# Tishk International University Faculty of Pharmacy 

# Introduction to Biostatistics \& Course Book 

Dr. Abubakir M. Saleh
Assist.Professor of Community Medicine

## Lecture Outline

- Definitions: Statistics \& Biostatistics
- Data: sources and types
- Aim and objectives of the course
- Course Syllabus
- Lecture Schedules
- Course outline
- Examinations


## Statistics

Statistics is the art and science of data. It deals with:

- Collecting data
- Organizing data
- Describing data
- Summarizing and presenting data
- Analyzing data
- Interpreting results
- Reaching decisions or discovering new knowledge


## Biostatistics

Biostatistics is application of statistical methods to a wide range of topics in biology including medicine and health sciences

## Data

- Data is information that has been translated into a form that is efficient for movement or processing
E.g. of data:

| Patient code | Age | Sex | Height | Weight | Marital status | Education level |
| ---: | ---: | :--- | ---: | ---: | :--- | :--- |
| 1 | 24 | Male | 170 | 80 | Married | Primary |
| 2 | 32 | Female | 155 | 60 | Single | Secondary |
| 3 | 41 | Male | 165 | 75 | Married | College |
| 4 | 26 | Female | 160 | 55 | Single | Primary |
| 5 | 37 | Male | 172 | 78 | Single | College |
| 6 | 45 | Male | 168 | 87 | Single | Primary |
| 7 | 38 | Female | 164 | 68 | Married | College |
| 8 | 56 | Male | 175 | 64 | Married | Secondary |
| 9 | 21 | Female | 159 | 57 | Single | College |

## Sources of data




## Biostatistics

Basic tasks of statistics

- To describe or present data
- Tabular, graphical, numerical
- To draw inference concerning the underlying population
- Statistical investigations carried on samples
- Conclusions about population
- Probability theory and inferential statistics


## Presentation of data

- To sort and classify data into groups or classification.
- Objective :
- to make data simple, concise, meaningful, interesting \& helpful for further analysis.
- 2 main methods:
i. Tabulations
ii. Charts and diagrams


## Table 1: Distribution of 50 patients at the hospital according to their age

| Age <br> (years) | Frequency |
| :--- | :---: |
| $20-29$ | 12 |
| $30-39$ | 18 |
| $40-49$ | 5 |
| $50+$ | 15 |
| Total | 50 |

## Table 1: Distribution of 50 patients at the hospital according to their age

| Age <br> (years) | Frequency | $\%$ |
| :--- | :---: | :---: |
| $20-29$ | 12 | 24 |
| $30-39$ | 18 | 36 |
| $40-49$ | 5 | 10 |
| $50+$ | 15 | 30 |
| Total | 50 | 100 |

Table 2: Distribution of the sample according to smoking status and developing lung cancer

| Smoking | Lung cancer |  | Total |
| :--- | :---: | :---: | :---: |
|  | Yes | No |  |
| Smoker | 15 | 8 | 23 |
| Non smoker | 5 | 32 | 37 |
| Total | 20 | 40 | 60 |

Table 2: Distribution of the sample according to smoking status and developing lung cancer

| Smoking | Lung cancer |  |  |  | Total |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yes |  | No |  |  |  |  |
|  | No. | $\%$ | No. | $\%$ | No. | $\%$ |
| Smoker | 15 | $65 \%$ | 8 | $35 \%$ | 23 | 100 |
| Non smoker | 5 | $14 \%$ | 32 | $86 \%$ | 37 | 100 |

## Charts and diagrams



## Aim of the course

To introduce basic descriptive and inferential statistical concepts and provide an understanding of the relevance and importance of statistics to health research.

## Biostatistics

- The course will particularly emphasize the practical applications of basic statistical concepts
- The mathematical formulae will be kept to a minimum.
- The theory and the methods of analysis will be extensively illustrated with examples relating to a wide variety of relevant fields.


## Course Objectives:

By the end of this course the students should be able to:

- Describe the role of statistical methods in health research;
- Present results effectively by making appropriate displays, summaries, and tables of data;
- Appreciate the problem of sampling variation and the role of statistical methods in quantifying it
- Select an appropriate statistical method for the analysis of simple data sets;


## Objectives - cont.

- Correctly interpret and critically appraise the results of statistical analyses reported in the health literature;
- Present and discuss the findings from statistical analyses in a clear, concise and logical manner



## Syllabus

- Course length: 15 weeks (including mid-course examination)
- Course language: English
- Assessment (grading):
- Mid course exam : 40\%
- Attendance \& Class activity:10\%
- Quizz: 10\%
- nd of course exam: 40\%
- Course Reading List:

Comprehensive notes are provided

## Extra reading

- Essential Medical Statistics, by Betty Kirkwood \& Jonathan Sterne (Published by Blackwell)
Statistics Without Tears, a Primer for Non-mathematicians, by Derek Rowntree (Published by Penguin)
- All the statistical tables you need for this course are provided.


## Lecture Schedule

| Week No. | Topic |
| :---: | :--- |
| 1 | Introduction |
| 2 | Population and sample |
| 3 | Types of variables |
|  | Data presentation |
| 4 | Descriptive measures |
| 5 | Confidence intervals |
| 6 | Mid-course examination |
| 7 | Hypothesis testing |
| 9 | Comparison of two means ( t-test) |
| 9 | Comparison of two proportions( Chi-square) |
| 10 | Contingency tables |
| 11 | Sample size calculation |

## Lecture Schedule

| Week No. | Topic |
| :---: | :--- |
| 12 | Using computer software in data analysis ( SPSS). |
| 13 | Using computer software in data analysis(SPSS). |
| 14 | Using computer software in data analysis(SPSS). |
| 15 | Using computer software in data analysis(SPSS). |

## Course outline:

## Subject

Introduction

- Course description
- Course objectives
- Course syllabus
-Students evaluation (examination)
Population and sample
- Study population
- Sample
- Reasons for sampling
- Probability (random) sampling
- Probability sampling methods
- Simple random sampling
- Systematic sampling
- Stratified sampling
- Cluster sampling
- Non-probability sampling


## Types of variables

- Qualitative (categorical) variables
- Nominal
- Ordinal
- Quantitative variables
- Continuous
- Discrete
- Dependent (outcome) variable
- Independent (exposure/risk factor) variable


## Data presentation

- Types of data
- Frequency distributions
- Graphical methods
- Bar graph
- Histogram
- Pie chart
- Line graph


Date

## Descriptive measures

- Measure of central tendency
- Mean/Median/Mode
- Measure of dispersion
- Standard deviation/Range


## Confidence intervals

- Statistical inference
- Estimation
- Confidence interval for a population mean
- Confidence interval for a population proportion
- Standard error and standard deviation


Hypothesis testing

- Null hypothesis
- Level of significance
- Test of significance

Comparison of two means

- The t-test for difference between two means (independent samples)
- Paired t-test: difference between paired samples


## Comparison of two proportions

- Contingency tables
- Chi-square test: Relationship between two categorical variables


## Sample size calculation

- One sample
- Mean
- Proportion
- Two samples
- Difference between two means
- Difference between two proportions
- Application of computer software for data analysis ( SPSS).


## Examinations

The examinations that will be held during the course include:

- Quizzes - during the sessions
- Mid course exam - Theoretical including basic statistical exercises
- End of course exam - Theoretical including basic statistical exercises



## Examinations

- Theoretical exams will include different types of question.
- Samples of the expected questions and their answers:


## Q1- Mark each of the following by (T) if true or (F) if false, in front of each of them.

- 1. In simple random sampling, each unit has an equal and known probability of being selected.
- 2. If we study the association between eating salty food and having high blood pressure, then high blood pressure is the independent variable.
- 3. A histogram can be used to display frequency distribution but not relative frequency distribution.
- 4. The best way to visualize correlation is by using scatter-plot.
- 5. When the confidence intervals of two values overlap, this means there is evidence of having a real difference between the two values.


# Q2- Encircle the most appropriate answer in the following statements: 

Examples of multiple choice questions, with notes and solutions

1. A study was carried out to investigate low birth weight in a large city. Pregnant women were recruited early in pregnancy and followed up until the birth. Each baby's birth weight was classified as low if it was 2.5 kg or less and normal otherwise. This variable is:

- a Continuous
- b Ordered categorical
- c Binary
- d Skewed


## Q3. Statistical questions

The weights of 120 successive babies born alive to residents of a Health District were recorded to the nearest 100 g . The results were as follows:

| Wt (cgm) |  |
| :---: | :---: | Number


| Wt (cgm) | Number |
| :---: | :---: |
| 29 | 2 |
| 30 | 7 |
| 31 | 4 |
| 32 | 12 |
| 33 | 11 |
| 34 | 15 |
| 35 | 5 |
| 36 | 5 |
| 37 | 13 |
| 38 | 4 |


| Wt (cgm) | Number |
| :---: | :---: |
| 39 | 6 |
| 40 | 1 |
| 41 | 5 |
| 42 | 3 |
| 43 | 1 |
| 44 | 0 |
| 45 | 0 |
| 46 | 1 |
| 47 | 1 |

## Q3. cont.

(a) Draw up the cumulative percentage frequency table, and find the quartiles and the median.
(b) Illustrate the distribution using (i) a histogram, and (ii) a box plot. Were these birth weights symmetrically distributed?
(c) Compute the mean and standard deviation of the birth weights, and compare the mean and the median. Also compute the mean $\pm$ SD, and the mean $\pm 2 S D$, and see how these relate to the percentiles of the distribution.

## Questions?

