Structure of Bacterial cell

Dr. Shler Ghafour Raheem
BSc., MSc., PhD Medical Microbiology
shler.ghafour@tis.edu.iq
Objectives

1- Classification of bacteria based on shape

2- Study the structural components of Bacterial cell
Bacteria are classified by shape into three basic groups:

- Cocci
- Bacilli
- Spiral

Bacteria range in size from about 0.2 to 5 μm
- The shape of a bacterium (Rigid cell wall)
- Microscopic appearance (Gram’s Reaction)
- The arrangement of Bacteria
- The orientation and degree of attachment of bacteria
Arrangement of bacteria

- Pairs (diplococci)
- Chains (streptococci)
- Grapelike clusters (staphylococci).

These arrangements are determined by the orientation and degree of attachment of the bacteria at the time of cell division.
Structure of Bacterial cell

- Cell Wall
- Cytoplasmic Membrane
- Cytoplasm
- Mesosome
- Granules
- Ribosome
- Nucleoid
- Structures Outside the Cell Wall
- Bacterial Spores
Cell Wall

- Outermost component common to all bacteria (except Mycoplasma species). Located external to the cytoplasmic membrane.
- Some bacteria have surface features external to the cell wall, such as a capsule, flagella, and pili.
- Composed of peptidoglycan. The peptidoglycan provides structural support and maintains the characteristic shape of the cell.
- Peptidoglycan is found only in bacterial cells. It is a network that covers the entire bacterium and gives the organism its shape. It is composed of a sugar backbone (glycan) and peptide side chains (peptido).
Cytoplasmic membrane

- Consists of a phospholipid bilayer (without sterols) located just inside the peptidoglycan. The membrane has four important functions:

 1. Active transport of molecules into the cell.
 2. Energy generation by oxidative phosphorylation.
Cytoplasm

- The cytoplasm has two distinct areas when seen in the electron microscope:

 1. An amorphous matrix that contains ribosomes, nutrient granules, metabolites, and plasmids.

 2. An inner, nucleoid region composed of DNA.
Mesosome

- This invagination of the cytoplasmic membrane is important during cell division.
- A tightly folded region of the cell membrane containing all the membrane-bound proteins required for respiration and photosynthesis.

Granules

- The cytoplasm contains several different types of **granules** that serve as storage areas for nutrients and stain characteristically with certain dyes.

- For example, metachromatic granules are a characteristic feature of *Corynebacterium diphtheriae*, the cause of diphtheria.
Ribosomes

- Site of protein synthesis as in eukaryotic cells, but they differ from eukaryotic ribosomes in size and chemical composition.
- Bacterial ribosomes are 70S in size, with 50S and 30S subunits.
- The differences in both the ribosomal RNAs and proteins constitute the basis of the selective action of several antibiotics that inhibit bacterial protein synthesis.
Nucleoid

- The area of the cytoplasm in which DNA is located.

- It is a single, circular molecule. Because the nucleoid contains no nuclear membrane, no nucleolus, no mitotic spindle, and no histones, there is little resemblance to the eukaryotic nucleus.

- One major difference between bacterial DNA and eukaryotic DNA is that bacterial DNA has no introns (a segment of a DNA or RNA molecule which does not code for proteins and interrupts the sequence of genes), whereas eukaryotic DNA does.
Plasmids

- They are extrachromosomal, double-stranded, circular DNA molecules that are capable of replicating independently of the bacterial chromosome.
- They can be integrated into the bacterial chromosome.
- Plasmids occur in both gram-positive and gram-negative bacteria.
- Encode both exotoxins and many enzymes that cause antibiotic resistance.
Transposons

- Small pieces of DNA that move frequently between chromosomal DNA and plasmid DNA. They carry antibiotic-resistant genes.

- Because of their unusual ability to move, they are nicknamed “jumping genes.”
References
