Map projection

Introduction to maps

- A generalized view of an area, usually some portion of Earth's surface, as seen from above at a greatly reduced size
- Any geographical image of the environment
- A two-dimensional representation of the spatial distribution of selected phenomena

Why make maps?

- To represent a larger area than we can see
- To show a phenomenon or process we can't see with our eyes
- To present information concisely
- To show spatial relationships

Represent a larger area

Show spatial relationships

Cholera and the Map

How do we read maps?

- Maps are selective views of reality
- Size of the map relative to reality (scale)
- What's on the map (symbolization)
- Shape of the map (projection)

But, what is the problem

Map projections

A map projection is the process of transforming and representing positions from the earth's three-dimensional curved surface to a two-dimensional (flat) surface.

INTRODUCTION TO THE PROBLEM

- Since the surface of a sphere cannot be laid flat on a plane without distortion.
- The types of distortion are considered in terms of length, angle, shape, and area

BASIC GEOMETRIC SHAPES

- One of the easiest ways to minimize distortions is to choose a projection
- DISTORTION
 - Distortion is the limiting factor in the process of map projection

DISTORTION

It is an untrue representation of area, linear dimensions, angle, or shape.

Ellipsoid (Global) Coordinate Systems

 Global coordinates based upon "spherical" coordinates modified to account for imperfect shape

of earth.

Latitude-Longitude System

- The most commonly used coordinate system today is the latitude, longitude, and height system.
- The Prime Meridian and the Equator are the reference planes used to define latitude and longitude.

Equator and Prime Meridian

Meridian = (N-S Longitude); Parallel = (E-W Latitude)

Latitude-Longitude Systems

- Degree-Minute-Second (DMS)
 - 1 deg = 60 min
 - 1 min = 60 sec
- Decimal Degrees (DD)
 - 45°52′30″= 45.875 °

Plane Coordinate Systems

- René Descartes (1596-1650) introduced systems of coordinates based on orthogonal (right angle) coordinates.
- These two and three-dimensional systems used in analytic geometry are often referred to as Cartesian systems.
- Similar systems based on angles from baselines are often referred to as polar systems.

Plane Coordinate Systems

2-D Systems
(1 plane)

P	' oi	nt	W	rit F 3	h V-	X	a	n	d	Y	C V	0	or	di 6	n	at	es									
+	т		U.		2-			č		u m	1		4	о р												
	E	.А.	71	с.	33	εu	1 a (4	3	+				zu	Г	а	1										
+	╀						C.	'	'	Ľ,	-	┝		-						h						\vdash
1												E				-1	n			١						
+	╈								┝	┝	┝	┝		F	-	-	ř					\vdash				\square
+	1										F	F									7					
											-	¥=	+	6	-		-		-	-						
+	-											F														
4.7		-		~					┝	┝	┝	┝	-	┝												
A.	×1	S.	-1	U	۰									0	0									1	+	11
+	╈								-	\vdash	-	┝		-							A '	F	- 1			
+																										
+	-							_		-		-														
+	t									F		Þ		,		1	0									
+	╋								\vdash	┝	┝	┝	\vdash	┝								\vdash				\vdash
+												F		1	ζ.	A.	X1	ß								
\pm		F								F	F	F	F							F						
+	-			С	ສ	rt	es	ia	n	C	è	0	re	li	na	ıt	es	i	n	a	P	la	n	e		
+	+	A	Р	o	'n	t 1	D	ef	in	e	d	h	v	x	а	n	d	Y	(L.	0	rć	liı	na	t	-5

3-D Systems
(2 orthogonal planes)

Projection Classes

- Conformal: preserves local shape
- Equivalent: preserves area
- Equidistant: preserves length
- Azimuthal: preserves directions

Map can have more that one property, but conformal and equivalent are mutually exclusive

Projections Affect Maps

The greater the map area, the greater the impact of projection

Conic Projection

Conical Projection Surface

Secant Conic Projection

TO-OLL-ST

Cylindrical Projection

Peter H. Dana 9/20/94

Azimuthal Projection

Planar Projection Surface

Secant Planar Projection

Common Map Projections

- •Choice of map projection depends upon:
 - Attribute to be preserved
 - Scale to be represented
 - Aspect of the map