Tishk International University Science Faculty Information Technology Department

Data Communication & Computer Networks II

Transmission Modes

3rd Grade Spring Semester 2020-2021

Instructor: Bilal Ahmed

Chapter 9

Transmission Modes

Topics Covered

- 9.1 Introduction
- 9.2 A Taxonomy of Transmission Modes
- 9.3 Parallel Transmission
- 9.4 Serial Transmission
- 9.5 Transmission Order: Bits and Bytes
- 9.6 Timing of Serial Transmission
- 9.7 Bytes, Blocks, and Frames
- 9.8 Simplex, Half-Duplex, and Full-Duplex Transmission

9.1 Introduction

This chapter

- continues the discussion by focusing on the ways data is transmitted
- introduces common terminology
- explains the advantages and disadvantages of parallelism
- discusses the important concepts of synchronous and asynchronous communication

9.2 A Taxonomy of Transmission Modes

- We use the term transmission mode to refer to the manner in which data is sent
- Transmission modes can be divided into two fundamental categories:
- Serial one bit is sent at a time
 - It is further categorized according to timing of transmissions
- Parallel multiple bits are sent at the same time
- Figure 9.1 gives an overall taxonomy of the transmission modes discussed in the chapter

9.2 A Taxonomy of Transmission Modes

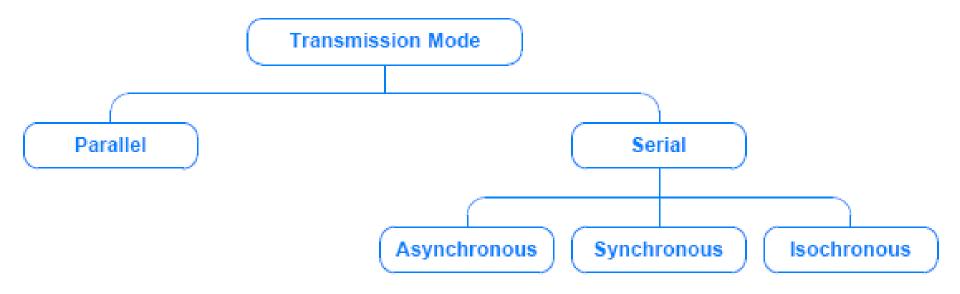


Figure 9.1 A taxonomy of transmission modes.

9.3 Parallel Transmission

- Parallel transmission allows transfers of multiple data bits at the same time over separate media
- It is used with a wired medium that uses multiple, independent wires
- Signals on all wires are synchronized
 - bits travels across each of the wires at precisely the same time
- Figure 9.2 illustrates the concept, and shows why engineers use the term parallel to characterize the wiring

9.3 Parallel Transmission

each wire carries the signal for one bit, and all wires operate simultaneously

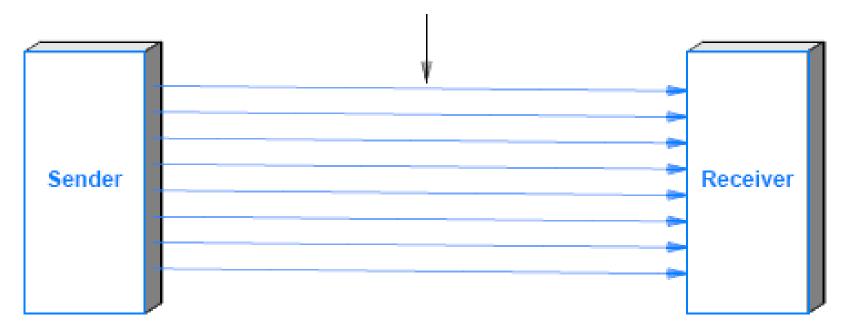


Figure 9.2 Illustration of parallel transmission that uses 8 wires to send 8 bits at the same time.

9.3 Parallel Transmission

- The figure omits two important details:
 - A parallel interface usually contains other wires that allow the sender and receiver to coordinate beside data lines
 - To make installation and troubleshooting easy the wires for a parallel transmission system are placed in a single physical cable
- A parallel mode of transmission has some advantages:
 - High speed: it can send N bits at the same time
 - Match to underlying hardware: Internally, computer and communication hardware uses parallel circuitry

9.4 Serial Transmission

- Serial transmission sends one bit at a time
- Most communication systems use serial mode
- There are two main reasons
 - serial networks can be extended over long distances at much less cost
 - using only one physical wire means that there is never a timing problem caused by one wire being slightly longer than another
- Sender/receiver contain converts data from the parallel form used in the device to the serial form used on the wire
- Figure 9.3 illustrates the configuration

9.4 Serial Transmission

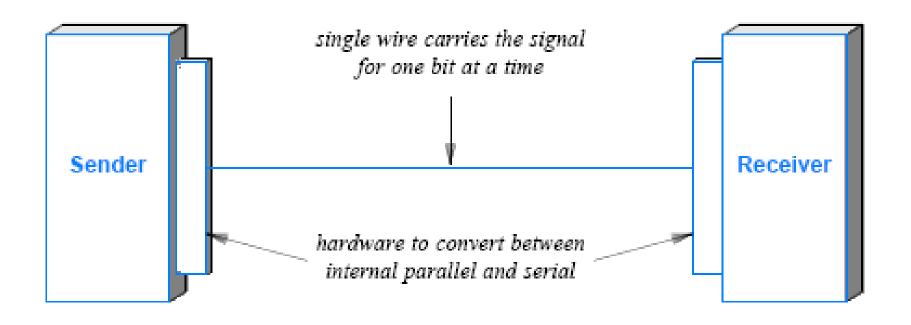


Figure 9.3 Illustration of a serial transmission mode.

9.4 Serial Transmission

- Hardware needed to convert data between an internal parallel form and a serial form can be simple or complex
- In the simplest case, a single chip that is known as a Universal Asynchronous Receiver and Transmitter (UART)
- A related chip, Universal Synchronous-Asynchronous Receiver and Transmitter (USART) handles conversion for synchronous networks

9.6 Timing of Serial Transmission

- Serial transmission mechanisms can be divided into three broad categories (depending on how transmissions are spaced in time):
- Asynchronous transmission can occur at any time
 - with an arbitrary delay between the transmission of two data items
- Synchronous transmission occurs continuously
 - with no gap between the transmission of two data items
- Isochronous transmission occurs at regular intervals
 - with a fixed gap between the transmission of two data items

9.7 Bytes, Blocks, and Frames

- What happens if a sender does not have data ready to send at all times?
- The answer lies in a technique known as framing:
 - an interface is added to a synchronous mechanism that accepts and delivers a block of bytes known as a frame
- To insure that the sender and receiver stay synchronized
 - a frame starts with a special sequence of bits
- Most synchronous systems include an idle sequence (or idle byte)
 - that is transmitted when the sender has no data to send
- Figure 9.7 illustrates the concept

9.7 Bytes, Blocks, and Frames

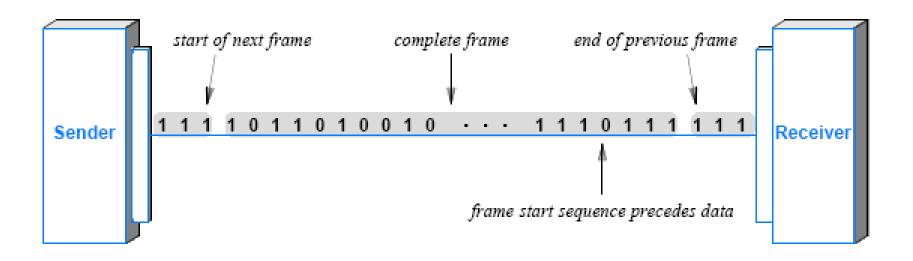


Figure 9.7 Illustration of framing on a synchronous transmission system.

9.8 Simplex, Half-Duplex, and Full-Duplex Transmission

- A communications channel is classified as one of three types: (depending on the direction of transfer)
 - Simplex
 - Full-Duplex
 - Half-Duplex
- Simplex: a simplex mechanism can only transfer data in a single direction
 - It is analogous to broadcast radio or television
 - Figure 9.8a illustrates simplex communication
- Full-Duplex: allows transmission in two directions simultaneously
 - It is analogous to a voice telephone conversation
 - a participant can speak even if they are able to hear background music at the other end
 - Figure 9.8b illustrates the concept

9.8 Simplex, Half-Duplex, and Full-Duplex Transmission

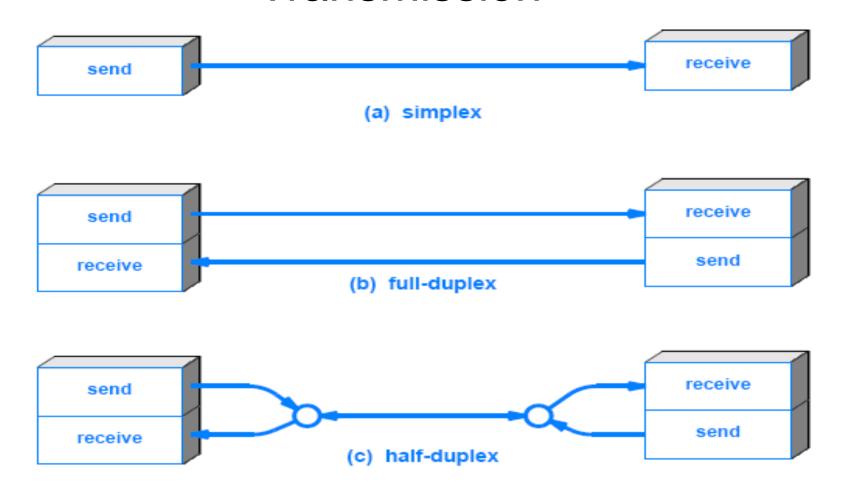


Figure 9.8 Illustration of the three modes of operation.

9.8 Simplex, Half-Duplex, and Full-Duplex Transmission

- Half-Duplex: A half-duplex mechanism involves a shared transmission medium
 - Medium can be used for communication in each direction
 - But the communication cannot proceed simultaneously
 - It is analogous to using walkie-talkies
 - Only side can transmit at a time
- An additional mechanism is needed at each end of a halfduplex communication
 - To coordinates transmission to insure that only one side transmits at a given time
- Figure 9.8c illustrates half-duplex communication