
2 Introduction to Java
Applications; Input/Output
and Operators

What’s in a name?
That which we call a rose
By any other name would
smell as sweet.
—William Shakespeare

The chief merit of language
is clearness.
—Galen

One person can make a
difference and every person
should try.
—John F. Kennedy

O b j e c t i v e s
In this chapter you’ll:

� Write simple Java
applications.

� Use input and output
statements.

� Learn about Java’s primitive
types.

� Understand basic memory
concepts.

� Use arithmetic operators.

� Learn the precedence of
arithmetic operators.

� Write decision-making
statements.

� Use relational and equality
operators.

2.1 Introduction 35

2.1 Introduction
This chapter introduces Java application programming. We begin with examples of pro-
grams that display (output) messages on the screen. We then present a program that ob-
tains (inputs) two numbers from a user, calculates their sum and displays the result. You’ll
learn how to instruct the computer to perform arithmetic calculations and save their re-
sults for later use. The last example demonstrates how to make decisions. The application
compares two numbers, then displays messages that show the comparison results. You’ll
use the JDK command-line tools to compile and run this chapter’s programs. If you prefer
to use an integrated development environment (IDE), we’ve also posted Dive Into® videos
at http://www.deitel.com/books/jhtp10LOV/ for Eclipse, NetBeans and IntelliJ IDEA.

2.2 Your First Program in Java: Printing a Line of Text
A Java application is a computer program that executes when you use the java command
to launch the Java Virtual Machine (JVM). Later in this section we’ll discuss how to com-
pile and run a Java application. First we consider a simple application that displays a line
of text. Figure 2.1 shows the program followed by a box that displays its output.

2.1 Introduction
2.2 Your First Program in Java: Printing a Line

of Text
2.3 Modifying Your First Java Program
2.4 Displaying Text with printf
2.5 Another Application: Adding Integers

2.5.1 import Declarations
2.5.2 Declaring Class Addition
2.5.3 Declaring and Creating a Scanner to

Obtain User Input from the Keyboard
2.5.4 Declaring Variables to Store Integers
2.5.5 Prompting the User for Input
2.5.6 Obtaining an int as Input from the User

2.5.7 Prompting for and Inputting a
Second int

2.5.8 Using Variables in a Calculation
2.5.9 Displaying the Result of the

Calculation
2.5.10 Java API Documentation

2.6 Memory Concepts
2.7 Arithmetic
2.8 Decision Making: Equality and

Relational Operators
2.9 (Optional) GUI and Graphics

Case Study: Using Dialog Boxes
2.10 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 2.1: Welcome1.java
2 // Text-printing program.
3
4 public class Welcome1
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome1

Fig. 2.1 | Text-printing program. (Part 1 of 2.)

http://www.deitel.com/books/jhtp10LOV/
Musa
Highlight

Musa
Highlight

36 Chapter 2 Introduction to Java Applications; Input/Output and Operators

The program includes line numbers. We’ve added these for instructional purposes—
they’re not part of a Java program. This example illustrates several important Java features.
We’ll see that line 9 does the work—displaying the phrase Welcome to Java Programming!
on the screen.

Commenting Your Programs
We insert comments to document programs and improve their readability. The Java com-
piler ignores comments, so they do not cause the computer to perform any action when the
program is run.

By convention, we begin every program with a comment indicating the figure number
and filename. The comment in line 1

begins with //, indicating that it’s an end-of-line comment—it terminates at the end of
the line on which the // appears. An end-of-line comment need not begin a line; it also
can begin in the middle of a line and continue until the end (as in lines 6, 10 and 11). Line
2

by our convention, is a comment that describes the purpose of the program.
Java also has traditional comments, which can be spread over several lines as in

These begin and end with delimiters, /* and */. The compiler ignores all text between the
delimiters. Java incorporated traditional comments and end-of-line comments from the C
and C++ programming languages, respectively. We prefer using // comments.

Java provides comments of a third type—Javadoc comments. These are delimited by
/** and */. The compiler ignores all text between the delimiters. Javadoc comments
enable you to embed program documentation directly in your programs. Such comments
are the preferred Java documenting format in industry. The javadoc utility program (part
of the JDK) reads Javadoc comments and uses them to prepare program documentation
in HTML format. We demonstrate Javadoc comments and the javadoc utility in online
Appendix G, Creating Documentation with javadoc.

Welcome to Java Programming!

// Fig. 2.1: Welcome1.java

// Text-printing program.

/* This is a traditional comment. It
can be split over multiple lines */

Common Programming Error 2.1
Forgetting one of the delimiters of a traditional or Javadoc comment is a syntax error. A
syntax error occurs when the compiler encounters code that violates Java’s language rules
(i.e., its syntax). These rules are similar to a natural language’s grammar rules specifying
sentence structure. Syntax errors are also called compiler errors, compile-time errors or
compilation errors, because the compiler detects them when compiling the program.
When a syntax error is encountered, the compiler issues an error message. You must elim-
inate all compilation errors before your program will compile properly.

Fig. 2.1 | Text-printing program. (Part 2 of 2.)

2.2 Your First Program in Java: Printing a Line of Text 37

Using Blank Lines
Line 3 is a blank line. Blank lines, space characters and tabs make programs easier to read.
Together, they’re known as white space (or whitespace). The compiler ignores white space.

Declaring a Class
Line 4

begins a class declaration for class Welcome1. Every Java program consists of at least one
class that you (the programmer) define. The class keyword introduces a class declaration
and is immediately followed by the class name (Welcome1). Keywords (sometimes called
reserved words) are reserved for use by Java and are always spelled with all lowercase let-
ters. The complete list of keywords is shown in Appendix C.

In Chapters 1–7, every class we define begins with the public keyword. For now, we
simply require public. You’ll learn more about public and non-public classes in
Chapter 8.

Filename for a public Class
A public class must be placed in a file that has a filename of the form ClassName.java, so
class Welcome1 is stored in the file Welcome1.java.

Class Names and Identifiers
By convention, class names begin with a capital letter and capitalize the first letter of each
word they include (e.g., SampleClassName). A class name is an identifier—a series of char-
acters consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin
with a digit and does not contain spaces. Some valid identifiers are Welcome1, $value,
_value, m_inputField1 and button7. The name 7button is not a valid identifier because
it begins with a digit, and the name input field is not a valid identifier because it contains
a space. Normally, an identifier that does not begin with a capital letter is not a class name.
Java is case sensitive—uppercase and lowercase letters are distinct—so value and Value
are different (but both valid) identifiers.

Class Body
A left brace (as in line 5), {, begins the body of every class declaration. A corresponding
right brace (at line 11), }, must end each class declaration. Lines 6–10 are indented.

Good Programming Practice 2.1
Some organizations require that every program begin with a comment that states the pur-
pose of the program and the author, date and time when the program was last modified.

Good Programming Practice 2.2
Use blank lines and spaces to enhance program readability.

public class Welcome1

Common Programming Error 2.2
A compilation error occurs if a public class’s filename is not exactly same name as the class
(in terms of both spelling and capitalization) followed by the .java extension.

38 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Declaring a Method
Line 6

is an end-of-line comment indicating the purpose of lines 7–10 of the program. Line 7

is the starting point of every Java application. The parentheses after the identifier main in-
dicate that it’s a program building block called a method. Java class declarations normally
contain one or more methods. For a Java application, one of the methods must be called
main and must be defined as shown in line 7; otherwise, the Java Virtual Machine (JVM)
will not execute the application. Methods perform tasks and can return information when
they complete their tasks. We’ll explain the purpose of keyword static in Chapter 5. Key-
word void indicates that this method will not return any information. Later, we’ll see how
a method can return information. For now, simply mimic main’s first line in your Java ap-
plications. In line 7, the String[] args in parentheses is a required part of the method
main’s declaration—we discuss this in Chapter 6.

The left brace in line 8 begins the body of the method declaration. A corresponding
right brace must end it (line 10). Line 9 in the method body is indented between the braces.

Performing Output with System.out.println

Line 9

Good Programming Practice 2.3
Indent the entire body of each class declaration one “level” between the left brace and the
right brace that delimit the body of the class. This format emphasizes the class declaration’s
structure and makes it easier to read. We use three spaces to form a level of indent—many
programmers prefer two or four spaces. Whatever you choose, use it consistently.

Error-Prevention Tip 2.1
When you type an opening left brace, {, immediately type the closing right brace, }, then
reposition the cursor between the braces and indent to begin typing the body. This practice
helps prevent errors due to missing braces. Many IDEs insert the closing right brace for
you when you type the opening left brace.

Common Programming Error 2.3
It’s a syntax error if braces do not occur in matching pairs.

Good Programming Practice 2.4
IDEs typically indent code for you. The Tab key may also be used to indent code. You can
configure each IDE to specify the number of spaces inserted when you press Tab.

// main method begins execution of Java application

public static void main(String[] args)

Good Programming Practice 2.5
Indent the entire body of each method declaration one “level” between the braces that de-
fine the body of the method. This makes the structure of the method stand out and makes
the method declaration easier to read.

System.out.println("Welcome to Java Programming!");

2.2 Your First Program in Java: Printing a Line of Text 39

instructs the computer to perform an action—namely, to display the characters contained
between the double quotation marks (the quotation marks themselves are not displayed).
Together, the quotation marks and the characters between them are a string—also known
as a character string or a string literal. White-space characters in strings are not ignored
by the compiler. Strings cannot span multiple lines of code.

The System.out object—which is predefined for you—is known as the standard
output object. It allows a Java application to display information in the command
window from which it executes. In recent versions of Microsoft Windows, the command
window is the Command Prompt. In UNIX/Linux/Mac OS X, the command window is
called a terminal window or a shell. Many programmers call it simply the command line.

Method System.out.println displays (or prints) a line of text in the command
window. The string in the parentheses in line 9 is the argument to the method. When
System.out.println completes its task, it positions the output cursor (the location where
the next character will be displayed) at the beginning of the next line in the command
window. This is similar to what happens when you press the Enter key while typing in a
text editor—the cursor appears at the beginning of the next line in the document.

The entire line 9, including System.out.println, the argument "Welcome to Java
Programming!" in the parentheses and the semicolon (;), is called a statement. A method
typically contains one or more statements that perform its task. Most statements end with
a semicolon. When the statement in line 9 executes, it displays Welcome to Java Program-
ming! in the command window.

When learning how to program, sometimes it’s helpful to “break” a working program
so you can familiarize yourself with the compiler’s syntax-error messages. These messages
do not always state the exact problem in the code. When you encounter an error message,
it will give you an idea of what caused the error. [Try removing a semicolon or brace from
the program of Fig. 2.1, then recompile the program to see the error messages generated
by the omission.]

Using End-of-Line Comments on Right Braces for Readability
As an aid to programming novices, we include an end-of-line comment after a closing
brace that ends a method declaration and after a closing brace that ends a class declaration.
For example, line 10

indicates the closing brace of method main, and line 11

indicates the closing brace of class Welcome1. Each comment indicates the method or class
that the right brace terminates. We’ll omit such ending comments after this chapter.

Compiling Your First Java Application
We’re now ready to compile and execute our program. We assume you’re using the Java
Development Kit’s command-line tools, not an IDE. To help you compile and run your

Error-Prevention Tip 2.2
When the compiler reports a syntax error, it may not be on the line that the error message
indicates. First, check the line for which the error was reported. If you don’t find an error
on that line, check several preceding lines.

} // end method main

} // end class Welcome1

40 Chapter 2 Introduction to Java Applications; Input/Output and Operators

programs in an IDE, we provide online Dive Into® videos for the popular IDEs Eclipse,
NetBeans and IntelliJ IDEA. These are located on the book’s website:

To prepare to compile the program, open a command window and change to the
directory where the program is stored. Many operating systems use the command cd to
change directories. On Windows, for example,

changes to the fig02_01 directory. On UNIX/Linux/Max OS X, the command

changes to the fig02_01 directory. To compile the program, type

If the program contains no compilation errors, this command creates a new file called
Welcome1.class (known as the class file for Welcome1) containing the platform-indepen-
dent Java bytecodes that represent our application. When we use the java command to
execute the application on a given platform, the JVM will translate these bytecodes into
instructions that are understood by the underlying operating system and hardware.

Each syntax-error message contains the filename and line number where the error
occurred. For example, Welcome1.java:6 indicates that an error occurred at line 6 in
Welcome1.java. The rest of the message provides information about the syntax error.

Executing the Welcome1 Application
The following instructions assume that the book’s examples are located in C:\examples
on Windows or in your user account’s Documents/examples folder on Linux/OS X. To
execute this program in a command window, change to the directory containing
Welcome1.java—C:\examples\ch02\fig02_01 on Microsoft Windows or ~/Documents/
examples/ch02/fig02_01 on Linux/OS X. Next, type

and press Enter. This command launches the JVM, which loads the Welcome1.class file.
The command omits the .class file-name extension; otherwise, the JVM will not execute

http://www.deitel.com/books/jhtp10LOV

cd c:\examples\ch02\fig02_01

cd ~/examples/ch02/fig02_01

javac Welcome1.java

Common Programming Error 2.4
When using javac, if you receive a message such as “bad command or filename,” “javac:
command not found” or “'javac' is not recognized as an internal or external com-
mand, operable program or batch file,” then your Java software installation was not
completed properly. This indicates that the system’s PATH environment variable was not
set properly. Carefully review the installation instructions in the Before You Begin section
of this book. On some systems, after correcting the PATH, you may need to reboot your com-
puter or open a new command window for these settings to take effect.

Common Programming Error 2.5
The compiler error message “class Welcome1 is public, should be declared in a file
named Welcome1.java” indicates that the filename does not match the name of the pub-
lic class in the file or that you typed the class name incorrectly when compiling the class.

java Welcome1

http://www.deitel.com/books/jhtp10LOV

2.3 Modifying Your First Java Program 41

the program. The JVM calls class Welcome1’s main method. Next, the statement at line 9
of main displays "Welcome to Java Programming!". Figure 2.2 shows the program execut-
ing in a Microsoft Windows Command Prompt window. [Note: Many environments show
command windows with black backgrounds and white text. We adjusted these settings to
make our screen captures more readable.]

2.3 Modifying Your First Java Program
In this section, we modify the example in Fig. 2.1 to print text on one line by using mul-
tiple statements and to print text on several lines by using a single statement.

Displaying a Single Line of Text with Multiple Statements
Welcome to Java Programming! can be displayed several ways. Class Welcome2, shown in
Fig. 2.3, uses two statements (lines 9–10) to produce the output shown in Fig. 2.1. [Note:
From this point forward, we highlight with a yellow background the new and key features
in each code listing, as we’ve done for lines 9–10.]

Error-Prevention Tip 2.3
When attempting to run a Java program, if you receive a message such as “Exception in
thread "main" java.lang.NoClassDefFoundError: Welcome1,” your CLASSPATH envi-
ronment variable has not been set properly. Please carefully review the installation in-
structions in the Before You Begin section of this book. On some systems, you may need to
reboot your computer or open a new command window after configuring the CLASSPATH.

Fig. 2.2 | Executing Welcome1 from the Command Prompt.

1 // Fig. 2.3: Welcome2.java
2 // Printing a line of text with multiple statements.
3
4 public class Welcome2
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome2

Fig. 2.3 | Printing a line of text with multiple statements. (Part 1 of 2.)

You type this
command to execute
the application

The program outputs to the screen
Welcome to Java Programming!

System.out.print("Welcome to ");
System.out.println("Java Programming!");

Musa
Highlight

42 Chapter 2 Introduction to Java Applications; Input/Output and Operators

The program is similar to Fig. 2.1, so we discuss only the changes here. Line 2

is an end-of-line comment stating the purpose of the program. Line 4 begins the Welcome2
class declaration. Lines 9–10 of method main

display one line of text. The first statement uses System.out’s method print to display a
string. Each print or println statement resumes displaying characters from where the last
print or println statement stopped displaying characters. Unlike println, after display-
ing its argument, print does not position the output cursor at the beginning of the next
line in the command window—the next character the program displays will appear imme-
diately after the last character that print displays. So, line 10 positions the first character
in its argument (the letter “J”) immediately after the last character that line 9 displays (the
space character before the string’s closing double-quote character).

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters, which indicate
to System.out’s print and println methods when to position the output cursor at the
beginning of the next line in the command window. Like blank lines, space characters and
tab characters, newline characters are whitespace characters. The program in Fig. 2.4 out-
puts four lines of text, using newline characters to determine when to begin each new line.
Most of the program is identical to those in Figs. 2.1 and 2.3.

Welcome to Java Programming!

// Printing a line of text with multiple statements.

System.out.print("Welcome to ");
System.out.println("Java Programming!");

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple lines of text with a single statement.
3
4 public class Welcome3
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome3

Welcome
to
Java
Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

Fig. 2.3 | Printing a line of text with multiple statements. (Part 2 of 2.)

\n \n \n

2.4 Displaying Text with printf 43

Line 9

displays four separate lines of text in the command window. Normally, the characters in a
string are displayed exactly as they appear in the double quotes. Note, however, that the
paired characters \ and n (repeated three times in the statement) do not appear on the
screen. The backslash (\) is an escape character, which has special meaning to Sys-
tem.out’s print and println methods. When a backslash appears in a string, Java com-
bines it with the next character to form an escape sequence. The escape sequence \n
represents the newline character. When a newline character appears in a string being out-
put with System.out, the newline character causes the screen’s output cursor to move to
the beginning of the next line in the command window.

Figure 2.5 lists several common escape sequences and describes how they affect the dis-
play of characters in the command window. For the complete list of escape sequences, visit

2.4 Displaying Text with printf
The System.out.printf method (f means “formatted”) displays formatted data.
Figure 2.6 uses this method to output on two lines the strings "Welcome to" and "Java
Programming!". Lines 9–10

call method System.out.printf to display the program’s output. The method call speci-
fies three arguments. When a method requires multiple arguments, they’re placed in a
comma-separated list.

System.out.println("Welcome\nto\nJava\nProgramming!");

http://docs.oracle.com/javase/specs/jls/se7/html/
jls-3.html#jls-3.10.6

Escape
sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor at the beginning of the current
line—do not advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double-quote character. For example,
System.out.println("\"in quotes\"");

displays "in quotes".

Fig. 2.5 | Some common escape sequences.

System.out.printf("%s%n%s%n",
"Welcome to", "Java Programming!");

Good Programming Practice 2.6
Place a space after each comma (,) in an argument list to make programs more readable.

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
Musa
Highlight

44 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Lines 9–10 represent only one statement. Java allows large statements to be split over
many lines. We indent line 10 to indicate that it’s a continuation of line 9.

Method printf’s first argument is a format string that may consist of fixed text and
format specifiers. Fixed text is output by printf just as it would be by print or println.
Each format specifier is a placeholder for a value and specifies the type of data to output.
Format specifiers also may include optional formatting information.

Format specifiers begin with a percent sign (%) followed by a character that represents
the data type. For example, the format specifier %s is a placeholder for a string. The format
string in line 9 specifies that printf should output two strings, each followed by a newline
character. At the first format specifier’s position, printf substitutes the value of the first
argument after the format string. At each subsequent format specifier’s position, printf
substitutes the value of the next argument. So this example substitutes "Welcome to" for
the first %s and "Java Programming!" for the second %s. The output shows that two lines
of text are displayed on two lines.

Notice that instead of using the escape sequence \n, we used the %n format specifier,
which is a line separator that’s portable across operating systems. You cannot use %n in the
argument to System.out.print or System.out.println; however, the line separator
output by System.out.println after it displays its argument is portable across operating
systems. Online Appendix I presents more details of formatting output with printf.

2.5 Another Application: Adding Integers
Our next application reads (or inputs) two integers (whole numbers, such as –22, 7, 0 and
1024) typed by a user at the keyboard, computes their sum and displays it. This program
must keep track of the numbers supplied by the user for the calculation later in the pro-
gram. Programs remember numbers and other data in the computer’s memory and access

1 // Fig. 2.6: Welcome4.java
2 // Displaying multiple lines with method System.out.printf.
3
4 public class Welcome4
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome4

Welcome to
Java Programming!

Fig. 2.6 | Displaying multiple lines with method System.out.printf.

Common Programming Error 2.6
Splitting a statement in the middle of an identifier or a string is a syntax error.

System.out.printf("%s%n%s%n",
"Welcome to", "Java Programming!");

Musa
Highlight

2.5 Another Application: Adding Integers 45

that data through program elements called variables. The program of Fig. 2.7 demon-
strates these concepts. In the sample output, we use bold text to identify the user’s input
(i.e., 45 and 72). As in prior programs, Lines 1–2 state the figure number, filename and
purpose of the program.

2.5.1 import Declarations
A great strength of Java is its rich set of predefined classes that you can reuse rather than
“reinventing the wheel.” These classes are grouped into packages—named groups of related
classes—and are collectively referred to as the Java class library, or the Java Application
Programming Interface (Java API). Line 3

is an import declaration that helps the compiler locate a class that’s used in this program.
It indicates that this example uses Java’s predefined Scanner class (discussed shortly) from
the package that is named java.util. This enables the compiler to ensure that you use the
class correctly.

1 // Fig. 2.7: Addition.java
2 // Addition program that inputs two numbers then displays their sum.
3
4
5 public class Addition
6 {
7 // main method begins execution of Java application
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17 System.out.print("Enter first integer: "); // prompt
18
19
20 System.out.print("Enter second integer: "); // prompt
21
22
23
24
25
26 } // end method main
27 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.7 | Addition program that inputs two numbers then displays their sum.

import java.util.Scanner; // program uses class Scanner

import java.util.Scanner; // program uses class Scanner

// create a Scanner to obtain input from the command window
Scanner input = new Scanner(System.in);

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

number1 = input.nextInt(); // read first number from user

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers, then store total in sum

System.out.printf("Sum is %d%n", sum); // display sum

46 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.5.2 Declaring Class Addition
Line 5

begins the declaration of class Addition. The filename for this public class must be
Addition.java. Remember that the body of each class declaration starts with an opening
left brace (line 6) and ends with a closing right brace (line 27).

The application begins execution with the main method (lines 8–26). The left brace
(line 9) marks the beginning of method main’s body, and the corresponding right brace
(line 26) marks its end. Method main is indented one level in the body of class Addition,
and the code in the body of main is indented another level for readability.

2.5.3 Declaring and Creating a Scanner to Obtain User Input from the
Keyboard
A variable is a location in the computer’s memory where a value can be stored for use later
in a program. All Java variables must be declared with a name and a type before they can
be used. A variable’s name enables the program to access the value of the variable in mem-
ory. A variable’s name can be any valid identifier—again, a series of characters consisting
of letters, digits, underscores (_) and dollar signs ($) that does not begin with a digit and
does not contain spaces. A variable’s type specifies what kind of information is stored at that
location in memory. Like other statements, declaration statements end with a semicolon
(;).

Line 11

Common Programming Error 2.7
All import declarations must appear before the first class declaration in the file. Placing
an import declaration inside or after a class declaration is a syntax error.

Common Programming Error 2.8
Forgetting to include an import declaration for a class that must be imported results in a
compilation error containing a message such as “cannot find symbol.” When this occurs,
check that you provided the proper import declarations and that the names in them are
correct, including proper capitalization.

Software Engineering Observation 2.1
In each new Java version, the APIs typically contain new capabilities that fix bugs, improve
performance or offer better means for accomplishing tasks. The corresponding older versions
are no longer needed and should not be used. Such APIs are said to be deprecated and might
be removed from later Java versions.

You’ll often encounter deprecated APIs when browsing the online API documentation.
The compiler will warn you when you compile code that uses deprecated APIs. If you compile
your code with javac using the command-line argument -deprecation, the compiler will
tell you which deprecated features you’re using. For each one, the online documentation
(http://docs.oracle.com/javase/7/docs/api/) indicates and typically links to the new
feature that replaces the deprecated one.

public class Addition

Scanner input = new Scanner(System.in);

http://docs.oracle.com/javase/7/docs/api/

2.5 Another Application: Adding Integers 47

is a variable declaration statement that specifies the name (input) and type (Scanner) of a
variable that’s used in this program. A Scanner enables a program to read data (e.g., num-
bers and strings) for use in a program. The data can come from many sources, such as the
user at the keyboard or a file on disk. Before using a Scanner, you must create it and spec-
ify the source of the data.

The = in line 11 indicates that Scanner variable input should be initialized (i.e., pre-
pared for use in the program) in its declaration with the result of the expression to the right
of the equals sign—new Scanner(System.in). This expression uses the new keyword to
create a Scanner object that reads characters typed by the user at the keyboard. The stan-
dard input object, System.in, enables applications to read bytes of data typed by the user.
The Scanner translates these bytes into types (like ints) that can be used in a program.

2.5.4 Declaring Variables to Store Integers
The variable declaration statements in lines 13–15

declare that variables number1, number2 and sum hold data of type int—they can hold in-
teger values (whole numbers such as 72, –1127 and 0). These variables are not yet initial-
ized. The range of values for an int is –2,147,483,648 to +2,147,483,647. [Note: The int
values you use in a program may not contain commas.]

Some other types of data are float and double, for holding real numbers, and char,
for holding character data. Real numbers contain decimal points, such as in 3.4, 0.0 and
–11.19. Variables of type char represent individual characters, such as an uppercase letter
(e.g., A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., the
tab character, \t). The types int, float, double and char are called primitive types.
Primitive-type names are keywords and must appear in all lowercase letters. Appendix D
summarizes the characteristics of the eight primitive types (boolean, byte, char, short,
int, long, float and double).

Several variables of the same type may be declared in a single declaration with the vari-
able names separated by commas (i.e., a comma-separated list of variable names). For
example, lines 13–15 can also be written as:

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

int number1, // first number to add
number2, // second number to add
sum; // sum of number1 and number2

Good Programming Practice 2.7
Declare each variable in its own declaration. This format allows a descriptive comment
to be inserted next to each variable being declared.

Good Programming Practice 2.8
Choosing meaningful variable names helps a program to be self-documenting (i.e., one
can understand the program simply by reading it rather than by reading associated docu-
mentation or creating and viewing an excessive number of comments).

48 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.5.5 Prompting the User for Input
Line 17

uses System.out.print to display the message "Enter first integer: ". This message is
called a prompt because it directs the user to take a specific action. We use method print
here rather than println so that the user’s input appears on the same line as the prompt.
Recall from Section 2.2 that identifiers starting with capital letters typically represent class
names. Class System is part of package java.lang. Notice that class System is not import-
ed with an import declaration at the beginning of the program.

2.5.6 Obtaining an int as Input from the User
Line 18

uses Scanner object input’s nextInt method to obtain an integer from the user at the key-
board. At this point the program waits for the user to type the number and press the Enter
key to submit the number to the program.

Our program assumes that the user enters a valid integer value. If not, a runtime logic
error will occur and the program will terminate. Chapter 11, Exception Handling: A
Deeper Look, discusses how to make your programs more robust by enabling them to
handle such errors. This is also known as making your program fault tolerant.

In line 18, we place the result of the call to method nextInt (an int value) in variable
number1 by using the assignment operator, =. The statement is read as “number1 gets the
value of input.nextInt().” Operator = is called a binary operator, because it has two
operands—number1 and the result of the method call input.nextInt(). This statement
is called an assignment statement, because it assigns a value to a variable. Everything to the
right of the assignment operator, =, is always evaluated before the assignment is performed.

Good Programming Practice 2.9
By convention, variable-name identifiers begin with a lowercase letter, and every word in
the name after the first word begins with a capital letter. For example, variable-name iden-
tifier firstNumber starts its second word, Number, with a capital N. This naming conven-
tion is known as camel case, because the uppercase letters stand out like a camel’s humps.

System.out.print("Enter first integer: "); // prompt

Software Engineering Observation 2.2
By default, package java.lang is imported in every Java program; thus, classes in
java.lang are the only ones in the Java API that do not require an import declaration.

number1 = input.nextInt(); // read first number from user

Good Programming Practice 2.10
Place spaces on either side of a binary operator for readability.

2.5 Another Application: Adding Integers 49

2.5.7 Prompting for and Inputting a Second int
Line 20

prompts the user to enter the second integer. Line 21

reads the second integer and assigns it to variable number2.

2.5.8 Using Variables in a Calculation
Line 23

is an assignment statement that calculates the sum of the variables number1 and number2
then assigns the result to variable sum by using the assignment operator, =. The statement
is read as “sum gets the value of number1 + number2.” When the program encounters the
addition operation, it performs the calculation using the values stored in the variables
number1 and number2. In the preceding statement, the addition operator is a binary oper-
ator—its two operands are the variables number1 and number2. Portions of statements that
contain calculations are called expressions. In fact, an expression is any portion of a state-
ment that has a value associated with it. For example, the value of the expression number1
+ number2 is the sum of the numbers. Similarly, the value of the expression input.next-
Int() is the integer typed by the user.

2.5.9 Displaying the Result of the Calculation
After the calculation has been performed, line 25

uses method System.out.printf to display the sum. The format specifier %d is a placehold-
er for an int value (in this case the value of sum)—the letter d stands for “decimal integer.”
The remaining characters in the format string are all fixed text. So, method printf dis-
plays "Sum is ", followed by the value of sum (in the position of the %d format specifier)
and a newline.

Calculations can also be performed inside printf statements. We could have com-
bined the statements at lines 23 and 25 into the statement

The parentheses around the expression number1 + number2 are optional—they’re included
to emphasize that the value of the entire expression is output in the position of the %d for-
mat specifier. Such parentheses are said to be redundant.

2.5.10 Java API Documentation
For each new Java API class we use, we indicate the package in which it’s located. This
information helps you locate descriptions of each package and class in the Java API docu-
mentation. A web-based version of this documentation can be found at

System.out.print("Enter second integer: "); // prompt

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers then store total in sum

System.out.printf("Sum is %d%n", sum); // display sum

System.out.printf("Sum is %d%n", (number1 + number2));

http://docs.oracle.com/javase/7/docs/api/index.html

http://docs.oracle.com/javase/7/docs/api/index.html

50 Chapter 2 Introduction to Java Applications; Input/Output and Operators

You can download it from the Additional Resources section at

Appendix F shows how to use this documentation.

2.6 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type, a size (in bytes) and a value.

In the addition program of Fig. 2.7, when the following statement (line 18) executes:

the number typed by the user is placed into a memory location corresponding to the name
number1. Suppose that the user enters 45. The computer places that integer value into lo-
cation number1 (Fig. 2.8), replacing the previous value (if any) in that location. The pre-
vious value is lost, so this process is said to be destructive.

When the statement (line 21)

executes, suppose that the user enters 72. The computer places that integer value into lo-
cation number2. The memory now appears as shown in Fig. 2.9.

After the program of Fig. 2.7 obtains values for number1 and number2, it adds the
values and places the total into variable sum. The statement (line 23)

performs the addition, then replaces any previous value in sum. After sum has been calcu-
lated, memory appears as shown in Fig. 2.10. The values of number1 and number2 appear
exactly as they did before they were used in the calculation of sum. These values were used,
but not destroyed, as the computer performed the calculation. When a value is read from
a memory location, the process is nondestructive.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

number1 = input.nextInt(); // read first number from user

Fig. 2.8 | Memory location showing the name and value of variable number1.

number2 = input.nextInt(); // read second number from user

Fig. 2.9 | Memory locations after storing values for number1 and number2.

sum = number1 + number2; // add numbers, then store total in sum

45number1

45

72

number1

number2

http://www.oracle.com/technetwork/java/javase/downloads/index.html
Musa
Highlight

2.7 Arithmetic 51

2.7 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summa-
rized in Fig. 2.11. Note the use of various special symbols not used in algebra. The asterisk
(*) indicates multiplication, and the percent sign (%) is the remainder operator, which
we’ll discuss shortly. The arithmetic operators in Fig. 2.11 are binary operators, because
each operates on two operands. For example, the expression f + 7 contains the binary op-
erator + and the two operands f and 7.

Integer division yields an integer quotient. For example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is
simply truncated (i.e., discarded)—no rounding occurs. Java provides the remainder oper-
ator, %, which yields the remainder after division. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most com-
monly used with integer operands but it can also be used with other arithmetic types. In
this chapter’s exercises and in later chapters, we consider several interesting applications of
the remainder operator, such as determining whether one number is a multiple of another.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions in Java must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a / b, so that all constants, variables and operators appear in a straight line. The follow-
ing algebraic notation is generally not acceptable to compilers:

Fig. 2.10 | Memory locations after storing the sum of number1 and number2.

Java operation Operator Algebraic expression Java expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x / y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 2.11 | Arithmetic operators.

45

72

117

number1

number2

sum

x
y--

a
b
--

Musa
Highlight

52 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Parentheses for Grouping Subexpressions
Parentheses are used to group terms in Java expressions in the same manner as in algebraic
expressions. For example, to multiply a times the quantity b + c, we write

If an expression contains nested parentheses, such as

the expression in the innermost set of parentheses (a + b in this case) is evaluated first.

Rules of Operator Precedence
Java applies the operators in arithmetic expressions in a precise sequence determined by the
rules of operator precedence, which are generally the same as those followed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several such operations, they’re applied from left to right. Multipli-
cation, division and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several such operations, the operators are applied from left to right. Addition and
subtraction operators have the same level of precedence.

These rules enable Java to apply operators in the correct order.1 When we say that
operators are applied from left to right, we’re referring to their associativity. Some opera-
tors associate from right to left. Figure 2.12 summarizes these rules of operator precedence.
A complete precedence chart is included in Appendix A.

Sample Algebraic and Java Expressions
Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its Java equivalent. The following is an example
of an arithmetic mean (average) of five terms:

a * (b + c)

((a + b) * c)

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in the
more complex expressions you’ll encounter later in the book. For more information on order of eval-
uation, see Chapter 15 of The Java™ Language Specification (http://docs.oracle.com/javase/
specs/jls/se7/html/index.html).

Operator(s) Operation(s) Order of evaluation (precedence)

*
/
%

Multiplication
Division
Remainder

Evaluated first. If there are several operators of this
type, they’re evaluated from left to right.

+
-

Addition
Subtraction

Evaluated next. If there are several operators of this
type, they’re evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.12 | Precedence of arithmetic operators.

http://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://docs.oracle.com/javase/specs/jls/se7/html/index.html

2.7 Arithmetic 53

The parentheses are required because division has higher precedence than addition. The
entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are erroneously
omitted, we obtain a + b + c + d + e / 5, which evaluates as

Here’s an example of the equation of a straight line:

No parentheses are required. The multiplication operator is applied first because multipli-
cation has a higher precedence than addition. The assignment occurs last because it has a
lower precedence than multiplication or addition.

The following example contains remainder (%), multiplication, division, addition and
subtraction operations:

The circled numbers under the statement indicate the order in which Java applies the op-
erators. The *, % and / operations are evaluated first in left-to-right order (i.e., they associ-
ate from left to right), because they have higher precedence than + and -. The + and -
operations are evaluated next. These operations are also applied from left to right. The as-
signment (=) operation is evaluated last.

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, consider the eval-
uation of an assignment expression that includes a second-degree polynomial ax2 + bx + c:

The multiplication operations are evaluated first in left-to-right order (i.e., they associate
from left to right), because they have higher precedence than addition. (Java has no arith-
metic operator for exponentiation, so x2 is represented as x * x. Section 4.4 shows an al-
ternative for performing exponentiation.) The addition operations are evaluated next from
left to right. Suppose that a, b, c and x are initialized (given values) as follows: a = 2, b = 3,
c = 7 and x = 5. Figure 2.13 illustrates the order in which the operators are applied.

You can use redundant parentheses (unnecessary parentheses) to make an expression
clearer. For example, the preceding statement might be parenthesized as follows:

Algebra:

Java: m = (a + b + c + d + e) / 5;

Algebra:
Java: y = m * x + b;

y = (a * x * x) + (b * x) + c;

m
a b c d e+ + + +

5
-------------------------------------=

a b c d
e
5
---+ + + +

y mx b+=

z = p * r % q + w / x - y;

z = pr%q + w/x – yAlgebra:

Java:

6 1 2 4 3 5

1 2 4 3 5

y = a * x * x + b * x + c;

6 1 2 4 3 5

54 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.8 Decision Making: Equality and Relational Operators
A condition is an expression that can be true or false. This section introduces Java’s if
selection statement, which allows a program to make a decision based on a condition’s
value. For example, the condition “grade is greater than or equal to 60” determines wheth-
er a student passed a test. If the condition in an if statement is true, the body of the if
statement executes. If the condition is false, the body does not execute. We’ll see an exam-
ple shortly.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. 2.14. Both equality oper-
ators have the same level of precedence, which is lower than that of the relational operators.
The equality operators associate from left to right. The relational operators all have the
same level of precedence and also associate from left to right.

Fig. 2.13 | Order in which a second-degree polynomial is evaluated.

Algebraic
operator

Java equality or
relational operator

Sample Java
condition Meaning of Java condition

Equality operators

= == x == y x is equal to y
¹ != x != y x is not equal to y

Fig. 2.14 | Equality and relational operators. (Part 1 of 2.)

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

3 * 5 is 15

Step 4. y = 50 + 15 + 7;

50 + 15 is 65

Step 5. y = 65 + 7;

65 + 7 is 72

Step 6. y = 72

Musa
Highlight

2.8 Decision Making: Equality and Relational Operators 55

Figure 2.15 uses six if statements to compare two integers input by the user. If the
condition in any of these if statements is true, the statement associated with that if state-
ment executes; otherwise, the statement is skipped. We use a Scanner to input the integers
from the user and store them in variables number1 and number2. The program compares
the numbers and displays the results of the comparisons that are true.

Relational operators

> > x > y x is greater than y
< < x < y x is less than y
≥ >= x >= y x is greater than or equal to y
≤ <= x <= y x is less than or equal to y

1 // Fig. 2.15: Comparison.java
2 // Compare integers using if statements, relational operators
3 // and equality operators.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class Comparison
7 {
8 // main method begins execution of Java application
9 public static void main(String[] args)

10 {
11 // create Scanner to obtain input from command line
12 Scanner input = new Scanner(System.in);
13
14 int number1; // first number to compare
15 int number2; // second number to compare
16
17 System.out.print("Enter first integer: "); // prompt
18 number1 = input.nextInt(); // read first number from user
19
20 System.out.print("Enter second integer: "); // prompt
21 number2 = input.nextInt(); // read second number from user
22
23
24
25
26
27
28
29
30

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

Algebraic
operator

Java equality or
relational operator

Sample Java
condition Meaning of Java condition

Fig. 2.14 | Equality and relational operators. (Part 2 of 2.)

if (number1 == number2)
System.out.printf("%d == %d%n", number1, number2);

if (number1 != number2)
System.out.printf("%d != %d%n", number1, number2);

if (number1 < number2)
System.out.printf("%d < %d%n", number1, number2);

56 Chapter 2 Introduction to Java Applications; Input/Output and Operators

The declaration of class Comparison begins at line 6

The class’s main method (lines 9–40) begins the execution of the program. Line 12

declares Scanner variable input and assigns it a Scanner that inputs data from the stan-
dard input (i.e., the keyboard).

Lines 14–15

declare the int variables used to store the values input from the user.
Lines 17–18

31
32
33
34
35
36
37
38
39
40 } // end method main
41 } // end class Comparison

Enter first integer: 777
Enter second integer: 777
777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

public class Comparison

Scanner input = new Scanner(System.in);

int number1; // first number to compare
int number2; // second number to compare

System.out.print("Enter first integer: "); // prompt
number1 = input.nextInt(); // read first number from user

Fig. 2.15 | Compare integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

if (number1 > number2)
System.out.printf("%d > %d%n", number1, number2);

if (number1 <= number2)
System.out.printf("%d <= %d%n", number1, number2);

if (number1 >= number2)
System.out.printf("%d >= %d%n", number1, number2);

2.8 Decision Making: Equality and Relational Operators 57

prompt the user to enter the first integer and input the value, respectively. The value is
stored in variable number1.

Lines 20–21

prompt the user to enter the second integer and input the value, respectively. The value is
stored in variable number2.

Lines 23–24

compare the values of number1 and number2 to determine whether they’re equal. An if
statement always begins with keyword if, followed by a condition in parentheses. An if
statement expects one statement in its body, but may contain multiple statements if
they’re enclosed in a set of braces ({}). The indentation of the body statement shown here
is not required, but it improves the program’s readability by emphasizing that the state-
ment in line 24 is part of the if statement that begins at line 23. Line 24 executes only if
the numbers stored in variables number1 and number2 are equal (i.e., the condition is true).
The if statements in lines 26–27, 29–30, 32–33, 35–36 and 38–39 compare number1 and
number2 using the operators !=, <, >, <= and >=, respectively. If the condition in one or
more of the if statements is true, the corresponding body statement executes.

There’s no semicolon (;) at the end of the first line of each if statement. Such a semi-
colon would result in a logic error at execution time. For example,

would actually be interpreted by Java as

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed. The program then continues with the output statement, which al-
ways executes, regardless of whether the condition is true or false, because the output state-
ment is not part of the if statement.

System.out.print("Enter second integer: "); // prompt
number2 = input.nextInt(); // read second number from user

if (number1 == number2)
System.out.printf("%d == %d%n", number1, number2);

Common Programming Error 2.9
Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a compilation error. The equality operator should be read as “is equal to” and the
assignment operator as “gets” or “gets the value of.” To avoid confusion, some people read
the equality operator as “double equals” or “equals equals.”

Good Programming Practice 2.11
Place only one statement per line in a program for readability.

if (number1 == number2); // logic error
System.out.printf("%d == %d%n", number1, number2);

if (number1 == number2)
; // empty statement

System.out.printf("%d == %d%n", number1, number2);

58 Chapter 2 Introduction to Java Applications; Input/Output and Operators

White space
Note the use of white space in Fig. 2.15. Recall that the compiler normally ignores white
space. So, statements may be split over several lines and may be spaced according to your
preferences without affecting a program’s meaning. It’s incorrect to split identifiers and
strings. Ideally, statements should be kept small, but this is not always possible.

Operators Discussed So Far
Figure 2.16 shows the operators discussed so far in decreasing order of precedence. All but
the assignment operator, =, associate from left to right. The assignment operator, =, associ-
ates from right to left. An assignment expression’s value is whatever was assigned to the vari-
able on the = operator’s left side—for example, the value of the expression x = 7 is 7. So an
expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which first
assigns the value 0 to variable y, then assigns the result of that assignment, 0, to x.

2.9 (Optional) GUI and Graphics Case Study: Using
Dialog Boxes
This optional case study is designed for those who want to begin learning Java’s capabili-
ties for creating graphical user interfaces (GUIs) and graphics early in the book, before the
deeper discussions of these topics later in the book. This case study features Java’s mature
Swing technology, which as of this writing is still a bit more popular than the newer
JavaFX technology presented in later chapters.

This GUI and Graphics Case Study appears in 10 brief sections (see Fig. 2.17). Each
section introduces new concepts and provides examples with screen captures that show

Error-Prevention Tip 2.4
A lengthy statement can be spread over several lines. If a single statement must be split
across lines, choose natural breaking points, such as after a comma in a comma-separated
list, or after an operator in a lengthy expression. If a statement is split across two or more
lines, indent all subsequent lines until the end of the statement.

Good Programming Practice 2.12
When writing expressions containing many operators, refer to the operator precedence
chart (Appendix A). Confirm that the operations in the expression are performed in the
order you expect. If, in a complex expression, you’re uncertain about the order of evalua-
tion, use parentheses to force the order, exactly as you’d do in algebraic expressions.

Operators Associativity Type

* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
= right to left assignment

Fig. 2.16 | Precedence and associativity of operators discussed.

2.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes 59

sample interactions and results. In the first few sections, you’ll create your first graphical
apps. In subsequent sections, you’ll use object-oriented programming concepts to create an
app that draws a variety of shapes. When we formally introduce GUIs in Chapter 12, we use
the mouse to choose exactly which shapes to draw and where to draw them. In Chapter 13,
we add capabilities of the Java 2D graphics API to draw the shapes with different line thick-
nesses and fills. We hope you find this case study informative and entertaining.

Displaying Text in a Dialog Box
The programs presented thus far display output in the command window. Many apps use
windows or dialog boxes (also called dialogs) to display output. Web browsers such as
Chrome, Firefox, Internet Explorer, Safari and Opera display web pages in their own win-
dows. E-mail programs allow you to type and read messages in a window. Typically, dialog
boxes are windows in which programs display important messages to users. Class JOption-
Pane provides prebuilt dialog boxes that enable programs to display windows containing
messages—such windows are called message dialogs. Figure 2.18 displays the String
"Welcome to Java" in a message dialog.

Location Title—Exercise(s)

Section 2.4 Using Dialog Boxes—Basic input and output with dialog boxes

Section 3.14 Creating Simple Drawings—Displaying and drawing lines on the screen

Section 4.10 Drawing Rectangles and Ovals—Using shapes to represent data

Section 5.13 Colors and Filled Shapes—Drawing a bull’s-eye and random graphics

Section 6.14 Drawing Arcs—Drawing spirals with arcs

Section 8.16 Using Objects with Graphics—Storing shapes as objects

Section 9.7 Displaying Text and Images Using Labels—Providing status information

Section 10.11 Drawing with Polymorphism—Identifying the similarities between shapes

Exercise 12.17 Expanding the Interface—Using GUI components and event handling

Exercise 13.31 Adding Java 2D—Using the Java 2D API to enhance drawings

Fig. 2.17 | Summary of the GUI and Graphics Case Study in each chapter.

1 // Fig. 2.18: Dialog1.java
2 // Using JOptionPane to display multiple lines in a dialog box.
3 import javax.swing.JOptionPane;
4
5 public class Dialog1
6 {
7 public static void main(String[] args)
8 {
9

10
11 }
12 } // end class Dialog1

Fig. 2.18 | Using JOptionPane to display multiple lines in a dialog box. (Part 1 of 2.)

// display a dialog with a message
JOptionPane.showMessageDialog(null, "Welcome to Java");

60 Chapter 2 Introduction to Java Applications; Input/Output and Operators

JOptionPane Class static Method showMessagDialog

Line 3 indicates that the program uses class JOptionPane from package javax.swing. This
package contains many classes that help you create graphical user interfaces (GUIs). GUI
components facilitate data entry by a program’s user and presentation of outputs to the
user. Line 10 calls JOptionPane method showMessageDialog to display a dialog box con-
taining a message. The method requires two arguments. The first helps the Java app de-
termine where to position the dialog box. A dialog is typically displayed from a GUI app
with its own window. The first argument refers to that window (known as the parent win-
dow) and causes the dialog to appear centered over the app’s window. If the first argument
is null, the dialog box is displayed at the center of your screen. The second argument is
the String to display in the dialog box.

Introducing static Methods
JOptionPane method showMessageDialog is a so-called static method. Such methods
often define frequently used tasks. For example, many programs display dialog boxes, and
the code to do this is the same each time. Rather than requiring you to “reinvent the
wheel” and create code to display a dialog, the designers of class JOptionPane declared a
static method that performs this task for you. A static method is called by using its class
name followed by a dot (.) and the method name, as in

Notice that you do not create an object of class JOptionPane to use its static method
showMessageDialog. We discuss static methods in more detail in Chapter 5.

Entering Text in a Dialog
Figure 2.19 uses another predefined JOptionPane dialog called an input dialog that allows
the user to enter data into a program. The program asks for the user’s name and responds
with a message dialog containing a greeting and the name that the user entered.

ClassName.methodName(arguments)

1 // Fig. 2.19: NameDialog.java
2 // Obtaining user input from a dialog.
3
4
5 public class NameDialog
6 {
7 public static void main(String[] args)
8 {

Fig. 2.19 | Obtaining user input from a dialog. (Part 1 of 2.)

Fig. 2.18 | Using JOptionPane to display multiple lines in a dialog box. (Part 2 of 2.)

import javax.swing.JOptionPane;

2.10 Wrap-Up 61

JOptionPane Class static Method showInputDialog

Line 10 uses JOptionPane method showInputDialog to display an input dialog containing
a prompt and a field (known as a text field) in which you can enter text. Method showIn-
putDialog’s argument is the prompt that indicates what you should enter. You type charac-
ters in the text field, then click the OK button or press the Enter key to return the String to
the program. Method showInputDialog returns a String containing the characters you
typed. We store the String in variable name. If you press the dialog’s Cancel button or press
the Esc key, the method returns null and the program displays the word “null” as the name.

String Class static Method format

Lines 13–14 use static String method format to return a String containing a greeting
with the user’s name. Method format works like method System.out.printf, except that
format returns the formatted String rather than displaying it in a command window.
Line 17 displays the greeting in a message dialog, just as we did in Fig. 2.18.

GUI and Graphics Case Study Exercise
2.1 Modify the addition program in Fig. 2.7 to use dialog-based input and output with the
methods of class JOptionPane. Since method showInputDialog returns a String, you must convert
the String the user enters to an int for use in calculations. The static method parseInt of class
Integer (package java.lang) takes a String argument representing an integer and returns the value
as an int. If the String does not contain a valid integer, the program will terminate with an error.

2.10 Wrap-Up
In this chapter, you learned many important features of Java, including displaying data on
the screen in a Command Prompt, inputting data from the keyboard, performing calcula-
tions and making decisions. The applications presented here introduced you to many basic
programming concepts. In the next chapter we begin our introduction to control state-
ments, which specify the order in which a program’s actions are performed.

9
10
11
12
13
14
15
16
17
18 } // end main
19 } // end class NameDialog

Fig. 2.19 | Obtaining user input from a dialog. (Part 2 of 2.)

// prompt user to enter name
String name = JOptionPane.showInputDialog("What is your name?");

// create the message
String message =

String.format("Welcome, %s, to Java Programming!", name);

// display the message to welcome the user by name
JOptionPane.showMessageDialog(null, message);

62 Chapter 2 Introduction to Java Applications; Input/Output and Operators

Summary
Section 2.2 Your First Program in Java: Printing a Line of Text
• A Java application (p. 35) executes when you use the java command to launch the JVM.

• Comments (p. 36) document programs and improve their readability. The compiler ignores them.

• A comment that begins with // is an end-of-line comment—it terminates at the end of the line
on which it appears.

• Traditional comments (p. 36) can be spread over several lines and are delimited by /* and */.

• Javadoc comments (p. 36), delimited by /** and */, enable you to embed program documentation
in your code. The javadoc utility program generates HTML pages based on these comments.

• A syntax error (p. 36; also called a compiler error, compile-time error or compilation error) oc-
curs when the compiler encounters code that violates Java’s language rules. It’s similar to a gram-
mar error in a natural language.

• Blank lines, space characters and tab characters are known as white space (p. 37). White space
makes programs easier to read and is ignored by the compiler.

• Keywords (p. 37) are reserved for use by Java and are always spelled with all lowercase letters.

• Keyword class (p. 37) introduces a class declaration.

• By convention, all class names in Java begin with a capital letter and capitalize the first letter of
each word they include (e.g., SampleClassName).

• A Java class name is an identifier—a series of characters consisting of letters, digits, underscores
(_) and dollar signs ($) that does not begin with a digit and does not contain spaces.

• Java is case sensitive (p. 37)—that is, uppercase and lowercase letters are distinct.

• The body of every class declaration (p. 37) is delimited by braces, { and }.

• A public (p. 37) class declaration must be saved in a file with the same name as the class followed
by the “.java” file-name extension.

• Method main (p. 38) is the starting point of every Java application and must begin with

public static void main(String[] args)

otherwise, the JVM will not execute the application.

• Methods perform tasks and return information when they complete them. Keyword void (p. 38)
indicates that a method will perform a task but return no information.

• Statements instruct the computer to perform actions.

• A string (p. 39) in double quotes is sometimes called a character string or a string literal.

• The standard output object (System.out; p. 39) displays characters in the command window.

• Method System.out.println (p. 39) displays its argument (p. 39) in the command window fol-
lowed by a newline character to position the output cursor to the beginning of the next line.

• You compile a program with the command javac. If the program contains no syntax errors, a
class file (p. 40) containing the Java bytecodes that represent the application is created. These
bytecodes are interpreted by the JVM when you execute the program.

• To run an application, type java followed by the name of the class that contains the main method.

Section 2.3 Modifying Your First Java Program
• System.out.print (p. 42) displays its argument and positions the output cursor immediately af-

ter the last character displayed.

• A backslash (\) in a string is an escape character (p. 43). Java combines it with the next character to
form an escape sequence (p. 43). The escape sequence \n (p. 43) represents the newline character.

Summary 63

Section 2.4 Displaying Text with printf

• System.out.printf method (p. 43; f means “formatted”) displays formatted data.

• Method printf’s first argument is a format string (p. 44) containing fixed text and/or format
specifiers. Each format specifier (p. 44) indicates the type of data to output and is a placeholder
for a corresponding argument that appears after the format string.

• Format specifiers begin with a percent sign (%) and are followed by a character that represents the
data type. The format specifier %s (p. 44) is a placeholder for a string.

• The %n format specifier (p. 44) is a portable line separator. You cannot use %n in the argument to
System.out.print or System.out.println; however, the line separator output by Sys-
tem.out.println after it displays its argument is portable across operating systems.

Section 2.5 Another Application: Adding Integers
• An import declaration (p. 45) helps the compiler locate a class that’s used in a program.

• Java’s rich set of predefined classes are grouped into packages (p. 45)—named groups of classes.
These are referred to as the Java class library (p. 45), or the Java Application Programming Inter-
face (Java API).

• A variable (p. 46) is a location in the computer’s memory where a value can be stored for use later
in a program. All variables must be declared with a name and a type before they can be used.

• A variable’s name enables the program to access the variable’s value in memory.

• A Scanner (package java.util; p. 47) enables a program to read data that the program will use.
Before a Scanner can be used, the program must create it and specify the source of the data.

• Variables should be initialized (p. 47) to prepare them for use in a program.

• The expression new Scanner(System.in) creates a Scanner that reads from the standard input
object (System.in; p. 47)—normally the keyboard.

• Data type int (p. 47) is used to declare variables that will hold integer values. The range of values
for an int is –2,147,483,648 to +2,147,483,647.

• Types float and double (p. 47) specify real numbers with decimal points, such as 3.4 and –11.19.

• Variables of type char (p. 47) represent individual characters, such as an uppercase letter (e.g.,
A), a digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., tab, \t).

• Types such as int, float, double and char are primitive types (p. 47). Primitive-type names are
keywords; thus, they must appear in all lowercase letters.

• A prompt (p. 48) directs the user to take a specific action.

• Scanner method nextInt obtains an integer for use in a program.

• The assignment operator, = (p. 48), enables the program to give a value to a variable. It’s called
a binary operator (p. 48) because it has two operands.

• Portions of statements that have values are called expressions (p. 49).

• The format specifier %d (p. 49) is a placeholder for an int value.

Section 2.6 Memory Concepts
• Variable names (p. 50) correspond to locations in the computer’s memory. Every variable has a

name, a type, a size and a value.

• A value that’s placed in a memory location replaces the location’s previous value, which is lost.

Section 2.7 Arithmetic
• The arithmetic operators (p. 51) are + (addition), - (subtraction), * (multiplication), / (division)

and % (remainder).

64 Chapter 2 Introduction to Java Applications; Input/Output and Operators

• Integer division (p. 51) yields an integer quotient.

• The remainder operator, % (p. 51), yields the remainder after division.

• Arithmetic expressions must be written in straight-line form (p. 51).

• If an expression contains nested parentheses (p. 52), the innermost set is evaluated first.

• Java applies the operators in arithmetic expressions in a precise sequence determined by the rules
of operator precedence (p. 52).

• When we say that operators are applied from left to right, we’re referring to their associativity
(p. 52). Some operators associate from right to left.

• Redundant parentheses (p. 53) can make an expression clearer.

Section 2.8 Decision Making: Equality and Relational Operators
• The if statement (p. 54) makes a decision based on a condition’s value (true or false).

• Conditions in if statements can be formed by using the equality (== and !=) and relational (>,
<, >= and <=) operators (p. 54).

• An if statement begins with keyword if followed by a condition in parentheses and expects one
statement in its body.

• The empty statement (p. 57) is a statement that does not perform a task.

Self-Review Exercises
2.1 Fill in the blanks in each of the following statements:

a) A(n) begins the body of every method, and a(n) ends the body of
every method.

b) You can use the statement to make decisions.
c) begins an end-of-line comment.
d) , and are called white space.
e) are reserved for use by Java.
f) Java applications begin execution at method .
g) Methods , and display information in a command win-

dow.

2.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-

gram executes.
b) All variables must be given a type when they’re declared.
c) Java considers the variables number and NuMbEr to be identical.
d) The remainder operator (%) can be used only with integer operands.
e) The arithmetic operators *, /, %, + and - all have the same level of precedence.

2.3 Write statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number to be of type int.
b) Prompt the user to enter an integer.
c) Input an integer and assign the result to int variable value. Assume Scanner variable

input can be used to read a value from the keyboard.
d) Print "This is a Java program" on one line in the command window. Use method

System.out.println.
e) Print "This is a Java program" on two lines in the command window. The first line

should end with Java. Use method System.out.printf and two %s format specifiers.
f) If the variable number is not equal to 7, display "The variable number is not equal to 7".

Answers to Self-Review Exercises 65

2.4 Identify and correct the errors in each of the following statements:
a) if (c < 7);

System.out.println("c is less than 7");
b) if (c => 7)

System.out.println("c is equal to or greater than 7");

2.5 Write declarations, statements or comments that accomplish each of the following tasks:
a) State that a program will calculate the product of three integers.
b) Create a Scanner called input that reads values from the standard input.
c) Declare the variables x, y, z and result to be of type int.
d) Prompt the user to enter the first integer.
e) Read the first integer from the user and store it in the variable x.
f) Prompt the user to enter the second integer.
g) Read the second integer from the user and store it in the variable y.
h) Prompt the user to enter the third integer.
i) Read the third integer from the user and store it in the variable z.
j) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
k) Use System.out.printf to display the message "Product is" followed by the value of

the variable result.

2.6 Using the statements you wrote in Exercise 2.5, write a complete program that calculates
and prints the product of three integers.

Answers to Self-Review Exercises
2.1 a) left brace ({), right brace (}). b) if. c) //. d) Space characters, newlines and tabs.
e) Keywords. f) main. g) System.out.print, System.out.println and System.out.printf.

2.2 a) False. Comments do not cause any action to be performed when the program executes.
They’re used to document programs and improve their readability.

b) True.
c) False. Java is case sensitive, so these variables are distinct.
d) False. The remainder operator can also be used with noninteger operands in Java.
e) False. The operators *, / and % are higher precedence than operators + and -.

2.3 a) int c, thisIsAVariable, q76354, number;
or
int c;
int thisIsAVariable;
int q76354;
int number;

b) System.out.print("Enter an integer: ");
c) value = input.nextInt();
d) System.out.println("This is a Java program");
e) System.out.printf("%s%n%s%n", "This is a Java", "program");
f) if (number != 7)

System.out.println("The variable number is not equal to 7");

2.4 a) Error: Semicolon after the right parenthesis of the condition (c < 7) in the if.
Correction: Remove the semicolon after the right parenthesis. [Note: As a result, the
output statement will execute regardless of whether the condition in the if is true.]

b) Error: The relational operator => is incorrect. Correction: Change => to >=.

66 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.5 a) // Calculate the product of three integers
b) Scanner input = new Scanner(System.in);
c) int x, y, z, result;

or
int x;
int y;
int z;
int result;

d) System.out.print("Enter first integer: ");
e) x = input.nextInt();
f) System.out.print("Enter second integer: ");
g) y = input.nextInt();
h) System.out.print("Enter third integer: ");
i) z = input.nextInt();
j) result = x * y * z;
k) System.out.printf("Product is %d%n", result);

2.6 The solution to Self-Review Exercise 2.6 is as follows:

1 // Ex. 2.6: Product.java
2 // Calculate the product of three integers.
3 import java.util.Scanner; // program uses Scanner
4
5 public class Product
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 int x; // first number input by user
13 int y; // second number input by user
14 int z; // third number input by user
15 int result; // product of numbers
16
17 System.out.print("Enter first integer: "); // prompt for input
18 x = input.nextInt(); // read first integer
19
20 System.out.print("Enter second integer: "); // prompt for input
21 y = input.nextInt(); // read second integer
22
23 System.out.print("Enter third integer: "); // prompt for input
24 z = input.nextInt(); // read third integer
25
26 result = x * y * z; // calculate product of numbers
27
28 System.out.printf("Product is %d%n", result);
29 } // end method main
30 } // end class Product

Enter first integer: 10
Enter second integer: 20
Enter third integer: 30
Product is 6000

Exercises 67

Exercises
2.7 Fill in the blanks in each of the following statements:

a) are used to document a program and improve its readability.
b) A decision can be made in a Java program with a(n) .
c) Calculations are normally performed by statements.
d) The arithmetic operators with the same precedence as multiplication are and

.
e) When parentheses in an arithmetic expression are nested, the set of paren-

theses is evaluated first.
f) A location in the computer’s memory that may contain different values at various times

throughout the execution of a program is called a(n) .

2.8 Write Java statements that accomplish each of the following tasks:
a) Display the message "Enter an integer: ", leaving the cursor on the same line.
b) Assign the product of variables b and c to variable a.
c) Use a comment to state that a program performs a sample payroll calculation.

2.9 State whether each of the following is true or false. If false, explain why.
a) Java operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales$,

his_$account_total, a, b$, c, z and z2.
c) A valid Java arithmetic expression with no parentheses is evaluated from left to right.
d) The following are all invalid variable names: 3g, 87, 67h2, h22 and 2h.

2.10 Assuming that x = 2 and y = 3, what does each of the following statements display?
a) System.out.printf("x = %d%n", x);
b) System.out.printf("Value of %d + %d is %d%n", x, x, (x + x));
c) System.out.printf("x =");
d) System.out.printf("%d = %d%n", (x + y), (y + x));

2.11 Which of the following Java statements contain variables whose values are modified?
a) p = i + j + k + 7;
b) System.out.println("variables whose values are modified");
c) System.out.println("a = 5");
d) value = input.nextInt();

2.12 Given that y = ax3 + 7, which of the following are correct Java statements for this equation?
a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

2.13 State the order of evaluation of the operators in each of the following Java statements, and
show the value of x after each statement is performed:

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.14 Write an application that displays the numbers 1 to 4 on the same line, with each pair of
adjacent numbers separated by one space. Use the following techniques:

a) Use one System.out.println statement.
b) Use four System.out.print statements.
c) Use one System.out.printf statement.

68 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.15 (Arithmetic) Write an application that asks the user to enter two integers, obtains them
from the user and prints their sum, product, difference and quotient (division). Use the techniques
shown in Fig. 2.7.

2.16 (Comparing Integers) Write an application that asks the user to enter two integers, obtains
them from the user and displays the larger number followed by the words "is larger". If the num-
bers are equal, print the message "These numbers are equal". Use the techniques shown in Fig. 2.15.

2.17 (Arithmetic, Smallest and Largest) Write an application that inputs three integers from the
user and displays the sum, average, product, smallest and largest of the numbers. Use the techniques
shown in Fig. 2.15. [Note: The calculation of the average in this exercise should result in an integer
representation of the average. So, if the sum of the values is 7, the average should be 2, not
2.3333….]

2.18 (Displaying Shapes with Asterisks) Write an application that displays a box, an oval, an ar-
row and a diamond using asterisks (*), as follows:

2.19 What does the following code print?

System.out.printf("*%n**%n***%n****%n*****%n");

2.20 What does the following code print?

System.out.println("*");
System.out.println("***");
System.out.println("*****");
System.out.println("****");
System.out.println("**");

2.21 What does the following code print?

System.out.print("*");
System.out.print("***");
System.out.print("*****");
System.out.print("****");
System.out.println("**");

2.22 What does the following code print?

System.out.print("*");
System.out.println("***");
System.out.println("*****");
System.out.print("****");
System.out.println("**");

2.23 What does the following code print?

System.out.printf("%s%n%s%n%s%n", "*", "***", "*****");

2.24 (Largest and Smallest Integers) Write an application that reads five integers and determines
and prints the largest and smallest integers in the group. Use only the programming techniques you
learned in this chapter.

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

Exercises 69

2.25 (Odd or Even) Write an application that reads an integer and determines and prints wheth-
er it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of 2. Any mul-
tiple of 2 leaves a remainder of 0 when divided by 2.]

2.26 (Multiples) Write an application that reads two integers, determines whether the first is a
multiple of the second and prints the result. [Hint: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Write an application that displays a checkerboard pat-
tern, as follows:

2.28 (Diameter, Circumference and Area of a Circle) Here’s a peek ahead. In this chapter, you
learned about integers and the type int. Java can also represent floating-point numbers that contain
decimal points, such as 3.14159. Write an application that inputs from the user the radius of a circle
as an integer and prints the circle’s diameter, circumference and area using the floating-point value
3.14159 for π. Use the techniques shown in Fig. 2.7. [Note: You may also use the predefined con-
stant Math.PI for the value of π. This constant is more precise than the value 3.14159. Class Math
is defined in package java.lang. Classes in that package are imported automatically, so you do not
need to import class Math to use it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr
area = πr2

Do not store the results of each calculation in a variable. Rather, specify each calculation as the
value that will be output in a System.out.printf statement. The values produced by the circum-
ference and area calculations are floating-point numbers. Such values can be output with the for-
mat specifier %f in a System.out.printf statement. You’ll learn more about floating-point
numbers in Chapter 3.

2.29 (Integer Value of a Character) Here’s another peek ahead. In this chapter, you learned about
integers and the type int. Java can also represent uppercase letters, lowercase letters and a consider-
able variety of special symbols. Every character has a corresponding integer representation. The set
of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can indicate a character value in a program
simply by enclosing that character in single quotes, as in 'A'.

You can determine a character’s integer equivalent by preceding that character with (int), as in

(int) 'A'

An operator of this form is called a cast operator. (You’ll learn about cast operators in Chapter 3.)
The following statement outputs a character and its integer equivalent:

System.out.printf("The character %c has the value %d%n", 'A', ((int) 'A'));

When the preceding statement executes, it displays the character A and the value 65 (from the Uni-
code® character set) as part of the string. The format specifier %c is a placeholder for a character (in
this case, the character 'A').

Using statements similar to the one shown earlier in this exercise, write an application that dis-
plays the integer equivalents of some uppercase letters, lowercase letters, digits and special symbols.
Display the integer equivalents of the following: A B C a b c 0 1 2 $ * + / and the blank character.

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

70 Chapter 2 Introduction to Java Applications; Input/Output and Operators

2.30 (Separating the Digits in an Integer) Write an application that inputs one number consist-
ing of five digits from the user, separates the number into its individual digits and prints the digits
separated from one another by three spaces each. For example, if the user types in the number 42339,
the program should print

Assume that the user enters the correct number of digits. What happens when you enter a
number with more than five digits? What happens when you enter a number with fewer than five
digits? [Hint: It’s possible to do this exercise with the techniques you learned in this chapter. You’ll
need to use both division and remainder operations to “pick off ” each digit.]

2.31 (Table of Squares and Cubes) Using only the programming techniques you learned in this
chapter, write an application that calculates the squares and cubes of the numbers from 0 to 10 and
prints the resulting values in table format, as shown below.

2.32 (Negative, Positive and Zero Values) Write a program that inputs five numbers and deter-
mines and prints the number of negative numbers input, the number of positive numbers input and
the number of zeros input.

Making a Difference
2.33 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.10. The formulas for calculating BMI are

or

Create a BMI calculator that reads the user’s weight in pounds and height in inches (or, if you pre-
fer, the user’s weight in kilograms and height in meters), then calculates and displays the user’s
body mass index. Also, display the following information from the Department of Health and
Human Services/National Institutes of Health so the user can evaluate his/her BMI:

4 2 3 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

BMI VALUES
Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

BMI weightInPounds 703×
heightInInches heightInInches×
--=

BMI weightInKi ramslog
heightInMeters heightInMeters×
---=

Making a Difference 71

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 3, you’ll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.34 (World Population Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

2.35 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.
b) Cost per gallon of gasoline.
c) Average miles per gallon.
d) Parking fees per day.
e) Tolls per day.

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	Contents
	Foreword
	Preface
	Before You Begin
	1 Introduction to Computers, the Internet and Java
	1.1 Introduction
	1.2 Hardware and Software
	1.2.1 Moore’s Law
	1.2.2 Computer Organization

	1.3 Data Hierarchy
	1.4 Machine Languages, Assembly Languages and High-Level Languages
	1.5 Introduction to Object Technology
	1.5.1 The Automobile as an Object
	1.5.2 Methods and Classes
	1.5.3 Instantiation
	1.5.4 Reuse
	1.5.5 Messages and Method Calls
	1.5.6 Attributes and Instance Variables
	1.5.7 Encapsulation and Information Hiding
	1.5.8 Inheritance
	1.5.9 Interfaces
	1.5.10 Object-Oriented Analysis and Design (OOAD)
	1.5.11 The UML (Unified Modeling Language)

	1.6 Operating Systems
	1.6.1 Windows—A Proprietary Operating System
	1.6.2 Linux—An Open-Source Operating System
	1.6.3 Android

	1.7 Programming Languages
	1.8 Java
	1.9 A Typical Java Development Environment
	1.10 Test-Driving a Java Application
	1.11 Internet and World Wide Web
	1.11.1 The Internet: A Network of Networks
	1.11.2 The World Wide Web: Making the Internet User-Friendly
	1.11.3 Web Services and Mashups
	1.11.4 Ajax
	1.11.5 The Internet of Things

	1.12 Software Technologies
	1.13 Keeping Up-to-Date with Information Technologies

	2 Introduction to Java Applications; Input/Output and Operators
	2.1 Introduction
	2.2 Your First Program in Java: Printing a Line of Text
	2.3 Modifying Your First Java Program
	2.4 Displaying Text with printf
	2.5 Another Application: Adding Integers
	2.5.1 import Declarations
	2.5.2 Declaring Class Addition
	2.5.3 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
	2.5.4 Declaring Variables to Store Integers
	2.5.5 Prompting the User for Input
	2.5.6 Obtaining an int as Input from the User
	2.5.7 Prompting for and Inputting a Second int
	2.5.8 Using Variables in a Calculation
	2.5.9 Displaying the Result of the Calculation
	2.5.10 Java API Documentation

	2.6 Memory Concepts
	2.7 Arithmetic
	2.8 Decision Making: Equality and Relational Operators
	2.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
	2.10 Wrap-Up

	3 Control Statements: Part 1; Assignment, ++ and -- Operators
	3.1 Introduction
	3.2 Algorithms
	3.3 Pseudocode
	3.4 Control Structures
	3.5 if Single-Selection Statement
	3.6 if…else Double-Selection Statement
	3.7 while Repetition Statement
	3.8 Formulating Algorithms: Counter-Controlled Repetition
	3.9 Formulating Algorithms: Sentinel-Controlled Repetition
	3.10 Formulating Algorithms: Nested Control Statements
	3.11 Compound Assignment Operators
	3.12 Increment and Decrement Operators
	3.13 Primitive Types
	3.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
	3.15 Wrap-Up

	4 Control Statements: Part 2; Logical Operators
	4.1 Introduction
	4.2 Essentials of Counter-Controlled Repetition
	4.3 for Repetition Statement
	4.4 Examples Using the for Statement
	4.5 do…while Repetition Statement
	4.6 switch Multiple-Selection Statement
	4.7 break and continue Statements
	4.8 Logical Operators
	4.9 Structured Programming Summary
	4.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
	4.11 Wrap-Up

	5 Methods
	5.1 Introduction
	5.2 Program Modules in Java
	5.3 static Methods, static Variables and Class Math
	5.4 Declaring Methods
	5.5 Notes on Declaring and Using Methods
	5.6 Method-Call Stack and Stack Frames
	5.7 Argument Promotion and Casting
	5.8 Java API Packages
	5.9 Case Study: Secure Random-Number Generation
	5.10 Case Study: A Game of Chance; Introducing enum Types
	5.11 Scope of Declarations
	5.12 Method Overloading
	5.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
	5.14 Wrap-Up

	6 Arrays and ArrayLists
	6.1 Introduction
	6.2 Primitive Types vs. Reference Types
	6.3 Arrays
	6.4 Declaring and Creating Arrays
	6.5 Examples Using Arrays
	6.5.1 Creating and Initializing an Array
	6.5.2 Using an Array Initializer
	6.5.3 Calculating the Values to Store in an Array
	6.5.4 Summing the Elements of an Array
	6.5.5 Using Bar Charts to Display Array Data Graphically
	6.5.6 Using the Elements of an Array as Counters
	6.5.7 Using Arrays to Analyze Survey Results

	6.6 Exception Handling: Processing the Incorrect Response
	6.6.1 The try Statement
	6.6.2 Executing the catch Block
	6.6.3 toString Method of the Exception Parameter

	6.7 Enhanced for Statement
	6.8 Passing Arrays to Methods
	6.9 Pass-By-Value vs. Pass-By-Reference
	6.10 Multidimensional Arrays
	6.11 Variable-Length Argument Lists
	6.12 Using Command-Line Arguments
	6.13 Class Arrays
	6.14 Introduction to Collections and Class ArrayList
	6.15 (Optional) GUI and Graphics Case Study: Drawing Arcs
	6.16 Wrap-Up

	7 Introduction to Classes and Objects
	7.1 Introduction
	7.2 Instance Variables, set Methods and get Methods
	7.2.1 Account Class with an Instance Variable, a set Method and a get Method
	7.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	7.2.3 Compiling and Executing an App with Multiple Classes
	7.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	7.2.5 Additional Notes on This Example
	7.2.6 Software Engineering with private Instance Variables and public set and get Methods

	7.3 Default and Explicit Initialization for Instance Variables
	7.4 Account Class: Initializing Objects with Constructors
	7.4.1 Declaring an Account Constructor for Custom Object Initialization
	7.4.2 Class AccountTest: Initializing Account Objects When They’re Created

	7.5 Account Class with a Balance; Floating-Point Numbers
	7.5.1 Account Class with a balance Instance Variable of Type double
	7.5.2 AccountTest Class to Use Class Account

	7.6 Case Study: Card Shuffling and Dealing Simulation
	7.7 Case Study: Class GradeBook Using an Array to Store Grades
	7.8 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.9 Wrap-Up

	8 Classes and Objects: A Deeper Look
	8.1 Introduction
	8.2 Time Class Case Study
	8.3 Controlling Access to Members
	8.4 Referring to the Current Object’s Members with the this Reference
	8.5 Time Class Case Study: Overloaded Constructors
	8.6 Default and No-Argument Constructors
	8.7 Notes on Set and Get Methods
	8.8 Composition
	8.9 enum Types
	8.10 Garbage Collection
	8.11 static Class Members
	8.12 static Import
	8.13 final Instance Variables
	8.14 Package Access
	8.15 Using BigDecimal for Precise Monetary Calculations
	8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	8.17 Wrap-Up

	9 Object-Oriented Programming: Inheritance
	9.1 Introduction
	9.2 Superclasses and Subclasses
	9.3 protected Members
	9.4 Relationship Between Superclasses and Subclasses
	9.4.1 Creating and Using a CommissionEmployee Class
	9.4.2 Creating and Using a BasePlusCommissionEmployee Class
	9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	9.5 Constructors in Subclasses
	9.6 Class Object
	9.7 (Optional) GUI and Graphics Case Study: Displaying Text and Images Using Labels
	9.8 Wrap-Up

	10 Object-Oriented Programming: Polymorphism and Interfaces
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

	10.6 Allowed Assignments Between Superclass and Subclass Variables
	10.7 final Methods and Classes
	10.8 A Deeper Explanation of Issues with Calling Methods from Constructors
	10.9 Creating and Using Interfaces
	10.9.1 Developing a Payable Hierarchy
	10.9.2 Interface Payable
	10.9.3 Class Invoice
	10.9.4 Modifying Class Employee to Implement Interface Payable
	10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.9.7 Some Common Interfaces of the Java API

	10.10 Java SE 8 Interface Enhancements
	10.10.1 default Interface Methods
	10.10.2 static Interface Methods
	10.10.3 Functional Interfaces

	10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
	10.12 Wrap-Up

	11 Exception Handling: A Deeper Look
	11.1 Introduction
	11.2 Example: Divide by Zero without Exception Handling
	11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	11.4 When to Use Exception Handling
	11.5 Java Exception Hierarchy
	11.6 finally Block
	11.7 Stack Unwinding and Obtaining Information from an Exception Object
	11.8 Chained Exceptions
	11.9 Declaring New Exception Types
	11.10 Preconditions and Postconditions
	11.11 Assertions
	11.12 try-with-Resources: Automatic Resource Deallocation
	11.13 Wrap-Up

	12 GUI Components: Part 1
	12.1 Introduction
	12.2 Java’s Nimbus Look-and-Feel
	12.3 Simple GUI-Based Input/Output with JOptionPane
	12.4 Overview of Swing Components
	12.5 Displaying Text and Images in a Window
	12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	12.7 Common GUI Event Types and Listener Interfaces
	12.8 How Event Handling Works
	12.9 JButton
	12.10 Buttons That Maintain State
	12.10.1 JCheckBox
	12.10.2 JRadioButton

	12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	12.12 JList
	12.13 Multiple-Selection Lists
	12.14 Mouse Event Handling
	12.15 Adapter Classes
	12.16 JPanel Subclass for Drawing with the Mouse
	12.17 Key Event Handling
	12.18 Introduction to Layout Managers
	12.18.1 FlowLayout
	12.18.2 BorderLayout
	12.18.3 GridLayout

	12.19 Using Panels to Manage More Complex Layouts
	12.20 JTextArea
	12.21 Wrap-Up

	13 Graphics and Java 2D
	13.1 Introduction
	13.2 Graphics Contexts and Graphics Objects
	13.3 Color Control
	13.4 Manipulating Fonts
	13.5 Drawing Lines, Rectangles and Ovals
	13.6 Drawing Arcs
	13.7 Drawing Polygons and Polylines
	13.8 Java 2D API
	13.9 Wrap-Up

	14 Strings, Characters and Regular Expressions
	14.1 Introduction
	14.2 Fundamentals of Characters and Strings
	14.3 Class String
	14.3.1 String Constructors
	14.3.2 String Methods length, charAt and getChars
	14.3.3 Comparing Strings
	14.3.4 Locating Characters and Substrings in Strings
	14.3.5 Extracting Substrings from Strings
	14.3.6 Concatenating Strings
	14.3.7 Miscellaneous String Methods
	14.3.8 String Method valueOf

	14.4 Class StringBuilder
	14.4.1 StringBuilder Constructors
	14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	14.4.4 StringBuilder append Methods
	14.4.5 StringBuilder Insertion and Deletion Methods

	14.5 Class Character
	14.6 Tokenizing Strings
	14.7 Regular Expressions, Class Pattern and Class Matcher
	14.8 Wrap-Up

	15 Files, Streams and Object Serialization
	15.1 Introduction
	15.2 Files and Streams
	15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	15.4 Sequential-Access Text Files
	15.4.1 Creating a Sequential-Access Text File
	15.4.2 Reading Data from a Sequential-Access Text File
	15.4.3 Case Study: A Credit-Inquiry Program
	15.4.4 Updating Sequential-Access Files

	15.5 Object Serialization
	15.5.1 Creating a Sequential-Access File Using Object Serialization
	15.5.2 Reading and Deserializing Data from a Sequential-Access File

	15.6 Opening Files with JFileChooser
	15.7 (Optional) Additional java.io Classes
	15.7.1 Interfaces and Classes for Byte-Based Input and Output
	15.7.2 Interfaces and Classes for Character-Based Input and Output

	15.8 Wrap-Up

	16 Generic Collections
	16.1 Introduction
	16.2 Collections Overview
	16.3 Type-Wrapper Classes
	16.4 Autoboxing and Auto-Unboxing
	16.5 Interface Collection and Class Collections
	16.6 Lists
	16.6.1 ArrayList and Iterator
	16.6.2 LinkedList

	16.7 Collections Methods
	16.7.1 Method sort
	16.7.2 Method shuffle
	16.7.3 Methods reverse, fill, copy, max and min
	16.7.4 Method binarySearch
	16.7.5 Methods addAll, frequency and disjoint

	16.8 Stack Class of Package java.util
	16.9 Class PriorityQueue and Interface Queue
	16.10 Sets
	16.11 Maps
	16.12 Properties Class
	16.13 Synchronized Collections
	16.14 Unmodifiable Collections
	16.15 Abstract Implementations
	16.16 Wrap-Up

	17 Java SE 8 Lambdas and Streams
	17.1 Introduction
	17.2 Functional Programming Technologies Overview
	17.2.1 Functional Interfaces
	17.2.2 Lambda Expressions
	17.2.3 Streams

	17.3 IntStream Operations
	17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	17.3.2 Terminal Operations count, min, max, sum and average
	17.3.3 Terminal Operation reduce
	17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	17.3.5 Intermediate Operation: Mapping
	17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed

	17.4 Stream<Integer> Manipulations
	17.4.1 Creating a Stream<Integer>
	17.4.2 Sorting a Stream and Collecting the Results
	17.4.3 Filtering a Stream and Storing the Results for Later Use
	17.4.4 Filtering and Sorting a Stream and Collecting the Results
	17.4.5 Sorting Previously Collected Results

	17.5 Stream<String> Manipulations
	17.5.1 Mapping Strings to Uppercase Using a Method Reference
	17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order

	17.6 Stream<Employee> Manipulations
	17.6.1 Creating and Displaying a List<Employee>
	17.6.2 Filtering Employees with Salaries in a Specified Range
	17.6.3 Sorting Employees By Multiple Fields
	17.6.4 Mapping Employees to Unique Last Name Strings
	17.6.5 Grouping Employees By Department
	17.6.6 Counting the Number of Employees in Each Department
	17.6.7 Summing and Averaging Employee Salaries

	17.7 Creating a Stream<String> from a File
	17.8 Generating Streams of Random Values
	17.9 Lambda Event Handlers
	17.10 Additional Notes on Java SE 8 Interfaces
	17.11 Java SE 8 and Functional Programming Resources
	17.12 Wrap-Up

	18 Recursion
	18.1 Introduction
	18.2 Recursion Concepts
	18.3 Example Using Recursion: Factorials
	18.4 Reimplementing Class FactorialCalculator Using Class BigInteger
	18.5 Example Using Recursion: Fibonacci Series
	18.6 Recursion and the Method-Call Stack
	18.7 Recursion vs. Iteration
	18.8 Towers of Hanoi
	18.9 Fractals
	18.9.1 Koch Curve Fractal
	18.9.2 (Optional) Case Study: Lo Feather Fractal
	18.10 Recursive Backtracking
	18.11 Wrap-Up

	19 Searching, Sorting and Big O
	19.1 Introduction
	19.2 Linear Search
	19.3 Big O Notation
	19.3.1 O(1) Algorithms
	19.3.2 O(n) Algorithms
	19.3.3 O(n[sup(2)]) Algorithms
	19.3.4 Big O of the Linear Search

	19.4 Binary Search
	19.4.1 Binary Search Implementation
	19.4.2 Efficiency of the Binary Search

	19.5 Sorting Algorithms
	19.6 Selection Sort
	19.6.1 Selection Sort Implementation
	19.6.2 Efficiency of the Selection Sort

	19.7 Insertion Sort
	19.7.1 Insertion Sort Implementation
	19.7.2 Efficiency of the Insertion Sort

	19.8 Merge Sort
	19.8.1 Merge Sort Implementation
	19.8.2 Efficiency of the Merge Sort

	19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms
	19.10 Wrap-Up

	20 Generic Classes and Methods
	20.1 Introduction
	20.2 Motivation for Generic Methods
	20.3 Generic Methods: Implementation and Compile-Time Translation
	20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.7 Raw Types
	20.8 Wildcards in Methods That Accept Type Parameters
	20.9 Wrap-Up

	21 Custom Generic Data Structures
	21.1 Introduction
	21.2 Self-Referential Classes
	21.3 Dynamic Memory Allocation
	21.4 Linked Lists
	21.4.1 Singly Linked Lists
	21.4.2 Implementing a Generic List Class
	21.4.3 Generic Classes ListNode and List
	21.4.4 Class ListTest
	21.4.5 List Method insertAtFront
	21.4.6 List Method insertAtBack
	21.4.7 List Method removeFromFront
	21.4.8 List Method removeFromBack
	21.4.9 List Method print
	21.4.10 Creating Your Own Packages

	21.5 Stacks
	21.6 Queues
	21.7 Trees
	21.8 Wrap-Up

	22 GUI Components: Part 2
	22.1 Introduction
	22.2 JSlider
	22.3 Understanding Windows in Java
	22.4 Using Menus with Frames
	22.5 JPopupMenu
	22.6 Pluggable Look-and-Feel
	22.7 JDesktopPane and JInternalFrame
	22.8 JTabbedPane
	22.9 BoxLayout Layout Manager
	22.10 GridBagLayout Layout Manager
	22.11 Wrap-Up

	23 Concurrency
	23.1 Introduction
	23.2 Thread States and Life Cycle
	23.2.1 New and Runnable States
	23.2.2 Waiting State
	23.2.3 Timed Waiting State
	23.2.4 Blocked State
	23.2.5 Terminated State
	23.2.6 Operating-System View of the Runnable State
	23.2.7 Thread Priorities and Thread Scheduling
	23.2.8 Indefinite Postponement and Deadlock

	23.3 Creating and Executing Threads with the Executor Framework
	23.4 Thread Synchronization
	23.4.1 Immutable Data
	23.4.2 Monitors
	23.4.3 Unsynchronized Mutable Data Sharing
	23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic

	23.5 Producer/Consumer Relationship without Synchronization
	23.6 Producer/Consumer Relationship: ArrayBlockingQueue
	23.7 (Advanced) Producer/Consumer Relationship with synchronized, wait, notify and notifyAll
	23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
	23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition Interfaces
	23.10 Concurrent Collections
	23.11 Multithreading with GUI: SwingWorker
	23.11.1 Performing Computations in a Worker Thread: Fibonacci Numbers
	23.11.2 Processing Intermediate Results: Sieve of Eratosthenes

	23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API
	23.13 Java SE 8: Sequential vs. Parallel Streams
	23.14 (Advanced) Interfaces Callable and Future
	23.15 (Advanced) Fork/Join Framework
	23.16 Wrap-Up

	24 Accessing Databases with JDBC
	24.1 Introduction
	24.2 Relational Databases
	24.3 A books Database
	24.4 SQL
	24.4.1 Basic SELECT Query
	24.4.2 WHERE Clause
	24.4.3 ORDER BY Clause
	24.4.4 Merging Data from Multiple Tables: INNER JOIN
	24.4.5 INSERT Statement
	24.4.6 UPDATE Statement
	24.4.7 DELETE Statement

	24.5 Setting up a Java DB Database
	24.5.1 Creating the Chapter’s Databases on Windows
	24.5.2 Creating the Chapter’s Databases on Mac OS X
	24.5.3 Creating the Chapter’s Databases on Linux

	24.6 Manipulating Databases with JDBC
	24.6.1 Connecting to and Querying a Database
	24.6.2 Querying the books Database

	24.7 RowSet Interface
	24.8 PreparedStatements
	24.9 Stored Procedures
	24.10 Transaction Processing
	24.11 Wrap-Up

	25 JavaFX GUI: Part 1
	25.1 Introduction
	25.2 JavaFX Scene Builder and the NetBeans IDE
	25.3 JavaFX App Window Structure
	25.4 Welcome App—Displaying Text and an Image
	25.4.1 Creating the App’s Project
	25.4.2 NetBeans Projects Window—Viewing the Project Contents
	25.4.3 Adding an Image to the Project
	25.4.4 Opening JavaFX Scene Builder from NetBeans
	25.4.5 Changing to a VBox Layout Container
	25.4.6 Configuring the VBox Layout Container
	25.4.7 Adding and Configuring a Label
	25.4.8 Adding and Configuring an ImageView
	25.4.9 Running the Welcome App

	25.5 Tip Calculator App—Introduction to Event Handling
	25.5.1 Test-Driving the Tip Calculator App
	25.5.2 Technologies Overview
	25.5.3 Building the App’s GUI
	25.5.4 TipCalculator Class
	25.5.5 TipCalculatorController Class

	25.6 Features Covered in the Online JavaFX Chapters
	25.7 Wrap-Up

	Chapters on the Web
	A: Operator Precedence Chart
	B: ASCII Character Set
	C: Keywords and ReservedWords
	D: Primitive Types
	E: Using the Debugger
	E.1 Introduction
	E.2 Breakpoints and the run, stop, cont and print Commands
	E.3 The print and set Commands
	E.4 Controlling Execution Using the step, step up and next Commands
	E.5 The watch Command
	E.6 The clear Command
	E.7 Wrap-Up

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

