Calculus

Lecture – 5 / Domain & Range

Functions

Lecture contents

- Domain and Range
- Notations for domain and range
- Domain restriction
- Domain of Purposely Restricted Functions
- Domain of rational functions
- Domain of radical functions
- Domain of both Rational and Radical Functions

3

Domain & Range

- Definitions of Domain & Range:
- **Domain:** is the set of all x values to which a function assigns a corresponding a real y value. Or the domain is the set of x-values where the function is defined (All input values of x).
- **Range:** is the set of all y values that result from x values. (All output values of y).

4

Domain & Range

Domain & Range

- Notations for Domain and Range
- There are three main notations to represent the domain or range.
- **1. Roster Notation:**
- 2. Set-Builder Notations:
- **3. Interval Notation:**

Domain & Range

- Notations for Domain and Range
- **1. Roster Notation:**

For Example: Determine the domain and range of the following set of ordered pairs.

$$\{(-8,0), (6,4), (0,0), (-7,-3), (10,-5)\}$$

Ans.

```
Domain: {-8, 6, 0, -7, 10}
```

```
Range: {0, 4, -3, -5}
```


Domain & Range

- Notations for Domain and Range
- 2. Set-Builder Notations:
- **D** = {**x**: discription of all included values}

• For Example:

 $Domain = \{x : x \text{ is all real numbers}\}$ $Domain = \{x : x \in \mathbb{R}\}$ $Domain = \{x : x \in \mathbb{R}, x \ge 0\}$

8

Domain & Range

- Notations for Domain and Range
- 3. Interval Notation: (x, y)
 - Open brackets () (2, 8) = 3, 4, 5, 6, 7
 - Closed brackets []
 [2, 8] = 2, 3, 4, 5, 6, 7, 8

Domain & Range

Example – 1: Determine the Domain and Range for the following graphs of functions.

y = -x $x = -1 \rightarrow y = 1$ $x = 0 \rightarrow y = 0$ $x = 1 \rightarrow y = -1$

- **Domain** = $\{x : x \text{ is all real numbers}\}$
- Range = {y : y is all real numbers}

Domain & Range

Example – 2: Determine the Domain and Range for the following graphs of functions.

- **Domain** = {*x* : *x* is all real numbers}
- *Range* = $\{y = -2\}$

Example – 3: Determine the Domain and Range for the following graphs of functions.

Domain & Range

- **Example 4:** Determine the domain and range of the following functions.
- f(x)=2x-5
- X = -3, f(-3) = 2(-3) 5 = -11

$$X = 0, \quad f(0) = 2(0) - 5 = -5$$

- X = 3, f(3) = 2(3) 5 = 1
- **Domain** = { $x : x \in \mathbb{R}$ }

Range = $\{y : y \in \mathbb{R}\}$

Example – 5: Determine the domain and range of the following functions.

 $f(x) = x^2 - 4$ X = -2 $f(-2) = (-2)^2 - 4 = 0$ X = 0 $f(0) = (0)^2 - 4 = -4$ X = 2 $f(2) = (2)^2 - 4 = 0$ **Domain** = { $x : x \in \mathbb{R}$ } **Range** = { $y : y \in \mathbb{R}, y \leq -4$ }

Domain & Range

- There are four main types of domain restriction
- 1. Domain of Purposely Restricted Functions
- 2. Domain of Rational Functions
- 3. Domain of Radical Functions
- 4. Domain of both Rational and Radical Functions
 - Denominator is radical function
 - Numerator is radical function

Domain & Range

Example – 6: Determine the range of the following function

• $y = x^2$ The domain is given as $0 \le x \le 2$. So,

what is the range?

 $y = (0)^2 = 0$ $y = (2)^2 = 4$ The Range = [0, 4]

Faculty of Engineering – Calculus I – Lecture 5 – Domain and Range

The graph of $y = x^2$ for $0 \le x \le 2$.

Domain & Range

Example – 7: Determine the range of the following function

• $y = x^2$ The domain is given as $-4 \le x \le 2$. So,

what is the range? $y = (0)^2 = 0$ $y = (-4)^2 = 16$ The Range = [0, 16] $y = x^2 \text{ for } 0 \le x \le 2$.

Example – 8: Determine the range of the following function

• $y = x^2 + 2$ The domain is given as $-4 \le x \le 4$.

The graph of $y = x^2$ for $0 \le x \le 2$.

Example – 8: Determine the range of the following function

• y = x + 2 The domain is given as $-4 \le x \le 4$. So,

what is the range?

$$y = -4 + 2 = -2$$

y = 4 + 2 = 6

The Range = [-2, 6]

Domain of Rational Functions: A rational function is a quotient of two polynomial functions. Rational functions are undefined for any values of x that cause the denominator to be 0. These values are restricted from the domain of the function.

Domain & Range

Example – 7: Determine the domain of the following function

 $y = \frac{1}{x+3}$

We don't want denominator = 0

x + 3 = 0

x = -3 That's mean if x = -3 *denominator* = 0

Domain = { $x : x \in \mathbb{R}, x \neq -3$ }

Domain & Range

Example – 8: Determine the range of the following function

- y(x+3) = 1 y = 1
- xy + 3y = 1

$$y'' - x + 3$$

$$x = \frac{1-3y}{y}$$
 We don't want denominator = 0

• y = 0 That's mean if y = 0 denominator = 0

• Range =
$$\{y \in \mathbb{R}, y \neq 0\}$$

Domain & Range

Example – 9: Determine the domain of the following function

$$y = \frac{2x}{7x + 28}$$

We don't want denominator = 0

•
$$7x + 28 = 0$$

•
$$7x = -28$$

• x = -4 That's mean if x = -4 denominator = 0 **Domain** = { $x : x \in \mathbb{R}, x \neq -4$ }

Example – 10: Determine the range of the following function

$$y = \frac{2x}{7x + 28}$$

$$x(7y-2) = -28y$$
 $Range = \{y \in \mathbb{R}, y \neq 2/7\}$

$$x = \frac{-28y}{7y-2}$$
 We don't want denominator = 0

7y - 2 = 0

7xy + 28y = 2x

7xy - 2x = -28y

$$y = \frac{2}{7}$$
 That's mean if $y = \frac{2}{7}$ denominator = 0

Faculty of Engineering - Calculus I - Lecture 5 - Domain and Range

23

Domain of Radical Functions: A radical function is a function that contains the square root of a variable expression. Rational functions are undefined for any values of x that cause the radicand to be negative. These values are restricted from the domain of the function.

Example – 11: Determine the domain and range of the following function

$$f(x) = \sqrt{x+7}$$

We don't want radical value be < 0

 $x + 7 \ge 0$

 $x \ge -7$ That's mean if x < -7 radical = <u>negative value</u>

Domain = $\{x : x \in \mathbb{R}, x \ge -7\}$

Range = $\{y : y \in \mathbb{R}, y \ge 0\}$

Domain & Range

Example – 12: Determine the domain and range of the following function

$$f(x) = \sqrt{2x + 3}$$

We don't want radical value be < 0

 $2x + 3 \ge 0$

 $2x \ge -3$ • $x \ge -1.5$ • **That's mean if x < -1.5** *radical = <u>negative value</u>* **Domain = {x : x \in \mathbb{R}, x \ge -1.5}**

Range = $\{y : y \in \mathbb{R}, y \ge 0\}$

Example – 13: Determine the domain and range of the following function

$$f(x) = -\sqrt{10 - 2x}$$

We don't want radical value be < 0

- $10-2x \ge 0$
- $-2x \ge -10$
- $2x \le 10$

• $x \le 5$ That's mean if x < 5, *radical* = <u>negative value</u>

- Domain = $\{x : x \in \mathbb{R}, x \leq 5\}$
- Range = $\{y : y \in \mathbb{R}, y \leq 0\}$

Example – 14: Determine the domain and range of the following function

$$y = \sqrt{x - 1} + 3$$

We don't want radical value be < 0

 $\boldsymbol{x-1} \geq 0$

 $x \ge 1$ That's mean if x < 1, *radical* = <u>negative value</u>

- Domain = $\{x : x \in \mathbb{R}, x \ge 1\}$
- Range = $\{y : y \in \mathbb{R}, y \ge 3\}$

- **Domain of both Rational and Radical Functions:** in this type of restriction we must follow both rules of domain of rational functions and domain of radical functions at the same time. It has two different types.
- **Denominator is Radical:** because this is a rational function, so the <u>denominator must not be zero</u>. However, the denominator is also a radical function so the <u>denominator must not be negative</u>. Therefore, the denominator must be > 0.

Example – 15: Determine the domain of the following function $y = \frac{8x - 1}{\sqrt{5x - 45}} \checkmark \qquad \begin{array}{c} \text{Be aware the} \\ \text{denominator is radical} \end{array}$

- We don't want denominator = 0 Why ? We don't want denominator < 0
- 5x 45 > 0
 - 5*x* > 45

Because <u>denominator must not be zero</u> and because <u>denominator is radical</u> so the value under the root square <u>must not be negative</u>

x > 9**Domain** = { $x : x \in \mathbb{R}, x > 9$ }

• Numerator is Radical: because this is a rational function, so the <u>denominator must not be zero</u>. However, numerator is also a radical function so the <u>numerator must not be negative</u>.

Therefore,

- The denominator must be $\neq 0$
- The numerator must not be negative

Example – 16: Determine the domain of the following function

$$f(x) = \frac{\sqrt{x+3}}{2-x}$$
 Be aware the numerator is radical

1. First work with numerator $\sqrt{x+3}$:

We don't want radical < 0

 $x + 3 \ge 0$

$$x \ge -3$$

Example – 17: Determine the domain of the following function

$$f(x) = \frac{\sqrt{x+3}}{2-x}$$

2. Then, work with denominator 2 - x:

$$2 - x = 0$$
$$x = 2$$

Combine the two restrictions $x \ge -3$ and x = 2 together.

Domain = { $x : x \in \mathbb{R}, x \ge -3$ but $x \neq 2$ }