Calculus

Lecture – 6 / Non-Linear Quadratic Functions

Zaid Al Hamdany Faculty of Engineering Tishk International University

Non Linear Equations

- The aim of this lecture is to enable students to distinguish between linear and non linear functions.
- To better understand nonlinear function we have to

review the linear functions first.

Linear Equations

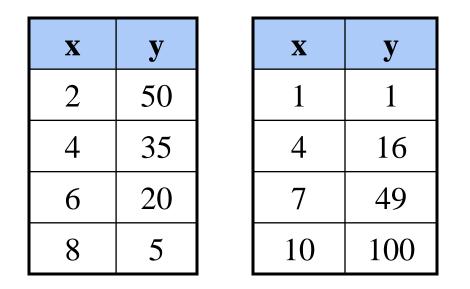
- A linear equation is an equation for a straight line
- The highest exponent of variables must be 1.
- There should be no radicals in the equation.
- The variables are added or subtracted.
- The variables can **NOT** be divided or multiplied by other variables.
- Every linear equation graphs as a line.
- Any Other functions are considered to be **Non Linear** functions.

- A table is linear if the rate of change is constant.
 There is a common difference.
- A graph is linear if it is a straight line.
- An equation is linear if the power of x is either 1 or 0 and it appears in the numerator.

5

Non Linear Equations

Are the rates of change constant?



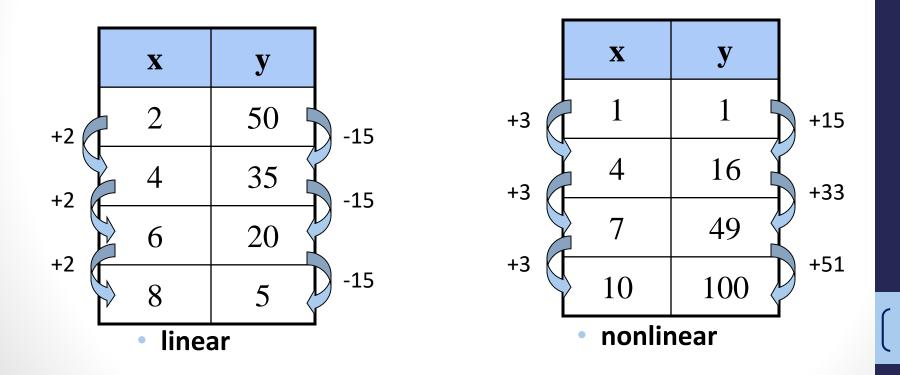
For any given table it could be linear only if satisfy the following equation

$$Linear = \frac{change in y}{change in x} = always \ constant$$

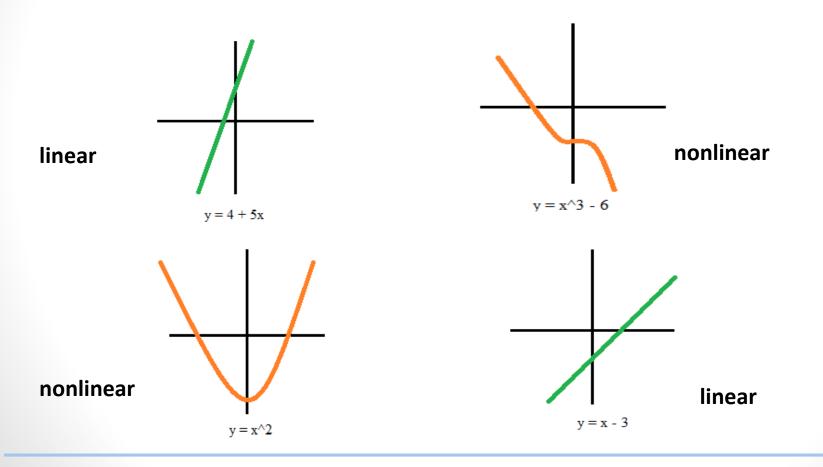
6

Non Linear Equations

Are the rates of change constant?



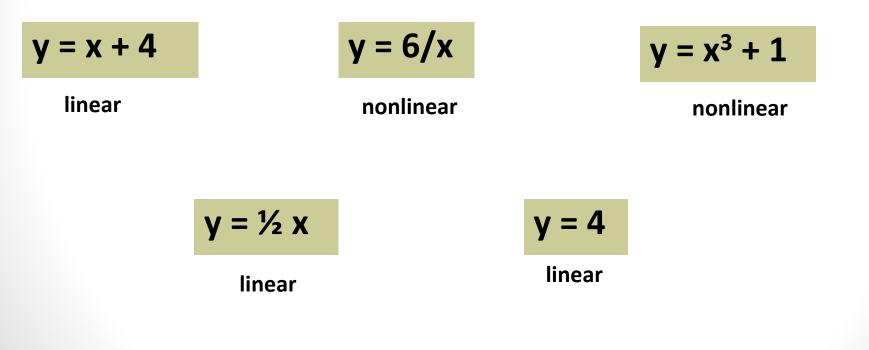
Are these graphs straight lines?



8

Non Linear Equations

• Does the power of x is equal 1 or 0 ?

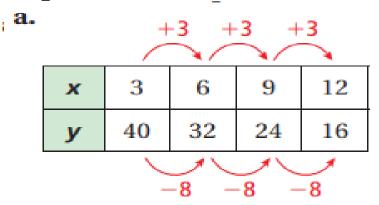


9

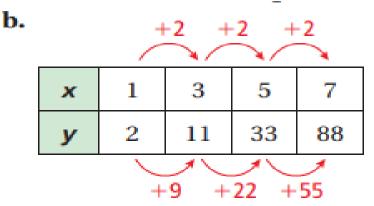
Non Linear Equations

Example – 1: Identifying Functions from Tables

Does the table represent a linear or nonlinear function? Explain.



As x increases by 3, y decreases by 8. The rate of change is constant. So, the function is linear.



As x increases by 2, y increases by different amounts. The rate of change is not constant. So, the function is nonlinear.

Non Linear Equations

Example – 2: Standardized Test Practice

Which equation represents a nonlinear function?

(A) y = 4.7(B) $y = \pi x$ (C) $y = \frac{4}{x}$ (D) y = 4(x - 1)

- The equations y = 4.7, $y = \pi x$, and y = 4(x 1) can be rewritten in slope-intercept form. So, they are linear functions.
- The equation $y = \frac{4}{x}$ cannot be rewritten in slope-intercept form. So, it is a nonlinear function.
- The correct answer is © .

Non Linear Equations

Example – 3: The table shows the volume V (in cubic feet) of a cube with a side length of x feet. Does the table represent a linear or nonlinear function? Explain.

Side Length, x	1	2	3	4	5	6	7	8
Volume, V	1	8	27	64	125	216	343	512

Answer:

Use $\frac{\Delta y}{\Delta x}$ equation if the rate is constant its linear equation if the rate is changed its non linear equation.

Non Linear Equations

• Answer:

Side Length, x	1	2	3	4	5	6	7	8
Volume, V	1	8	27	64	125	216	343	512

•
$$\frac{\Delta x}{\Delta v} = \frac{2-1}{8-1} = \frac{1}{7}$$
•
$$\frac{\Delta x}{\Delta v} = \frac{3-2}{27-8} = \frac{1}{19}$$
•
$$\frac{\Delta x}{\Delta v} = \frac{4-3}{64-27} = \frac{1}{37}$$

The x rate is constant however the V rate is not constant so the table represent nonlinear function

Example – 4: Find the missing value in the table.

x	1	2	3	4	5
У	2	4	6	?	10

Answer:

- 4 2 = 2
- 6-4=2
- We know the rate of increase is 2
- To find the missing value add the rate of increase with the value before missing value
 C + 2 = 9

6 + 2 = 8

Example – 5: Find the missing value in the table.

x	1	2	3	•••	8
У	1.5	3	4.5	•••	?

Answer:

- 3 1.5 = 1.5
- 4.5 3 = 1.5

missing value = Rate of change \times No. opposite to missing value Missing value = 1.5×8 Missing value = 12

- We know the rate of increase is 1.5
- To find the missing value multiply the rate of increase by 5 and add it with the value before missing value
 4.5 + 1.5(5) = 12

15

Non Linear Equations

Example – 6: SUNFLOWER SEEDS. The table shows the cost y (in dollars) of x pounds of sunflower seeds. What is the missing y-value that makes the table represent a linear function?

Pound (x)	Cost (y)
2	2.8
3	?
4	5.6

Find the missing value

- 5.6 2.8 = 2.8
- 2.8/2 = 1.4
- 2.8 + 1.4 = 4.2

So, the missing value = 4.2

Quadratic Equation

Quadratic Equation: is a simple Non Linear equation it is written in the Standard Form

 $Ax^2 + Bx + C = 0$

Where;

- *A*, *B*, and *C* are real numbers and only $A \neq 0$
- The highest power of quadratic equation is 2.

Quadratic Equation

Remember! quadratic equation can be in any of these forms.

 $1. Ax^2 + Bx + C = 0$

2. $Ax^2 + 0x + C = 0$ $Ax^2 + C = 0$

Only coefficient of x^2 can't be zero

 $3. Ax^2 + Bx + 0 = 0$

 $Ax^2 + Bx = 0$

18

Zero Troduct Troperty

Zero Factor Property:

- If *a* and *b* are real numbers and,
- If $a \times b = 0$
- Then, either *a* or *b* one of them must be zero
- Example; if (x + 2)(x + 3) = 0 then either,
- (x+2) = 0 or
- (x+3) = 0

Zero Troduct Troperty

Use Zero Factor Property to solve these examples. Example -7: (x - 10)(3x - 6) = 0(3x-6) = 0(x-10) = 03x - 6 + 6 = 0 + 6x - 10 + 10 = 0 + 10 $3 \div 3x = 6 \div 3$ x = 10x = 2

Faculty of Engineering – Math– Lecture 6 – Solve Non-Linear Quadratic Functions

19

20

Zero Troduct Troperty

- Use Zero Factor Property to solve these examples. Example -8: 2x (x + 5) = 0
 - $2x = 0 \qquad (x + 5) = 0$ $x = 0 \qquad x + 5 5 = 0 5$ x = -5

Solve Quadratic Equation by Factoring

Procedure

- Write the equation in a standard form
- Factor the equation completely
- Set each factor equal to zero
- Solve each equation independently
- Check the solution in the original equation

22

Solve Quadratic Equation by Factoring

- **Use factoring to solve the following examples.**
- Example $-9: x^2 3x = 18$
- **Step one:** write the equation in a standard form $x^2 3x 18 = 0$
- Step two: Factor the equation completely

$$x \times -6 = -6x \qquad 3 \times -6 = -18$$

$$(x + 3)(x - 6) = 0 \qquad x^{2} + 3x - 6x - 18$$

$$x \times x = x^{2} \qquad x \times 3 = 3x$$

$$OK$$

23

Solve Quadratic Equation by Factoring

Step Three: Set each factor equal to zero

- (x+3) = 0
- (x-6) = 0

Step Four: Solve each equation independently

- x+3=0 \rightarrow x=-3
- $x-6=0 \rightarrow x=6$

24

Solve Quadratic Equation by Factoring

- Step Five: Check the solution in the original equation
- **Original Equation is:** $x^2 3x = 18$
- x = -3 $(-3)^2 - 3(-3) = 18$
- 9 + 9 = 18
- x = 6
- $(6)^2 3(6) = 18$
- 36 18 = 18

25

Solve Quadratic Equation by Factoring **Example – 10:** x(x - 4) = 5x(x-4) = 5 $x^2 - 4x - 5 = 0$ x = 5(x-5)(x+1) = 05(5-4) = 525 - 20 = 5 OK (x-5) = 0x(x-4) = 5x = 5x = -1(x+1) = 0-1(-1-4) = 5x = -11 + 4 = 5 OK

26

Solve Quadratic Equation by Factoring **Example – 11:** x(3x + 7) = 6x(3x+7) = 6 $3x^2 + 7x - 6 = 0$ x = -3(x+3)(3x-2) = 0-3(3(-3)+7)=627 - 21 = 6 OK (x+3) = 0x(3x+7) = 6x = -3 $x = \frac{2}{2}$ (3x-2) = 0 $\frac{2}{3}\left(3\left(\frac{2}{3}\right)+7\right)=6$ $x = \frac{2}{2}$ $\frac{4}{2} + \frac{14}{2} = 6$ <u>OK</u>

27

Solve Quadratic Equation by Factoring **Example – 12:** x(3x + 7) = 6x(3x+7) = 6 $3x^2 + 7x - 6 = 0$ x = -3(x+3)(3x-2) = 0-3(3(-3)+7)=627 - 21 = 6 OK (x+3) = 0x(3x+7) = 6x = -3 $x = \frac{2}{2}$ (3x-2) = 0 $\frac{2}{3}\left(3\left(\frac{2}{3}\right)+7\right)=6$ $x = \frac{2}{2}$ $\frac{4}{2} + \frac{14}{2} = 6$ <u>OK</u> Faculty of Engineering – Math– Lecture 6 – Solve Non-Linear Quadratic Functions

28

Solve Quadratic Equation by Factoring Example – 13: $2y^2 + 29y + 14 = 0$ $2y^2 + 29y + 14 = 0$ (2y+1)(y+14) = 0 $y=-\frac{1}{2}$ (2y+1) = 0 $2\left(-\frac{1}{2}\right)^2 + 29\left(-\frac{1}{2}\right) + 14 = 0$ $y = -\frac{1}{2}$ $\frac{1}{2} - \frac{29}{2} + 14 = 0$ <u>OK</u> (y + 14) = 0 $2y^2 + 29y + 14 = 0$ y = -14y = -14 $2(-14)^2 + 29(-14) + 14 = 0$ 392 - 406 + 14 = 0 OK

Srime Results

There are expressions that cant be factored, so we call them Prime:

- Example 14: $x^2 + 4 = 0$
- (x+2)(x-2) = 0
- $x^2 4$ Wrong
- (x-2)(x-2)=0
- $x^2 4x + 4$ Wrong

So, this is a Prime

30

Solve Quadratic Equation by Squars

Use square root method to solve a quadratic equation with one variable (means b = 0).

Example – 15: $x^2 + 4 = 0$

 $x^2 = -4$ Square root both sides

 $\sqrt{x^2} = \sqrt{-4}$

 $x = \pm \sqrt{-4}$

Imaginary number, no real solution

31

Quadratic Formula

Use Quadratic Formula to solve quadratic equation Example – 16: $x^2 + 6x + 3 = 0$ $x^2 + 6x + 3 = 0$

$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{(6)^2 - 4(1)(3)}}{2(3)}$$

$$x=\frac{-6\pm\sqrt{36-12}}{6}$$

32

Quadratic Formula

Use Quadratic Formula to solve quadratic equation

Example - 17: $x^2 + 6x + 3 = 0$

$$x=\frac{-6\pm\sqrt{24}}{6}$$

$$x = \frac{-6 \pm 2\sqrt{6}}{6}$$
$$x = -3 \pm \sqrt{6}$$

Quadratic Formula

The use of Quadratic Formula lead to the following three results:

- 1. The "stuff" under the square root can be positive and we'd get two unequal real solutions $b^2 - 4ac > 0$
- 2. The "stuff" under the square root can be zero and we'd get one solution (called a repeated or double root because it would factor into two equal factors, $b^2 - 4ac = 0$
- 3. The "stuff" under the square root can be negative and we'd get no real solutions. $b^2 4ac < 0$

Summary of Solving Quadratic Equations

- Get the equation in standard form: $Ax^2 + Bx + C = 0$
- If there is no middle term ($\mathbf{b} = \mathbf{0}$) then get the x^2 alone and square root both sides (if you get a negative under the square root there are no real solutions).
- If there is no constant term ($\mathbf{c} = \mathbf{0}$) then factor out the common x and use the null factor law to solve (set each factor = 0).
- If it doesn't factor or is hard to factor, use the quadratic formula to solve (if you get a negative under the square root there are no real solutions).