 - ^I These viruses are common in US
 - Increased occurrence of infections in summer months due to increased number of mosquitoes

- Infections range in severity from subclinical symptoms to rapid death
- Infections are all characterized by chills, headache, and fever
 - ^I Can lead to mental confusion and coma
- Survivors can subsequently develop permanent neurological disease

- Both horses and people are affected by arboviruses:
 - Eastern equine encephalitis (EEE)
 - Western equine encephalitis (WEE)
 - ¹ Both cause severe infection in humans
- St. Louis encephalitis is the most common form of arbovirus encephalitis
 - Less than 1% show clinical symptoms

- West Nile virus is an emerging encephalitis infection
 - Mostly affects birds
 - Can also infect humans and horses
 - Most human cases are subclinical
 - Some can be a severe infection with rapid death in elderly

- Progressive neurological diseases in both humans and animals are caused by viruses
 - I Termed slow viral disease
 - ^I Better term is persistent viral infection
 - Long period between infection and illness
 - Prolonged period of illness

- ^I Subacute sclerosing panencephalitis:
 - Rare chronic measles infection
 - Occurs in children
 - Produces progressive neurological disease
 - Insidious onset of personality change, progressive intellectual deterioration, and dysfunction of the autonomic nervous system

- I AIDS dementia complex
 - Part of pathology of HIV infection
 - In asymptomatic AIDS patients
 - ^I Varies from mild to severe progressive dementia

- Persistent enterovirus infection:
 - Seen in patients with congenital or acquired immunodeficiency
 - Chronic CNS infection
 - Characterized by headache, confusion, lethargy, seizures, and increased numbers of mononuclear cells in CNS
 - ^I Caused by both echoviruses and enteroviruses

PRIONS

- Prions (infectious proteins) cause five fatal CNS infections in mammals
- Prions do not elicit inflammatory or immune responses in a host
- Pathogenesis of these infections is not well understood but they have similar features
 - Loss of neurons
 - Proliferation of astrocytes
 - ^I Vacuoles seen in the brain cortex and cerebellum

PRIONS

- Incubation period can be from months to years
- Course of infection is protracted and always fatal
- Prions are very hard to destroy:
 - Remain viable in brain tissue after years of being immersed in formalin
 - Resistant to ionizing radiation and many common disinfectants

PRION INFECTIONS: Kuru

- ^I Subacute progressive neurological disease
 - Discovered 1957 in the cannibalistic Fore people of New Guinea
- Symptoms are failure of muscular coordination, hyperactive reflexes, and muscular spasms
- Leads to progressive dementia and death
- Causes diffuse neuronal degeneration and spongiform change of the cerebral cortex and basal ganglia

PRION INFECTIONS: Fatal Familial Insomnia

- Presents as a difficulty in sleeping followed by increasingly progressive dementia
- Occurs in people between 35-61 years
- Always fatal
 - Death occurs between 13-25 months after diagnosis

- Progressive fatal infection often seen in patients aged 60-70 years
- Initially presents as a change in cerebral function
 - Often mistaken for a psychiatric disorder
 - Patient exhibits forgetfulness and disorientation
 - Progresses to overt dementia

- Progression can last 4 7 months and involve changes in gait, involuntary movements, and seizures
- There is eventual paralysis, wasting, pneumonia, and death
- Infection seen throughout the world
 - ¹ One case per million people is reported each year

- Mode of transmission is essentially unknown but could include:
 - Contaminated dura mater grafts and corneal transplants
 - Contact with contaminated instruments used in neurosurgical procedures
- Transmission has also been linked to contaminated growth hormone
- No evidence of transmission by direct contact or airborne spread

- Incubation period is anywhere from 3-20 years
- ^I Pathology identical to that seen in kuru
 - ^I High levels of prions are found in the brain
- Examination of brain tissue is the only way to confirm the disease
- ^I There is no treatment

PRION INFECTIONS: Bovine Spongiform Encephalopathy

- BSE (mad cow disease) was first identified in the UK in 1986
 - Source of prions traced to cattle feed containing bonemeal from sheep that had scrapie
 - Cows ate the feed and became infected
 - ¹ The infection passed to humans who ate infected beef
- Infection in humans is known as variant Creuztfeld-Jacob disease (vCJD)
 - [©] Cases frequently present in young adults
 - Presents as psychiatric problems progressing to dementia
 - Average life expectancy after diagnosis is 14 months

FUNGAL INFECTIONS OF THE CNS

- Primarily opportunistic
- Usually seen in immunocompromised patients

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

CRYPTOCOCCOSIS

- Cryptococcosis is the most important fungal CNS infection
- Caused by Cryptococcus neoformans
 - Encapsulated form of yeast
 - Capsule production varies with the strain and environmental conditions
 - Found throughout world, especially in soil contaminated with bird droppings
 - Birds are not sick from this fungus

CRYPTOCOCCOSIS: Pathogenesis

- ^I Causes a chronic form of meningitis
 - ^I Slow, insidious onset
 - Symptoms include low-grade fever and headache
 - Progresses to altered mental status and seizures

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

CRYPTOCOCCOSIS: Pathogenesis

- Infection usually seen in immunocompromised patients
 - Common in AIDS patients
- Infection begins with inhalation of the yeast cells
- Each yeast cell begins to overproduce its capsule
 - Capsule is anti-phagocytic
 - ^I Can bind to complement components
 - Reduces opsonization
 - ^I Can interfere with the presentation of antigens to T cells
 - Inhibits the adaptive immune response

CRYPTOCOCCOSIS: Pathogenesis

- After inhalation, yeast cells multiply outside the lungs and move into the nervous system
- Initial symptoms can continue for weeks or months
 - Intermittent headache, dizziness, and difficulty with complex cerebral function
- ^I Later stages of the infection show:
 - Seizures, cranial nerve damage, and papilledema (edema of the optic nerve)
 - Dementia and decreased levels of consciousness
- Progression of disease is accelerated in patients with AIDS

CRYPTOCOCCOSIS: Treatment

- Amphotericin B and fluconazole are effective
- 75% patients with cryptococcal meningitis initially respond to treatment
 - Significant portion relapse when therapy is stopped
- Patients with chronic infection require repeated courses
- Residual neurological damage occurs in more than half of cured patients

PARASITIC INFECTIONS OF THE CENTRAL NERVOUS SYSTEM

- ^I Free living amebas can infect the CNS
 - ^I Cause primary amebic meningoencephalitis
- Infections are rare and usually fatal

PRIMARY AMEBIC MENINGOENCEPHALITIS

- ^I Caused by free-living amebas of two genera
 - Naegleria
 - Acanthamoeba
- Naegleria is found in large numbers in shallow freshwater ponds, especially in warm weather
 - Acquired by swimming in fresh water
 - Infection seen in children and young adults
- Naegleria infection is infrequent and almost always fatal

PRIMARY AMEBIC MENINGOENCEPHALITIS

- Acanthamoeba causes a sub-acute or chronic illness
 - Almost always fatal
- Acanthamoeba found in soil and fresh brackish water
 - Most occur in the southeastern US
 - Patients typically fall ill during the summer after swimming or water skiing in small shallow freshwater lakes
- Acanthamoeba is also found in the oropharynx of asymptomatic humans

- Naegleria enters the CNS by traversing the nasal mucosa and cribriform plate
- In the CNS produces a purulent, hemorrhagic inflammatory reaction
 - ¹ Extends from the olfactory bulb to other regions of the brain
- Characterized by rapid onset of severe bifrontal headache and seizures
 - Occasionally abnormal sense of taste and smell
- Progresses to coma and death within days
- Wet mounts of cerebrospinal fluid reveal trophozoite forms of the parasite

- Epidemiology of *Acanthamoeba* encephalitis is not clearly defined
 - Known to involve the elderly and immunocompromised
- Thought that the ameba reaches the brain by hematogenous dissemination
 - Site of infection is unknown, possibly respiratory, eye, or skin
- Infection produces diffuse necrotizing granulomatous encephalitis



Figure 24.13 Microbiology: A Clinical Approach 2e (© Garland Science 2016)

Courtesy of Dr. Andrew Bollen and Dr. Walter Finkbeiner.

Microbiology: A Clinical Approach (2nd Edition) © Garland Science

- Both cysts and trophozoites can be found in lesions
- I AIDS patients can have:
 - ^I Cutaneous ulcers and hard nodules containing amebas
 - Amebas in the cerebrospinal fluid
- Clinical course of *Acanthamoeba* infection is more prolonged that that of *Naegleria*
- Acanthamoeba occasionally ends in spontaneous recovery

AMEBIC MENINGOENCEPHALITIS: Treatment

- Few patients have ever survived infection with *Naegleria*
 - All were diagnosed early
 - Treated with high doses of amphotericin B with rifampin