Tishk International University Engineering Faculty Petroleum and Mining Engineering Department

Reservoir Simulation

Lecture 9: Reservoir Simulation Workflow

Fourth Grade- Spring Semester 2020-2021

Instructor: Ms. Sheida Mostafa Sheikheh

Content:

- Overview of Modeling Procedure
- Reservoir Simulation Workflow
- Reservoir Simulation System

2008

Eclipse Workflow ERBIL

Major Steps of Numerical Solution

Overview of Modeling Procedure:

Property 3D, FloGrid CPS3, Petrel	Describe reservoir	reservoir structure (seismic, logs) gross and net thickness (logs) well locations and perforated intervals
VFPi FloGrid PVTi Schedule	Design reservoir grid	porosity, permeability (logs, cores) fluid analyses (lab data) pressure and contacts (logs, well tests, etc.)
ECLIPSE 100/300/500	Select simulator model	black oil or compositional fractured, condensate, etc. horizontal wells, EOR, thermal, etc.
ECLIPSE History SimOpt	Solve for pressures and saturations	historical production data
FloViz Peep	Predict and optimize future production	investigate different scenarios visualize results economic calculations

- ✓ Building a geo-model
- ✓ Assemble other necessary data (PVT, SCAL, ...)
- ✓ Initialization: calculation of P, S, Hydrocarbon in place
- History Matching: reduce the uncertainty in the geo-model
- ✓ Forecast: compute production profiles and reserves
- For different development scenarios (production mechanisms, well architecture,)
- Taking into account the surface facility constraints

- What do we have at the start of this process?
- > Static model:
- Structure- tops, thickness, layering, faults, boundaries, shales, sands, rock type, depositional environment, grain size distribution fractures (all locations), property of aquifer.
- ✓ Rock properties at all points in the reservoir, permeabilities in all directions, porosities, capillary pressure, relative permeabilities.

What do we have at the start of this process?

ERBIL

- > Static model:
- ✓ Initial reservoir conditions- water, oil and gas saturations, pressures at all points in the reservoirs, contacts.

2008

- What do we have at the start of this process?
- ➢ Well Data:
- ✓ Well locations, trajectory, completions, workover schedule
- Production rates of oil, water, and gas as a function of time
- Pressure history of the wells- bottom hole flowing pressure and/or build-up pressures (well tests) at specific times
- ✓ Injection history- rates, fluids, pressures, etc.

- What do we have at the start of this process?
- Fluid data- PVT experiments with the reservoir fluids, viscosities,

densities.

Material balance of the reservoir history

FRRII

- Reservoir Compartments
- Reservoir mechanisms
- Surface facilities and conditions

- Static model
- > Well Data
- Fluid data
- Material balance of the reservoir history
- Reservoir Compartments
- Reservoir mechanisms
- Surface facilities and conditions

ERBIL

2008

Suite of Software Applications for:

Pre-Processing

- ✓ Data Loading and Importing
- ✓ Gridding
- Processing
- ✓ Numerical Calculations

Post-Processing

 \checkmark Visualization of calculated results

- 1) Importing Geological Data
- 2) Parameterized Grid, Neighborhood Connections
- 3) Rock-, PVT-, and Well data
- 4) Simulated Results for Visualization

1 Pre-Processing 2 Processing 4 Post-Processing

> Pre-Processor:

- ✓ Automatic Grid generation
- ✓ Cartesian, Radial and Corner Point grids
- ✓ Local Grid Refinement, Aquifer Modeling
- ✓ Flexible Well Modeling (arbitrary directed wells) 008
- ✓ Fault Modeling (vertical, sloping)

> Pre-Processor:

- ✓ Data Importing from various sources and formats
- ✓ Graphical User interfaces and Visualization
- ✓ Data preparation modules (Rock, PVT and Well data)

2008

✓ Validation of Geological Model

> Processor:

- ✓ Black-Oil Models (single phase to three phase models)
- ✓ Extended Black Oil (Salt, Polymer, API)
- ✓ Compositional Model (n components, EOS model)

ERBIL

✓ Thermal Model

2008

-

✓ Solution Techniques: IMPES, Fully implicit, adaptive implicit method

> Processor:

- ✓ Dual Porosity Dual Permeability Models
- ✓ Rock compaction and hysteresis models
- ✓ Analytical and numerical aquifer treatment
- ✓ Flexible and multilevel well management controls ○8

- Post-Processor:
- ✓ Visualization of calculated results on grid: distribution plots for any object

2008

- ✓ Visualization of results vs. time
- ✓ Well plots, well group plots, reservoir plots: Animation of results
- ✓ Supporting all major graphic formats
- ✓ Exporting maps

Content:

- Overview of Modeling Procedure
- Reservoir Simulation Workflow
- Reservoir Simulation System

2008

Eclipse Workflow ERBIL

FloGrid: From the Static Model-Create a numerical grid of the reservoir (flow field) that includes at all points

- Rock permeability, porosity, relative permeability, capillary pressure, pressure saturations
- Location, volumes, adjacent rocks or features
- The input data are a set of mesh maps and fault traces, generated in an external mapping package, and well deviation surveys.
- The output is a simulation grid and cell properties.

> PVTi:

✓ PVT Analysis and Fluid Characterization

ERBIL

✓ Using Equation of State and PVT Program characterize oil and/or gas and match laboratory phase behavior experiments

2008

✓ Export PVT files for Blackoil, Compositional, or Thermal simulations

> SCAL:

- ✓ Analysis of Rock Types
- ✓ Relative Permeabilities
- ✓ Capillary Pressure ERBIL
- ✓ Imbibition and Drainage
- ✓ Assignment of curves to grid blocks

2008

- Schedule:
- ✓ Well Data Preparation
- ✓ Location of wells in the grid
- Averaging and Assignment of production rates to wells
- ✓ Workover wells
- Assign all well, control, economic limits and time stepping keywords to ECLIPSE data set

> VFPi:

✓ Create Table relating BHP to THP as a function of

ERBIL

- Well design depth, ID, roughness, depth, temperatures,
- GOR, Water Cut
- Oil rates
- Pumps, gas lift, compressors
- Simulator need BHP if you want to control well from the surface must

2008

have lift curves

➢ FloViz:

✓ Provides 3D visualization capabilities for display and analysis of

2008

reservoir simulation results.

✓ FloViz can display both structured and unstructured grids.

ERBIL

FloViz:

ERBIL

- > Office:
- ✓ Provides an environment for simulation pre- and post- processing.
- ✓ It can be used for creation and modification of models, submission and control of runs, analysis of results and report generation.

2008

Office:

- SimOpt:
- ✓ To achieve a history match between an ECLIPSE 100/300 simulation model and the corresponding observed reservoir data
- Y By applying mathematical techniques, it provides additional information on which the reservoir engineer can exercise judgement to improve the history match.