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• Calculation of deflections is an important part of 
structural analysis

• Excessive beam deflection can be seen as a mode of 
failure.

– Extensive glass breakage in tall buildings can be attributed to 
excessive deflections

– Large deflections in buildings are unsightly (and unnerving) 
and can cause cracks in ceilings and walls.

– Deflections are limited to prevent undesirable vibrations

DEFLECTIONS
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Methods to 
find

deflection

Geometrical

Moment area

method

Conjugate

beam method

Double 
integration

Energy 
Method

Castigliano's

theorem

Virtual

Work

METHODS TO FIND DEFLECTION
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The Elastic Curve 
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Beam Deflection
• Bending changes the

initially straight longitudinal
axis of the beam into a
curve that is called the
Deflection Curve or Elastic
Curve

7.1 THE ELASTIC CURVE
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• To determine the deflection curve:

– Draw shear and moment diagram for the beam

– Directly under the moment diagram draw a line for the
beam and label all supports

– At the supports displacement is zero

– Where the moment is negative, the deflection curve is
concave downward.

– Where the moment is positive the deflection curve is
concave upward

– Where the two curve meet is the Inflection Point

7.1 THE ELASTIC CURVE

Beam Deflection
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7.1 THE ELASTIC CURVE

• It is useful to sketch the deflected shape of the

loaded beam, to “visualize” computed results and

partially check the results.

• The deflection diagram of the longitudinal axis that

passes through the centroid of each x-sectional area

of the beam is called the elastic curve.
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7.1 THE ELASTIC CURVE

• Draw the moment diagram

for the beam first before

creating the elastic curve.

• Use beam convention as

shown and established

in chapter 6.
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7.1 THE ELASTIC CURVE

• For example, due to roller and pin
supports at B and D, displacements
at B and D is zero.

• For region of -ve moment AC,
elastic curve concave downwards.

• Within region of +ve moment CD,
elastic curve concave upwards.

• At pt C, there is an inflection pt
where curve changes from concave
up to concave down (zero moment).

It should also be noted that the displacements ΔA and ΔE are especially

critical. At point E the slope of the elastic curve is zero, and there the

beam’s deflection may be a maximum. Whether ΔE is actually greater

than ΔA depends on the relative magnitudes of P1 and P2 and the

location of the roller at B.
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Following these same principles,

note how the elastic curve was

constructed. Here the beam is

cantilevered from a fixed support

at A and therefore the elastic curve

must have both zero displacement

and zero slope at this point. Also,

the largest displacement will occur

either at D, where the slope is

zero, or at C.

7.1 THE ELASTIC CURVE
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Deflected Shape
7.1 THE ELASTIC CURVE
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Example A
Draw the deflected shape for each of the beams shown

7.1 THE ELASTIC CURVE
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Example B
Draw the deflected shape for each of the frames shown

7.1 THE ELASTIC CURVE
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7.1 THE ELASTIC CURVE

• x axis extends +ve to the
right, along longitudinal axis
of beam.

• A differential element of
undeformed width dx is located.

• y axis extends +ve upwards from
x axis. It measures the
displacement of the centroid on
x-sectional area of element.

• A “ localized ” y coordinate is
specified for the position of a
fiber in the element.

• It is measured +ve upward from
the neutral axis.
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7.1 THE ELASTIC CURVE

Moment-Curvature Relationship

• Limit analysis to the case of initially
straight beam elastically deformed by
loads applied perpendicular to beam’s x
axis and lying in the x- plane of
symmetry for beam’s x-sectional area.

• Internal moment M deforms element
such that angle between x-sections is d.

• Arc dx is a part of the elastic curve that
intersects the neutral axis for each x-
section.

• Radius of curvature for this arc defined
as the distance , measured from center
of curvature O’ to dx.
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7.1 THE ELASTIC CURVE

Moment-Curvature Relationship

• Strain in arc ds, at position y from neutral axis, is
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( )

( )

'

'

1

ρ

s

ds ds

ds

ds dx d ds y d

y d d

d

y



   

   


 



−
=

= = = −

 − − 
=

= − −7 1

But and

or



7. Deflections of Beams and Shafts

18Asst. Prof. Dr. Najmadeen

7.1 THE ELASTIC CURVE

Moment-Curvature Relationship

• If material is homogeneous and shows linear-elastic
behavior, Hooke’s law applies. Since flexure formula
also applies, we combing the equations to get

 = radius of curvature at a specific pt on elastic curve
(1/ is referred to as the curvature).

M = internal moment in beam at pt where is to be
determined.

E = material’s modulus of elasticity.

I = beam’s moment of inertia computed about neutral
axis.

( )
1

7-2
ρ

M

EI
=
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7.1 THE ELASTIC CURVE

Moment-Curvature Relationship

• EI is the flexural rigidity and is always positive.

• Sign for  depends on the direction of the moment.

• As shown, when M is +ve,  extends above the
beam. When M is –ve,  extends below the beam.
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7.1 THE ELASTIC CURVE

Moment-Curvature Relationship

• Using flexure formula,  = −My/I, curvature is also

• Eqns 7-2 and 7-3 valid for either small or large
radii of curvature.

( )
1

7-3
ρ Ey


= −
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Slope and Displacement 

by Integration
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

• Let’s represent the curvature in terms of  and x.

• Substitute into Eqn 7-2
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

• Slope of elastic curve determined from d/dx is very
small and its square will be negligible compared with
unity.

• Therefore, by approximation 1/ = d2 /dx2, Eqn 7-4
rewritten as

• Differentiate each side w.r.t. x and substitute
V = dM/dx, we get

( )
2

2

d υ M
= 7-5

dx EI

( ) ( )
2

2

d d υ
EI =V x 7-6

dx dx

 
 
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

• Differentiating again, using −w = dV/dx yields

• Flexural rigidity is constant along beam, thus

( ) ( )
2 2

2 2

d d υ
EI =-w x 7-7

dx dx

 
 
 

( ) ( )7-8
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From the Equation EI
d 2y

dx2
=M x

EI
d 4y

dx4
= -w Shear force density (Load)

EI
d3y

dx3
=Vx   SHear force

EI
d 2y

dx2
=M xBendingMoment

dy

dx
=q  SLope

y=d=Deflection,Displacement

Flexural reigidity=EI

v x = -wdxò
M x = vx dxò

EI
d 2y

dx2
=M x

q = slope =
1

EI
M x dxò

d = deflection = q dxòEI
d 2y

dx2
=M x

7.2 SLOPE AND DISPLACEMENT BY INTEGRATION
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

• Generally, it is easier to determine the internal
moment M as a function of x, integrate twice, and
evaluate only two integration constants.

• For convenience in writing each moment
expression, the origin for each x coordinate can be
selected arbitrarily.

Sign convention and coordinates

• Use the proper signs for M, V and w.
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Boundary and continuity conditions

• Possible boundary conditions are 
shown here.
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Boundary conditions
Clamped or Built in support or Fixed end :

(Point A)

Deflection =0

Slope=0

Moment is not 0

Free end:

(Point B)

Deflection is not 0

Slope is not

Moment= 0

End restrained against rotation but free to

deflection)

Deflection is not 0

Slope=0

Shear is 0
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Boundary and continuity conditions

• If a single x coordinate cannot be used to express
the eqn for beam’s slope or elastic curve, then
continuity conditions must be used to evaluate
some of the integration constants.
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Elastic curve

• Draw an exaggerated view of the beam’s elastic
curve.

• Recall that zero slope and zero displacement
occur at all fixed supports, and zero displacement
occurs at all pin and roller supports.

• Establish the x and  coordinate axes.

• The x axis must be parallel to the undeflected
beam and can have an origin at any pt along the
beam, with +ve direction either to the right or to
the left.
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Elastic curve

• If several discontinuous loads are present, establish

x coordinates that are valid for each region of the

beam between the discontinuities.

• Choose these coordinates so that they will simplify

subsequent algebraic work.
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Load or moment function

• For each region in which there is an x coordinate,

express that loading w or the internal moment M as

a function of x.

• In particular, always assume that M acts in the +ve

direction when applying the eqn of moment

equilibrium to determine M = f(x).
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Slope and elastic curve

• Provided EI is constant, apply either the load eqn
EI d4/dx4 = −w(x), which requires four integrations
to get  = (x), or the moment eqns
EI d2 /dx2 = M(x), which requires only two
integrations. For each integration, we include a
constant of integration.

• Constants are evaluated using boundary conditions
for the supports and the continuity conditions that
apply to slope and displacement at pts where two
functions meet.
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7.2 SLOPE AND DISPLACEMENT BY INTEGRATION

Procedure for analysis

Slope and elastic curve

• Once constants are evaluated and substituted back
into slope and deflection eqns, slope and
displacement at specific pts on elastic curve can be
determined.

• The numerical values obtained is checked
graphically by comparing them with sketch of the
elastic curve.

• Realize that +ve values for slope are
counterclockwise if the x axis extends +ve to the
right, and clockwise if the x axis extends +ve to the
left. For both cases, +ve displacement is upwards.
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Assumptions and Limitations
• Deflections caused by shearing action negligibly small

compared to bending

• Deflections are small compared to the cross- sectional
dimensions of the beam

• All portions of the beam are acting in the elastic range

• Beam is straight prior to the application of loads

7.2 SLOPE AND DISPLACEMENT BY INTEGRATION
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EXAMPLE 7.1

Cantilevered beam shown is subjected to a vertical 

load P at its end. Determine the eqn of the elastic 

curve. EI is constant.
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EXAMPLE 7.1 (CONT.)

Elastic curve: Load tends to

deflect the beam. By

inspection, the internal

moment can be represented

throughout the beam using a

single x coordinate.

Moment function: From free-

body diagram, with M acting

in the +ve direction, we have

PxM −=
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EXAMPLE 7.1 (CONT.)

Slope and elastic curve:

Applying Eqn 7-10 and integrating twice yields

( )

( )

( )3
6

2
2

1

21

3

1

2

2

2

CxC
Px

EI

C
Px

dx

d
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Px
dx

d
EI
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EXAMPLE 7.1 (CONT.)

Slope and elastic curve:

Using boundary conditions d/dx = 0 at x = L, and  = 0 

at x = L, Eqn (2) and (3) becomes

21

3

1

2

6
0

2
0

CLC
PL

C
PL

++−=

+−=
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EXAMPLE 7.1 (CONT.)

Slope and elastic curve:

Thus, C1 = PL2/2 and C2 = PL3/3. Substituting these 

results into Eqns (2) and (3) with  = d/dx, we get

Maximum slope and displacement occur at A (x = 0),

( )

( )

2 2

3 2 3

P
L x

2EI

P
x 3L x 2L

6EI

 = − −

 = − + −

EI

PL

EI

PL
AA

32

32

−== 
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EXAMPLE 7.1 (CONT.)

Slope and elastic curve:

Positive result for A indicates counterclockwise
rotation and negative result for A indicates that A is
downward.

Consider beam to have a length of 5 m,

support load P = 30 kN,

made of steel having Est = 200 GPa.

I = 84.8(106) mm4.
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EXAMPLE 7.1 (CONT.)

Slope and elastic curve:

From Eqns (4) and (5),

( ) ( )

( )  ( )( )

( ) ( )

( )  ( )( )
mm7.73

mm108.84N/mm102003

mm/m10m5N/kN10kN30
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4623

3233
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2233

−=
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
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
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=
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





=

A

A


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EXAMPLE 7.1 (CONT.)

SOLUTION 2

Using Eqn 7-8 to solve the problem. Here w(x) = 0 for 
0  x  L, so that upon integrating once

VC
dx

d
EI

dx

d
EI

==

=

13

3

4

4

'

0


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EXAMPLE 7.1 (Con.)

Solution II

Shear constant C’1 can be evaluated at x = 0, since 
VA = −P. Thus, C’1 = −P. Integrating again yields the 
form of Eqn 7-10,

Here, M = 0 at x = 0, so C’2 = 0, and as a result, we 
obtain Eqn 1 and solution proceeds as before.

MCPx
dx

d
EI

P
dx

d
EI

=+−=

−=

22

2

3

3

'



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EXAMPLE 7.2

The beam shown in Figure below, supports the triangular

distributed loading. Determine its maximum deflection.

EI is constant.
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EXAMPLE 7.2 (Con.)

Elastic Curve. Due to symmetry, only one x coordinate is

needed for the solution, in this case 0 ≤ x ≤ L/2. The

beam deflects as shown. The maximum deflection occurs

at the center since the slope is zero at this point.
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EXAMPLE 7.2 (Con.)

Moment Function. A free-body diagram of the segment

on the left is shown in Figure below. The equation for the

distributed loading is
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EXAMPLE 7.2 (Con.)

Slope and Elastic Curve. Using Eq. 7–10 and integrating

twice, we have
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EXAMPLE 7.2 (Con.)
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EXAMPLE 7.2 (Con.)
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EXAMPLE 7.3

The simply supported beam shown in Fig. is subjected to the

concentrated force P. Determine the maximum deflection of the

beam. EI is constant.
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EXAMPLE 7.3 (Con.)

Solution

The beam deflects as shown in Fig. b. 

Two coordinates must be used, since 

the moment function will change at P.

Here we will take x1 and x2 having 

the same origin at A.

1 1

2 2 2 2

P
M x ,

3

P 2P
M x P(x 2a) (3a x )

3 3

=

= − − = −

From free body diagrams 
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EXAMPLE 7.3 (Con.)

Slope and Elastic Curve. Applying Eq. 7–10 for M1, and

integrating twice yields



7. Deflections of Beams and Shafts

54Asst. Prof. Dr. Najmadeen

EXAMPLE 7.3 (Con.)
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EXAMPLE 7.3 (Con.)
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EXAMPLE 7.3 (Con.)

By inspection of the elastic curve, Fig. b, the maximum

deflection occurs at D, somewhere within region AB.

Here the slope must be zero. From Eq. 5,
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EXAMPLE 7.4

Beam is subjected to load P at its end. Determine 

the displacement at C. EI is a constant.



7. Deflections of Beams and Shafts

58Asst. Prof. Dr. Najmadeen

EXAMPLE 7.4 (Con.)

Elastic curve

Beam deflects into shape shown. Due to loading, two 

x coordinates will be considered, 0  x1  2a and 

0  x2  a, where x2 is directed to the left from C since 

internal moment is easy to formulate.
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EXAMPLE 7.4 (Con.)

Moment functions

Using free-body diagrams, 

we have

Slope and Elastic curve: Applying Equation,

2211
2

PxMx
P

M −=−=

( )

( )2
12

1
4

2
20

211
3

11

1
2

1
1

1

12
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1
2
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CxCx
P
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Cx
P

dx

d
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x
P
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d
EIax
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




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EXAMPLE 7.4 (Con.)

Slope and Elastic curve:

( )

( )4
6

3
2

0

423
3

22

3
2

2
2

2

22
2

2
2

2

CxCx
P

EI

Cx
P

dx

d
EI

Px
dx

d
EIax

++−=

+−=

−==






for
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EXAMPLE 7.4 (Con.)

Slope and Elastic curve: 

The four constants of integration determined using

three boundary conditions, 1 = 0 at x1 = 0, 1 = 0 at

x1 = 2a, and 2 =0 at x2 = a and a discontinuity eqn.

Here, continuity of slope at roller requires 

d1/dx1 = −d2/dx2 at x1 = 2a and x2 = a.

( ) ( ) 21
2

11

11

22
12

0;20

2000;00

CaCa
P

axat

Cxat

++−===

++===


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EXAMPLE 7.4 (Con.)

Slope and Elastic curve: 

Solving, we obtain

( ) ( )
( ) ( ) 








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Ca
P

dx

ad

dx

ad

CaCa
P

axat





3
4232

2

1
6

7
0

3
PaCPaCC

Pa
C −====
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EXAMPLE 7.4 (Con.)

Slope and Elastic curve: 

Substituting C3 and C4 into Eqn (4) gives

Displacement at C is determined by setting x2 = 0, 

EI

Pa
x

EI

Pa
x

EI

P 3

2

2
3

22
6

7

6
−+−=

EI

Pa
C

3

−=
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PL

L
x

x

P
P

2

EI
d v

=M
dx 2

M = −PL +Px

(0)2

2

2

(0)3
(0)2

2

2

2

d 2v
EI

dx 2

dv x 2

dv

dx

PLx 2
x 3

PL

PLx 2 x 3

PL L2

= −PL +Px

Integrating once: EI = −PLx + P +c
dx 2 1

@ x = 0, = 0  EI (0) = −PL (0)+P + c1  c1 = 0

Integrating twice: EIv =− + P +c

6 2

@ x = 0, v = 0  EI (0) = − + P + c2  c2 = 0

EIv =− + P
6

6

@ x = L  v = v max

EIv max = −
3

L3 PL3 PL3

+ P = −
6

 v max = − 3EI

EXAMPLE 7.5
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y

M = −
W (L − x)2
2

d 2vEI =M
dx 2

@ x
2

d 2v W
EI

dx 2
= − (L − x )2

Integrating once
dv W (L − x )3EI =
dx 2 3

+c1

@ x = 0
dv WL3

6dx

W (L − 0)3 

2 3
= 0  EI (0) = + c1 c1 = −

L
x

x

WL

W

2

WL2

dv W 3 WL3

6dx 6
 EI = (L − x ) −

EXAMPLE 7.6
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4W

24

WL3 WL4

6 24
EIv =− (L − x ) − x +

Max. occurs @ x = L

6 8

W L4 WL4 WL4 WL4

EIv max = − + = −
24

 v max = − 8EI

8EI

4

max
=

WL


246

WL4

 c2 =− (0)+c2

W (L− 0)4 WL3

6 4
 EI(0)= −@ x = 0 v = 0

6

WL3W (L − x )4

Integrating twice EIv = −
6          4

− x + c2

EXAMPLE 7.6 (Con.)
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L

x

y x

2

WL

2

WL

2
M =

WL 
x −Wx

x

2

d 2v WL x 2

EI
dx 2 2

2

= x −W

Integrating
x 3dv WL x 2 W

EI = −
dx 2 2 2 3

+c1

Since the beam is symmetric = 0
dx

dvL

2
@ x=

−  

2 3

 

2 2
+ c1 

 L
3

W 


2


 L
2

WL 


2


EI(0)=L

2
@ x=

WL3

c1 = − 24

2 3

6 24

dv WL W WL3

dx 4
 EI = x − x −

EXAMPLE 7.7
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EXAMPLE 7.7 (Con.)

Integrating

@ x = 0 v = 0

 c2 = 0
3 4WL

12

W

24

WL3

x
24

 EIv = x − x −

Max. occurs @ x = L /2
5WL4

EIv max = − 384

max

5W L4

384EI
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y

d 2v P L

2
EI

dx 2 2
= x

Integrating
dv P x 2

EI =
dx 2 2

+c1

Since the beam is symmetric = 0
dx

dvL

2
@ x=

1
 

2 2
+ c 

 L
2

P 


2


EI(0)=L

2
@ x =

16

PL2

c1 = −

2

dx 4 16
 EI

dv
=

P 
x 2 −

PL

2
M =

P 
x

2

for 0  x 

for 0  x 
L

L/2

x

x

2

P P

2

P

L/2

EXAMPLE 7.8
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EXAMPLE 7.8 (Con.)

Integrating
P x 3 PL2

EIv = − x + c
4 3 16 2

@ x = 0 v = 0
P (0)3 PL2

4 3 16
− (0)+c2 EI (0)=  c2 = 0



Max. occurs @ x = L /2
3PL

EIv max = − 48

48EI

3

max
=

PL


P x 3 PL2

EIv = − x
12   16
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EXAMPLE 7.9

x
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Slope and Displacement 

by the Moment-Area 

Method
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• Assumptions: 

– beam is initially straight, 

– is elastically deformed by the loads, such that 
the slope and deflection of the elastic curve are 
very small, and 

– deformations are caused by bending.

Theorem 1

• The angle between the tangents at any two pts on 
the elastic curve equals the area under the M/EI
diagram between these two pts.

( )
B

B A
A

M
dx 7-19

EI
 = 

7.3 SLOPE AND DISPLACEMENT BY THE MOMENT-AREA METHOD
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Theorem 1
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Theorem 2

• The vertical deviation of the tangent at a pt (A) on
the elastic curve w.r.t. the tangent extended from
another pt (B) equals the moment of the area
under the ME/I diagram between these two pts
(A and B).

• This moment is computed about pt (A) where the
vertical deviation (tA/B) is to be determined.
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Theorem 2
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis

M/EI Diagram

• Determine the support reactions and draw the
beam’s M/EI diagram.

• If the beam is loaded with concentrated forces, the
M/EI diagram will consist of a series of straight
line segments, and the areas and their moments
required for the moment-area theorems will be
relatively easy to compute.

• If the loading consists of a series of distributed
loads, the M/EI diagram will consist of parabolic or
perhaps higher-order curves, and we use the table
on the inside front cover to locate the area and
centroid under each curve.
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis

Elastic curve

• Draw an exaggerated view of the beam’s elastic
curve.

• Recall that pts of zero slope and zero displacement
always occur at a fixed support, and zero
displacement occurs at all pin and roller supports.

• If it is difficult to draw the general shape of the
elastic curve, use the moment (M/EI) diagram.

• Realize that when the beam is subjected to a +ve
moment, the beam bends concave up, whereas
-ve moment bends the beam concave down.
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis

Elastic curve

• An inflection pt or change in curvature occurs when
the moment if the beam (or M/EI) is zero.

• The unknown displacement and slope to be
determined should be indicated on the curve.

• Since moment-area theorems apply only between
two tangents, attention should be given as to which
tangents should be constructed so that the angles or
deviations between them will lead to the solution of
the problem.

• The tangents at the supports should be considered,
since the beam usually has zero displacement
and/or zero slope at the supports.
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7.3 SLOPE & DISPLACEMENT BY THE MOMENT-AREA METHOD

Procedure for analysis

Moment-area theorems

• Apply Theorem 1 to determine the angle between
any two tangents on the elastic curve and Theorem
2 to determine the tangential deviation.

• The algebraic sign of the answer can be checked
from the angle or deviation indicated on the elastic
curve.

• A positive B/A represents a counterclockwise
rotation of the tangent at B w.r.t. tangent at A, and a
+ve tB/A indicates that pt B on the elastic curve lies
above the extended tangent from pt A.
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EXAMPLE 7.10

Determine the slope of the beam shown at pts B and 

C. EI is constant.



7. Deflections of Beams and Shafts

83Asst. Prof. Dr. Najmadeen

EXAMPLE 7.10 (Con.)

M/EI diagram: See below.

Elastic curve:

The force P causes the beam to deflect as shown. 
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EXAMPLE 7.10 (Con.)

Elastic curve:

The tangents at B and C are indicated since we are

required to find B and C. Also, the tangent at the

support (A) is shown. This tangent has a known zero

slope. By construction, the angle between tan A and

tan B, B/A, is equivalent to B, or

ACCABB  == and
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EXAMPLE 7.10 (Con.)

Moment-area theorem:

Applying Theorem 1, B/A is equal to the area under

the M/EI diagram between pts A and B, that is,

EI

PL

L

EI

PLL

EI

PL
ABB

8

3

222

1

22

2

−=

















−+
















−==
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EXAMPLE 7.10 (Con.)

Moment-area theorem:

The negative sign indicates that angle measured from 

tangent at A to tangent at B is clockwise. This checks, 

since beam slopes downward at B.

Similarly, area under the M/EI diagram between pts A

and C equals C/A. We have

EI

PL

L
EI

PL
ACC

2

2

1

2

−=









−==
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EXAMPLE 7.11

Determine the displacement of pts B and C of beam 

shown. EI is constant.
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EXAMPLE 7.11 (Con.)

M/EI diagram: See below.

Elastic curve:

The couple moment at C cause the beam to deflect as 

shown. 
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EXAMPLE 7.11 (Con.)

Elastic curve:

The required displacements can be related directly to

deviations between the tangents at B and A and C and

A. Specifically, B is equal to deviation of tan A from

tan B,

ACCABB tt ==



7. Deflections of Beams and Shafts

90Asst. Prof. Dr. Najmadeen

EXAMPLE 7.11 (Con.)

Moment-area theorem:

Applying Theorem 2, tB/A is equal to the moment of the

shaded area under the M/EI diagram between A and B

computed about pt B, since this is the pt where

tangential deviation is to be determined. Hence,

EI

LML

EI

ML
t ABB

824

2
00 −=





















−








==
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EXAMPLE 7.11 (Con.)

Moment-area theorem:

Likewise, for tC/A we must determine the moment of

the area under the entire M/EI diagram from A to C

about pt C. We have

Since both answers are –ve, they indicate that pts B

and C lie below the tangent at A. This checks with the

figure.

( )
EI

LM
L

EI

ML
t ACC

22

2
00 −=













−








==
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EXAMPLE 7.12
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EXAMPLE 7.12 (Con.)
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EXAMPLE 7.13



7. Deflections of Beams and Shafts

95Asst. Prof. Dr. Najmadeen

EXAMPLE 7.13 (Con.)
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EXAMPLE 7.14
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EXAMPLE 7.14 (Con.)
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EXAMPLE 7.15
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EXAMPLE 7.15 (Con.)
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EXAMPLE 7.16
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EXAMPLE 7.16 (Con.)
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EXAMPLE 7.17
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EXAMPLE 7.17 (Con.)
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-30/EI
-20/EI

M/EI

-

EXAMPLE 7.18
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-30/EI
-20/EI

M/EI

-

EXAMPLE 7.18 (Con.)
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Determine the slope at point B 

of the 5m long beam shown in 

Fig. EI=0.4*107N/m2

10 kN

50kN.m

MD

The elastic curve is concave downward, since MEI is negative.) The tangent at 

B is indicated since we are required to find θB Also, the tangent at the support 

(A) is shown. This tangent has known zero slope. By the construction, the 

angle between tan A and tan B, that is θB/A, is equivalent to θB

Applying Theorem 1, θB/A is equal to the area under the 

M EI diagram between points A and B; that is,

qB =qB/A = (
1

2
5*(-50)*103) / (0.4*107) = 0.03125rad clockwise

EXAMPLE 7.19
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Determine slope and 

Deflection at point C. Use 

moment area method 

EI=62500N.m2

Solution 

9kN

2m 1m

A
C

B
6kN.m

9kN

2m 1m

A
C

B

tB/A

θC/A

EXAMPLE 7.20



7. Deflections of Beams and Shafts

108Asst. Prof. Dr. Najmadeen

qC/A =
1

2
* 2 *

6

EI
=

6 *103N.m.m

62500N.m2
= 96 *10-3counterclockwise

qA =
tB/A

3
=

192 *10-3

3
= 64*10-3clockwise

qC/A =qC -qA Þ 96 *10-3 =qC - (-64*10-3) ÞqC = 32 *10-3rad

tB/A =
1

2
* 2 *

6

EI
*(

1

3
* 2 +1)+

1

2
*1*

6

EI
*(

2

3
*1)

=
(10 + 2)*103N.m.m.m

62500N.m2
=192 *10-3

tC/A =
1

2
* 2 *

6

EI
*(

1

3
* 2) =

4

EI
=

4*103

62500
= 64*10-3

cc '

2
=
tB/A

3
Þ cc ' =128*10-3

cc ' = dc+ tC/A Þ dc =128*10-3 - 64*10-3 = 64*10-3m

EXAMPLE 7.20 (Con.)
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Determine the

displacement at

C for the beam

shown. EI is

62500N/m2.

1.5m 1.5m

A
C

B
12kN.m

tA/B =
1

2
*3*

12 *103

62500
*

1

3
3 = 0.288

tC/B =
1

2
*1.5*

6 *103

62500
*

1

3
1.5 = 0.036

0.288

3
=
cc '

1.5
Þ cc ' = 0.144

dc = cc '- tC/B = 0.144 - 0.036 = 0.108m

EXAMPLE 7.21
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Determine the displacement at point C for the steel

overhanging beam E=29*103 ksi, I=125in4

EXAMPLE 7.22
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tC/A =
1

2
* 24*

-60 *103 *123

3625*103 *103
*(12) = -4.117

tB/A =
1

2
*12 *

60 *103 *123

3625*103 *103
*(

1

3
12) = -0.686

cc ' = 2tB/A = -1.372

dc = tC/A - cc ' = -4.117 - (-1.372) = 2.75in¯

Solution:

EXAMPLE 7.22 (Con.)
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