
#include <windows.h>
#include <GL/glut.h>

void display()
 {
 glClearColor(0.0f, 0.0f, 0.3f, 0.0f);
 glClear(GL_COLOR_BUFFER_BIT);

///----- Objects code will be written here

 glFlush();
}

void main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitWindowSize(800,600);
 glutCreateWindow("My OpenGL Window");
 glutDisplayFunc(display);
 glutMainLoop();
}

Computer Graphics Practical - Open GL

1- Setting Up (Initializing The Screen)

The header "windows.h" is needed for

the Windows platform only

• GLUT header, which is guaranteed

to include "glu.h" (for GL Utility)

and "gl.h" (for Core OpenGL).

Core OpenGL (GL): consists of hundreds of

commands, which begin with a prefix "gl" (e.g.,

glColor, glVertex, glTranslate, glRotate). The Core

OpenGL models an object via a set of geometric

primitives such as point, line and polygon.

OpenGL Utility Library (GLU): built on-top of the

core OpenGL to provide important utilities (such as

setting camera view and projection) and more

building models (such as qradric surfaces and

polygon tessellation). GLU commands start with a

prefix "glu" (e.g., gluLookAt, gluPerspective).

• glClearColor(0.0f, 0.0f, 0.3f, 1.0f) : To set the background color (Red, Green , Blue ,

and Opacity) in the example, the background color is set to blue and opaque. The

range of the color is between 0-1.

• glClear(GL_COLOR_BUFFER_BIT : Clear the color buffer and set the one used in

previous command

• Objects will be created in this part. ////....

• glFlush(); Render the drawn objects.

• Void main : To call the functions that are responsible to draw the objects.

• glutInit: initializes GLUT, must be called before other GL/GLUT functions. It takes

the same arguments as the main().

• glutInitWindowSize(800,600) : To set the screen dimensions (size)

• glutCreateWindow("My OpenGL Window") To create window with a title

• glutDisplayFunc(display): Display drawn objects

• glutMainLoop: enters the infinite event-processing loop, i.e., put the OpenGL

graphics system to wait for events (such as re-paint), and trigger respective event

handlers (such as display()).

Screen Coordinates :

The default OpenGL 2D clipping-area (i.e., what is captured by the camera) is an

orthographic view with x and y in the range of -1.0 and 1.0, i.e., a 2x2 square with

centered at the origin. As shown in figure:

2-Different Geometric Primitives in Open GL:

As shown in figure, each primitive is consist of set of vertices, to draw a certain

primitive, the name of that primitive should be written after GLBegin command ,

followed by the location of each pixel constructing that object.

-1 to 1

-1 to 1

// Square
#include <windows.h>
#include <GL/glut.h>

void display()
 {
 glClearColor(0.0f, 0.0f, 0.1f, 0.0f);
 glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_QUADS);
 glColor3f(1.0f, 0.0f, 1.0f);

 glVertex2f(-0.2f,-0.2f);
 glVertex2f(0.2f,-0.2f);
 glVertex2f(0.2f,0.2f);
 glVertex2f(-0.2f,0.2f);

glEnd();

 glFlush();
}

void main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitWindowSize(800,600);
 glutCreateWindow("My OpenGL Window");
 glutDisplayFunc(display);
 glutMainLoop();
}

Example : An Open GL code to draw a square on the center of the screen with side

length of 0.4.

Vertices are drawn in anti clockwise.

//House

glBegin(GL_QUADS);

 glColor3f(1.0f, 0.0f, 1.0f);

 glVertex2f(-0.4f,-1.0f);

 glVertex2f(0.4f,-1.0f);

 glVertex2f(0.4f,0.0f);

 glVertex2f(-0.4f,0.0f);

glEnd();

glBegin(GL_QUADS);

 glColor3f(0.0f, 0.0f, 0.5f);

 glVertex2f(-0.1f,-1.0f);

 glVertex2f(0.1f,-1.0f);

 glVertex2f(0.1f,-0.7f);

 glVertex2f(-0.1f,-0.7f);

glEnd();

glBegin(GL_TRIANGLES);

 glColor3f(1.0f, 0.0f,0.0f);

 glVertex2f (0.4f,0.0f);

 glVertex2f (0,0.5f);

 glVertex2f (-0.4f,0);

glEnd();

 glFlush();

}

Ex : Write Open GL code to draw the following Object.

Home work:

//Translate and Rotate
void display()
 {

 glClearColor(1.0f, 1.0f, 0.5f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

glTranslatef(0.0, 0.5f, 0.0f);
glRotatef(180,1.0, 0.0f, 0.0f);

glBegin(GL_TRIANGLES);
glColor3f(1.0f,0.0f,0.0f);
glVertex2f(-0.5f,0);
glVertex2f(0.5f,0);
glVertex2f(0.0f,0.5);
glEnd();
glFlush();

}

//Position Animation
#include <windows.h>
#include <GL/glut.h>
GLfloat mov = -1.0f;

void idle() {
 glutPostRedisplay();
}
void display()
 {
 glPushMatrix();
 glClearColor(1.0f, 1.0f, 0.5f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);
 glTranslatef(mov, 0.0f, 0.0f);

 glBegin(GL_TRIANGLES);
 glColor3f(1.0f,0.0f,0.0f);
 glVertex2f(0,-0.5f);
 glVertex2f(0.5f,0);
 glVertex2f(0.0f,0.5);
 glEnd();
glPopMatrix();
glFlush();

mov = mov + 0.001;
if (mov>1)
 mov=-1;

}

void main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitWindowSize(800,600);
 glutCreateWindow("My OpenGL Window");
 glutDisplayFunc(display);
 glutIdleFunc(idle);
 glutMainLoop();
}

3-Translation in Open GL:

1-glTranslatef(X,Y,Z);

To translate(move) the object according to a certain

value (0-1) towards X axis, Y axis and Z axis (

which is towards the viewer)

2- glRotatef(Degree, X, Y, Z);

To rotate an object by angle specified in degrees

about the axis which its value is 1.

Example beside shows the translation of a triangle

towards Y axis and it is rotated by 180o about X axis.

4-Animation:

Animation is the process of changing the location or

the shape of a certain object during a period of time.

To perform animation in open GL, idle function is

needed In the idle() function, you could issue

glutPostRedisplay command to post a window re-

paint request, which in turn will activate display()

function. We also use glPushMatrix to save the

current state, perform transformations, and restore the

saved state via glPopMatrix.

In following example the variable "mov" will be

accumulated and used to specify the new position of

the object.

H.W : Use animation to continously rotate the triangle

drawn previous example around Z.

//keyboard interaction
#include <windows.h>
#include <GL/glut.h>

GLfloat rot = -1.0f;

void idle() {
 glutPostRedisplay();
}
void display()
 {
 glPushMatrix();
 glClearColor(1.0f, 1.0f, 0.5f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);
 glRotatef(rot, 0.0f, 0.0f,1.0f);

 glBegin(GL_TRIANGLES);
 glColor3f(1.0f,0.0f,0.0f);
 glVertex2f(0,-0.5f);
 glVertex2f(0.5f,0);
 glVertex2f(0.0f,0.5);
 glEnd();

glPopMatrix();
glFlush();
}

void specialKeys(int key, int x, int y) {
 switch (key) {
 case GLUT_KEY_LEFT:
rot = rot + 0.9;
if (rot>360)
 rot=-1;
 break;
 }
}
void keyboard(unsigned char key, int x, int
y) {
 switch (key) {
 case 'a':
 rot = rot - 0.9;
if (rot>360)
 rot=-1;
 break;
 }
}

void main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitWindowSize(800,600);
 glutCreateWindow("My OpenGL Window");
 glutDisplayFunc(display);
 glutIdleFunc(idle);
 glutSpecialFunc(specialKeys);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
}

5-Keyboard Interaction

Two functions are used to interact with keyboard

input one for special keys (like arrows) and other

for traditional keys. Both are listed in the

example. Here the object will be rotated clock

wise while pressing the key 'a' from keyboard,

while it will be rotated anti clock wise when

pressing the left key.

H.W : Write OpenGL code to move a certain

object to four directions according to following

keyboard keys:

W : To move forward.

S : To move backward.

A : Moving to right.

D : Moving to left.

Also add the clockwise rotation by the key R.

References:
https://www3.ntu.edu.sg/home/ehchua/programming/

opengl/CG_Introduction.html#zz-5.

Shreiner, D., Sellers, G., Kessenich, J., &

Licea-Kane, B. (2013). OpenGL programming guide:

The Official guide to learning OpenGL, version

4.3. Addison-Wesley.

