
3 Control Statements: Part 1;
Assignment, ++ and --
Operators

Let’s all move one place on.
—Lewis Carroll

How many apples fell on
Newton’s head before he took the
hint!
—Robert Frost

O b j e c t i v e s
In this chapter you’ll:

� Learn basic problem-solving
techniques.

� Develop algorithms through
the process of top-down,
stepwise refinement.

� Use the if and if…else
selection statements to
choose between alternative
actions.

� Use the while repetition
statement to execute
statements in a program
repeatedly.

� Use counter-controlled
repetition and sentinel-
controlled repetition.

� Use the compound
assignment operator, and the
increment and decrement
operators.

� Learn about the portability of
primitive data types.

3.1 Introduction 73

3.1 Introduction
Before writing a program to solve a problem, you should have a thorough understanding
of the problem and a carefully planned approach to solving it. When writing a program,
you also should understand the available building blocks and employ proven program-
construction techniques. In this chapter and the next, we discuss these issues in presenting
the theory and principles of structured programming. As you’ll see when we get into ob-
ject-oriented programming (starting in Chapter 7), the concepts presented here are crucial
in constructing classes and manipulating objects. We discuss Java’s if statement in addi-
tional detail, and introduce the if…else and while statements—all of these building
blocks allow you to specify the logic required for methods to perform their tasks. We also
introduce the compound assignment operator and the increment and decrement opera-
tors. Finally, we consider the portability of Java’s primitive types.

3.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to execute and

2. the order in which these actions execute

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions execute is important.

Consider the “rise-and-shine algorithm” followed by one executive for getting out of
bed and going to work: (1) Get out of bed; (2) take off pajamas; (3) take a shower; (4) get
dressed; (5) eat breakfast; (6) carpool to work. This routine gets the executive to work well
prepared to make critical decisions. Suppose that the same steps are performed in a slightly
different order: (1) Get out of bed; (2) take off pajamas; (3) get dressed; (4) take a shower;
(5) eat breakfast; (6) carpool to work. In this case, our executive shows up for work soaking
wet. Specifying the order in which statements (actions) execute in a program is called pro-
gram control. This chapter investigates program control using Java’s control statements.

3.1 Introduction
3.2 Algorithms
3.3 Pseudocode
3.4 Control Structures
3.5 if Single-Selection Statement
3.6 if…else Double-Selection

Statement
3.7 while Repetition Statement
3.8 Formulating Algorithms: Counter-

Controlled Repetition

3.9 Formulating Algorithms: Sentinel-
Controlled Repetition

3.10 Formulating Algorithms: Nested
Control Statements

3.11 Compound Assignment Operators
3.12 Increment and Decrement Operators
3.13 Primitive Types
3.14 (Optional) GUI and Graphics Case

Study: Creating Simple Drawings
3.15 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

Musa
Highlight

Musa
Highlight

74 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

3.3 Pseudocode
Pseudocode is an informal language that helps you develop algorithms without having to
worry about the strict details of Java language syntax. The pseudocode we present is par-
ticularly useful for developing algorithms that will be converted to structured portions of
Java programs. The pseudocode we use in this book is similar to everyday English—it’s
convenient and user friendly, but it’s not an actual computer programming language.
You’ll see an algorithm written in pseudocode in Fig. 3.5. You may, of course, use your
own native language(s) to develop your own pseudocode.

Pseudocode does not execute on computers. Rather, it helps you “think out” a pro-
gram before attempting to write it in a programming language, such as Java. This chapter
provides several examples of using pseudocode to develop Java programs.

The style of pseudocode we present consists purely of characters, so you can type
pseudocode conveniently, using any text-editor program. A carefully prepared pseudocode
program can easily be converted to a corresponding Java program.

Pseudocode normally describes only statements representing the actions that occur
after you convert a program from pseudocode to Java and the program is run on a com-
puter. Such actions might include input, output or calculations. In our pseudocode, we typ-
ically do not include variable declarations, but some programmers choose to list variables
and mention their purposes.

3.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This process is called sequential execution. Various Java statements,
which we’ll soon discuss, enable you to specify that the next statement to execute is not
necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program. [Note: Java does not have a goto statement; however, the word goto is reserved
by Java and should not be used as an identifier in programs.]

The research of Bohm and Jacopini1 had demonstrated that programs could be
written without any goto statements. The challenge of the era for programmers was to shift
their styles to “goto-less programming.” The term structured programming became
almost synonymous with “goto elimination.” Not until the 1970s did most programmers
start taking structured programming seriously. The results were impressive. Software
development groups reported shorter development times, more frequent on-time delivery
of systems and more frequent within-budget completion of software projects. The key to
these successes was that structured programs were clearer, easier to debug and modify, and
more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the

1. C. Bohm, and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Musa
Highlight

Musa
Highlight

3.4 Control Structures 75

repetition structure. When we introduce Java’s control-structure implementations, we’ll
refer to them in the terminology of the Java Language Specification as “control statements.”

Sequence Structure in Java
The sequence structure is built into Java. Unless directed otherwise, the computer executes
Java statements one after the other in the order in which they’re written—that is, in se-
quence. The activity diagram in Fig. 3.1 illustrates a typical sequence structure in which
two calculations are performed in order. Java lets you have as many actions as you want in
a sequence structure. As we’ll soon see, anywhere a single action may be placed, we may
place several actions in sequence.

A UML activity diagram models the workflow (also called the activity) of a portion
of a software system. Such workflows may include a portion of an algorithm, like the
sequence structure in Fig. 3.1. Activity diagrams are composed of symbols, such as action-
state symbols (rectangles with their left and right sides replaced with outward arcs), dia-
monds and small circles. These symbols are connected by transition arrows, which rep-
resent the flow of the activity—that is, the order in which the actions should occur.

Like pseudocode, activity diagrams help you develop and represent algorithms.
Activity diagrams clearly show how control structures operate. We use the UML in this
chapter and Chapter 4 to show control flow in control statements. Online Chapters 33–
34 use the UML in a real-world automated-teller-machine case study.

Consider the sequence-structure activity diagram in Fig. 3.1. It contains two action
states, each containing an action expression—for example, “add grade to total” or “add 1
to counter”—that specifies a particular action to perform. Other actions might include
calculations or input/output operations. The arrows in the activity diagram represent
transitions, which indicate the order in which the actions represented by the action states
occur. The program that implements the activities illustrated by the diagram in Fig. 3.1
first adds grade to total, then adds 1 to counter.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the program performs the modeled actions. The solid
circle surrounded by a hollow circle at the bottom of the diagram represents the final
state—the end of the workflow after the program performs its actions.

Figure 3.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in Java)—explanatory remarks that describe the purpose of sym-

Fig. 3.1 | Sequence-structure activity diagram.

add 1 to counter

add grade to total Corresponding Java statement:
total = total + grade;

Corresponding Java statement:
counter = counter + 1;

76 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

bols in the diagram. Figure 3.1 uses UML notes to show the Java code associated with each
action state. A dotted line connects each note with the element it describes. Activity diagrams
normally do not show the Java code that implements the activity. We do this here to illustrate
how the diagram relates to Java code. For more information on the UML, see our optional
online object-oriented design case study (Chapters 33–34) or visit www.uml.org.

Selection Statements in Java
Java has three types of selection statements (discussed in this chapter and Chapter 4). The
if statement either performs (selects) an action, if a condition is true, or skips it, if the con-
dition is false. The if…else statement performs an action if a condition is true and per-
forms a different action if the condition is false. The switch statement (Chapter 4)
performs one of many different actions, depending on the value of an expression.

The if statement is a single-selection statement because it selects or ignores a single
action (or, as we’ll soon see, a single group of actions). The if…else statement is called a
double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

Repetition Statements in Java
Java provides three repetition statements (also called iteration statements or looping
statements) that enable programs to perform statements repeatedly as long as a condition
(called the loop-continuation condition) remains true. The repetition statements are the
while, do…while, for and enhanced for statements. (Chapter 4 presents the do…while
and for statements and Chapter 6 presents the enhanced for statement.) The while and
for statements perform the action (or group of actions) in their bodies zero or more
times—if the loop-continuation condition is initially false, the action (or group of actions)
will not execute. The do…while statement performs the action (or group of actions) in its
body one or more times. The words if, else, switch, while, do and for are Java keywords.
A complete list of Java keywords appears in Appendix C.

Summary of Control Statements in Java
Java has only three kinds of control structures, which from this point forward we refer to
as control statements: the sequence statement, selection statements (three types) and repetition
statements (three types). Every program is formed by combining as many of these state-
ments as is appropriate for the algorithm the program implements. We can model each
control statement as an activity diagram. Like Fig. 3.1, each diagram contains an initial
state and a final state that represent a control statement’s entry point and exit point, re-
spectively. Single-entry/single-exit control statements make it easy to build programs—
we simply connect the exit point of one to the entry point of the next. We call this control-
statement stacking. We’ll learn that there’s only one other way in which control state-
ments may be connected—control-statement nesting—in which one control statement
appears inside another. Thus, algorithms in Java programs are constructed from only three
kinds of control statements, combined in only two ways. This is the essence of simplicity.

3.5 if Single-Selection Statement
Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose that the passing grade on an exam is 60. The pseudocode statement

www.uml.org
Musa
Highlight

3.6 if…else Double-Selection Statement 77

determines whether the condition “student’s grade is greater than or equal to 60” is true. If
so, “Passed” is printed, and the next pseudocode statement in order is “performed.” (Re-
member, pseudocode is not a real programming language.) If the condition is false, the
Print statement is ignored, and the next pseudocode statement in order is performed. The
indentation of the second line of this selection statement is optional, but recommended,
because it emphasizes the inherent structure of structured programs.

The preceding pseudocode If statement may be written in Java as

The Java code corresponds closely to the pseudocode. This is one of the properties of
pseudocode that makes it such a useful program development tool.

UML Activity Diagram for an if Statement
Figure 3.2 illustrates the single-selection if statement. This figure contains the most im-
portant symbol in an activity diagram—the diamond, or decision symbol, which indicates
that a decision is to be made. The workflow continues along a path determined by the sym-
bol’s associated guard conditions, which can be true or false. Each transition arrow emerg-
ing from a decision symbol has a guard condition (specified in square brackets next to the
arrow). If a guard condition is true, the workflow enters the action state to which the tran-
sition arrow points. In Fig. 3.2, if the grade is greater than or equal to 60, the program
prints “Passed,” then transitions to the activity’s final state. If the grade is less than 60, the
program immediately transitions to the final state without displaying a message.

The if statement is a single-entry/single-exit control statement. We’ll see that the
activity diagrams for the remaining control statements also contain initial states, transition
arrows, action states that indicate actions to perform, decision symbols (with associated
guard conditions) that indicate decisions to be made, and final states.

3.6 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition
is true; otherwise, the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and another action when
the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

if (studentGrade >= 60)
System.out.println("Passed");

Fig. 3.2 | if single-selection statement UML activity diagram.

print “Passed”
[grade >= 60]

[grade < 60]

Musa
Highlight

78 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

prints “Passed” if the student’s grade is greater than or equal to 60, but prints “Failed” if
it’s less than 60. In either case, after printing occurs, the next pseudocode statement in se-
quence is “performed.”

The preceding If…Else pseudocode statement can be written in Java as

The body of the else is also indented. Whatever indentation convention you choose
should be applied consistently throughout your programs.

UML Activity Diagram for an if…else Statement
Figure 3.3 illustrates the flow of control in the if…else statement. Once again, the sym-
bols in the UML activity diagram (besides the initial state, transition arrows and final
state) represent action states and decisions.

Nested if…else Statements
A program can test multiple cases by placing if…else statements inside other if…else
statements to create nested if…else statements. For example, the following pseudocode
represents a nested if…else that prints A for exam grades greater than or equal to 90, B for
grades 80 to 89, C for grades 70 to 79, D for grades 60 to 69 and F for all other grades:

If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

if (grade >= 60)
System.out.println("Passed");

else
System.out.println("Failed");

Good Programming Practice 3.1
Indent both body statements of an if…else statement. Many IDEs do this for you.

Good Programming Practice 3.2
If there are several levels of indentation, each level should be indented the same additional
amount of space.

Fig. 3.3 | if…else double-selection statement UML activity diagram.

print “Passed”print “Failed”
[grade >= 60][grade < 60]

3.6 if…else Double-Selection Statement 79

This pseudocode may be written in Java as

If variable studentGrade is greater than or equal to 90, the first four conditions in the
nested if…else statement will be true, but only the statement in the if part of the first
if…else statement will execute. After that statement executes, the else part of the
“outermost” if…else statement is skipped. Many programmers prefer to write the pre-
ceding nested if…else statement as

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

if (studentGrade >= 90)
System.out.println("A");

else
if (studentGrade >= 80)

System.out.println("B");
else

if (studentGrade >= 70)
System.out.println("C");

else
if (studentGrade >= 60)

System.out.println("D");
else

System.out.println("F");

Error-Prevention Tip 3.1
In a nested if…else statement, ensure that you test for all possible cases.

if (studentGrade >= 90)
System.out.println("A");

else if (studentGrade >= 80)
System.out.println("B");

else if (studentGrade >= 70)
System.out.println("C");

else if (studentGrade >= 60)
System.out.println("D");

else
System.out.println("F");

80 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form avoids deep indentation of the code to the right. Such indentation
often leaves little room on a line of source code, forcing lines to be split.

Dangling-else Problem
The Java compiler always associates an else with the immediately preceding if unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what is
referred to as the dangling-else problem. For example,

appears to indicate that if x is greater than 5, the nested if statement determines whether
y is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the if…else outputs the string "x is <= 5".
Beware! This nested if…else statement does not execute as it appears. The compiler ac-
tually interprets the statement as

in which the body of the first if is a nested if…else. The outer if statement tests whether
x is greater than 5. If so, execution continues by testing whether y is also greater than 5. If
the second condition is true, the proper string—"x and y are > 5"—is displayed. However,
if the second condition is false, the string "x is <= 5" is displayed, even though we know
that x is greater than 5. Equally bad, if the outer if statement’s condition is false, the inner
if…else is skipped and nothing is displayed.

To force the nested if…else statement to execute as it was originally intended, we
must write it as follows:

The braces indicate that the second if is in the body of the first and that the else is
associated with the first if. Exercises 3.273.28 investigate the dangling-else problem fur-
ther.

Blocks
The if statement normally expects only one statement in its body. To include several state-
ments in the body of an if (or the body of an else for an if…else statement), enclose
the statements in braces. Statements contained in a pair of braces (such as the body of a

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

if (x > 5)
{

if (y > 5)
System.out.println("x and y are > 5");

}
else

System.out.println("x is <= 5");

3.6 if…else Double-Selection Statement 81

method) form a block. A block can be placed anywhere in a method that a single statement
can be placed.

The following example includes a block in the else part of an if…else statement:

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

would be outside the body of the else part of the if…else statement and would execute
regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught by
the compiler. A logic error (e.g., when both braces in a block are left out of the program)
has its effect at execution time. A fatal logic error causes a program to fail and terminate
prematurely. A nonfatal logic error allows a program to continue executing but causes it
to produce incorrect results.

Just as a block can be placed anywhere a single statement can be placed, it’s also pos-
sible to have an empty statement. Recall from Section 2.8 that the empty statement is rep-
resented by placing a semicolon (;) where a statement would normally be.

Conditional Operator (?:)
Java provides the conditional operator (?:) that can be used in place of an if…else
statement. This can make your code shorter and clearer. The conditional operator is Java’s
only ternary operator (i.e., an operator that takes three operands). Together, the operands
and the ?: symbol form a conditional expression. The first operand (to the left of the ?)
is a boolean expression (i.e., a condition that evaluates to a boolean value—true or
false), the second operand (between the ? and :) is the value of the conditional expres-
sion if the boolean expression is true and the third operand (to the right of the :) is the
value of the conditional expression if the boolean expression evaluates to false. For ex-
ample, the statement

if (grade >= 60)
System.out.println("Passed");

else
{

System.out.println("Failed");
System.out.println("You must take this course again.");

}

Failed
You must take this course again.

System.out.println("You must take this course again.");

Common Programming Error 3.1
Placing a semicolon after the condition in an if or if…else statement leads to a logic
error in single-selection if statements and a syntax error in double-selection if…else

statements (when the if-part contains an actual body statement).

System.out.println(studentGrade >= 60 ? "Passed" : "Failed");

82 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

prints the value of println’s conditional-expression argument. The conditional expres-
sion in this statement evaluates to the string "Passed" if the boolean expression student-
Grade >= 60 is true and to the string "Failed" if it’s false. Thus, this statement with the
conditional operator performs essentially the same function as the if…else statement
shown earlier in this section. The precedence of the conditional operator is low, so the en-
tire conditional expression is normally placed in parentheses. We’ll see that conditional ex-
pressions can be used in some situations where if…else statements cannot.

3.7 while Repetition Statement
A repetition statement allows you to specify that a program should repeat an action while
some condition remains true. The pseudocode statement

describes the repetition during a shopping trip. The condition “there are more items on my
shopping list” may be true or false. If it’s true, then the action “Purchase next item and cross
it off my list” is performed. This action will be performed repeatedly while the condition re-
mains true. The statement(s) contained in the While repetition statement constitute its body,
which may be a single statement or a block. Eventually, the condition will become false
(when the shopping list’s last item has been purchased and crossed off). At this point, the
repetition terminates, and the first statement after the repetition statement executes.

As an example of Java’s while repetition statement, consider a program segment that
finds the first power of 3 larger than 100. Suppose that the int variable product is initial-
ized to 3. After the following while statement executes, product contains the result:

Each iteration of the while statement multiplies product by 3, so product takes on the
values 9, 27, 81 and 243 successively. When product becomes 243, product <= 100 be-
comes false. This terminates the repetition, so the final value of product is 243. At this
point, program execution continues with the next statement after the while statement.

UML Activity Diagram for a while Statement
The UML activity diagram in Fig. 3.4 illustrates the flow of control in the preceding
while statement. Once again, the symbols in the diagram (besides the initial state, transi-
tion arrows, a final state and three notes) represent an action state and a decision. This di-
agram introduces the UML’s merge symbol. The UML represents both the merge symbol

Error-Prevention Tip 3.2
Use expressions of the same type for the second and third operands of the ?: operator to
avoid subtle errors.

While there are more items on my shopping list
Purchase next item and cross it off my list

while (product <= 100)
product = 3 * product;

Common Programming Error 3.2
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false normally results in a logic error called an infinite loop
(the loop never terminates).

Musa
Highlight

3.8 Formulating Algorithms: Counter-Controlled Repetition 83

and the decision symbol as diamonds. The merge symbol joins two flows of activity into
one. In this diagram, the merge symbol joins the transitions from the initial state and from
the action state, so they both flow into the decision that determines whether the loop
should begin (or continue) executing.

The decision and merge symbols can be distinguished by the number of “incoming”
and “outgoing” transition arrows. A decision symbol has one transition arrow pointing to
the diamond and two or more pointing out from it to indicate possible transitions from
that point. In addition, each transition arrow pointing out of a decision symbol has a guard
condition next to it. A merge symbol has two or more transition arrows pointing to the
diamond and only one pointing from the diamond, to indicate multiple activity flows
merging to continue the activity. None of the transition arrows associated with a merge
symbol has a guard condition.

Figure 3.4 clearly shows the repetition of the while statement discussed earlier in this
section. The transition arrow emerging from the action state points back to the merge,
from which program flow transitions back to the decision that’s tested at the beginning of
each iteration of the loop. The loop continues to execute until the guard condition
product > 100 becomes true. Then the while statement exits (reaches its final state), and
control passes to the next statement in sequence in the program.

3.8 Formulating Algorithms: Counter-Controlled
Repetition
To illustrate how algorithms are developed, we solve two variations of a problem that av-
erages student grades. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0–100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each grade, keep track of the
total of all grades input, perform the averaging calculation and print the result.

Fig. 3.4 | while repetition statement UML activity diagram.

triple product value

Corresponding Java statement:
product = 3 * product;

decision
[product <= 100]

[product > 100]

merge

Musa
Highlight

84 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

Pseudocode Algorithm with Counter-Controlled Repetition
Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled repetition to input the grades one at a time.
This technique uses a variable called a counter (or control variable) to control the number
of times a set of statements will execute. Counter-controlled repetition is often called defi-
nite repetition, because the number of repetitions is known before the loop begins execut-
ing. In this example, repetition terminates when the counter exceeds 10. This section
presents a fully developed pseudocode algorithm (Fig. 3.5) and a corresponding Java pro-
gram (Fig. 3.6) that implements the algorithm. In Section 3.9, we demonstrate how to use
pseudocode to develop such an algorithm from scratch.

Note the references in the algorithm of Fig. 3.5 to a total and a counter. A total is a
variable used to accumulate the sum of several values. A counter is a variable used to
count—in this case, the grade counter indicates which of the 10 grades is about to be
entered by the user. Variables used to store totals are normally initialized to zero before
being used in a program.

Implementing Counter-Controlled Repetition
In Fig. 3.6, class ClassAverage’s main method (lines 7–31) implements the class-averaging
algorithm described by the pseudocode in Fig. 3.5—it allows the user to enter 10 grades,
then calculates and displays the average.

Software Engineering Observation 3.1
Experience has shown that the most difficult part of solving a problem on a computer is
developing the algorithm for the solution. Once a correct algorithm has been specified,
producing a working Java program from it is usually straightforward.

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Prompt the user to enter the next grade
6 Input the next grade
7 Add the grade into the total
8 Add one to the grade counter
9

10 Set the class average to the total divided by ten
11 Print the class average

Fig. 3.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-
average problem.

1 // Fig. 3.6: ClassAverage.java
2 // Solving the class-average problem using counter-controlled repetition.
3 import java.util.Scanner; // program uses class Scanner
4

Fig. 3.6 | Solving the class-average problem using counter-controlled repetition. (Part 1 of 2.)

3.8 Formulating Algorithms: Counter-Controlled Repetition 85

Local Variables in Method main

Line 10 declares and initializes Scanner object input, which is used to read values entered
by the user. Lines 13, 14, 20 and 26 declare local variables total, gradeCounter, grade
and average, respectively, to be of type int. Variable grade stores the user input.

These declarations appear in the body of method main. Recall that variables declared
in a method body are local variables and can be used only from the line of their declaration
to the closing right brace of the method declaration. A local variable’s declaration must
appear before the variable is used in that method. A local variable cannot be accessed out-

5 public class ClassAverage
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 // initialization phase
13 int total = 0; // initialize sum of grades entered by the user
14
15
16 // processing phase uses counter-controlled repetition
17 while () // loop 10 times
18 {
19 System.out.print("Enter grade: "); // prompt
20 int grade = input.nextInt(); // input next grade
21 total = total + grade; // add grade to total
22
23 }
24
25 // termination phase
26 int average = total / 10; // integer division yields integer result
27
28 // display total and average of grades
29 System.out.printf("%nTotal of all 10 grades is %d%n", total);
30 System.out.printf("Class average is %d%n", average);
31 }
32 } // end class ClassAverage

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Fig. 3.6 | Solving the class-average problem using counter-controlled repetition. (Part 2 of 2.)

int gradeCounter = 1; // initialize # of grade to be entered next

gradeCounter <= 10

gradeCounter = gradeCounter + 1; // increment counter by 1

86 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

side the method in which it’s declared. Variable grade, declared in the body of the while
loop, can be used only in that block.

Initialization Phase: Initializing Variables total and gradeCounter

The assignments (in lines 13–14) initialize total to 0 and gradeCounter to 1. These ini-
tializations occur before the variables are used in calculations.

Processing Phase: Reading 10 Grades from the User
Line 17 indicates that the while statement should continue looping (also called iterating)
as long as gradeCounter’s value is less than or equal to 10. While this condition remains
true, the while statement repeatedly executes the statements between the braces that de-
limit its body (lines 18–23).

Line 19 displays the prompt "Enter grade: ". Line 20 reads the grade entered by the
user and assigns it to variable grade. Then line 21 adds the new grade entered by the user
to the total and assigns the result to total, which replaces its previous value.

Line 22 adds 1 to gradeCounter to indicate that the program has processed a grade and
is ready to input the next grade from the user. Incrementing gradeCounter eventually causes
it to exceed 10. Then the loop terminates, because its condition (line 17) becomes false.

Termination Phase: Calculating and Displaying the Class Average
When the loop terminates, line 26 performs the averaging calculation and assigns its result
to the variable average. Line 29 uses System.out’s printf method to display the text "To-
tal of all 10 grades is " followed by variable total’s value. Line 30 then uses printf
to display the text "Class average is " followed by variable average’s value. When exe-
cution reaches line 31, the program terminates.

Notes on Integer Division and Truncation
The averaging calculation performed by method main produces an integer result. The pro-
gram’s output indicates that the sum of the grade values in the sample execution is 846,
which, when divided by 10, should yield the floating-point number 84.6. However, the
result of the calculation total / 10 (line 26 of Fig. 3.6) is the integer 84, because total
and 10 are both integers. Dividing two integers results in integer division—any fractional
part of the calculation is truncated (i.e., lost). In the next section we’ll see how to obtain a
floating-point result from the averaging calculation.

Common Programming Error 3.3
Using the value of a local variable before it’s initialized results in a compilation error. All
local variables must be initialized before their values are used in expressions.

Error-Prevention Tip 3.3
Initialize each total and counter, either in its declaration or in an assignment statement.
Totals are normally initialized to 0. Counters are normally initialized to 0 or 1, depend-
ing on how they’re used (we’ll show examples of when to use 0 and when to use 1).

Common Programming Error 3.4
Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 ÷ 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

3.9 Formulating Algorithms: Sentinel-Controlled Repetition 87

A Note About Arithmetic Overflow
In Fig. 3.6, line 21

added each grade entered by the user to the total. Even this simple statement has a potential
problem—adding the integers could result in a value that’s too large to store in an int vari-
able. This is known as arithmetic overflow and causes undefined behavior, which can lead to
unintended results (http://en.wikipedia.org/wiki/Integer_overflow#Security_
ramifications). Figure 2.7’s Addition program had the same issue in line 23, which calcu-
lated the sum of two int values entered by the user:

The maximum and minimum values that can be stored in an int variable are repre-
sented by the constants MIN_VALUE and MAX_VALUE, respectively, which are defined in class
Integer. There are similar constants for the other integral types and for floating-point types.
Each primitive type has a corresponding class type in package java.lang. You can see the
values of these constants in each class’s online documentation. The online documentation
for class Integer is located at:

It’s considered a good practice to ensure, before you perform arithmetic calculations
like those in line 21 of Fig. 3.6 and line 23 of Fig. 2.7, that they will not overflow. The
code for doing this is shown on the CERT website www.securecoding.cert.org—just
search for guideline “NUM00-J.” The code uses the && (logical AND) and || (logical OR)
operators, which are introduced in Chapter 4. In industrial-strength code, you should per-
form checks like these for all calculations.

A Deeper Look at Receiving User Input
Any time a program receives input from the user, various problems might occur. For ex-
ample, in line 20 of Fig. 3.6

we assume that the user will enter an integer grade in the range 0 to 100. However, the per-
son entering a grade could enter an integer less than 0, an integer greater than 100, an integer
outside the range of values that can be stored in an int variable, a number containing a dec-
imal point or a value containing letters or special symbols that’s not even an integer.

To ensure that inputs are valid, industrial-strength programs must test for all possible
erroneous cases. A program that inputs grades should validate the grades by using range
checking to ensure that hey are values from 0 to 100. You can then ask the user to reenter
any value that’s out of range. If a program requires inputs from a specific set of values (e.g.,
nonsequential product codes), you can ensure that each input matches a value in the set.

3.9 Formulating Algorithms: Sentinel-Controlled
Repetition
Let’s generalize Section 3.8’s class-average problem. Consider the following problem:

Develop a class-averaging program that processes grades for an arbitrary number of
students each time it’s run.

total = total + grade; // add grade to total

sum = number1 + number2; // add numbers, then store total in sum

http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

int grade = input.nextInt(); // input next grade

http://en.wikipedia.org/wiki/Integer_overflow#Security_ramifications
http://en.wikipedia.org/wiki/Integer_overflow#Security_ramifications
www.securecoding.cert.org
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html
Musa
Highlight

88 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication
is given of how many grades the user will enter during the program’s execution. The pro-
gram must process an arbitrary number of grades. How can it determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user enters grades until all legitimate grades have been entered. The user then types the
sentinel value to indicate that no more grades will be entered. Sentinel-controlled repeti-
tion is often called indefinite repetition because the number of repetitions is not known
before the loop begins executing.

Clearly, a sentinel value must be chosen that cannot be confused with an acceptable
input value. Grades on a quiz are nonnegative integers, so –1 is an acceptable sentinel value
for this problem. Thus, a run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89; since –1 is the sentinel value, it should not
enter into the averaging calculation.

Developing the Pseudocode Algorithm with Top-Down, Stepwise Refinement:
The Top and First Refinement
We approach this class-average program with a technique called top-down, stepwise re-
finement, which is essential to the development of well-structured programs. We begin
with a pseudocode representation of the top—a single statement that conveys the overall
function of the program:

The top is, in effect, a complete representation of a program. Unfortunately, the top rarely
conveys sufficient detail from which to write a Java program. So we now begin the refine-
ment process. We divide the top into a series of smaller tasks and list these in the order in
which they’ll be performed. This results in the following first refinement:

This refinement uses only the sequence structure—the steps listed should execute in order,
one after the other.

Determine the class average for the quiz

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

Software Engineering Observation 3.2
Each refinement, as well as the top itself, is a complete specification of the algorithm—
only the level of detail varies.

Software Engineering Observation 3.3
Many programs can be divided logically into three phases: an initialization phase that
initializes the variables; a processing phase that inputs data values and adjusts program
variables accordingly; and a termination phase that calculates and outputs the final results.

3.9 Formulating Algorithms: Sentinel-Controlled Repetition 89

Proceeding to the Second Refinement
The preceding Software Engineering Observation is often all you need for the first refine-
ment in the top-down process. To proceed to the next level of refinement—that is, the
second refinement—we commit to specific variables. In this example, we need a running
total of the numbers, a count of how many numbers have been processed, a variable to
receive the value of each grade as it’s input by the user and a variable to hold the calculated
average. The pseudocode statement

can be refined as follows:

Only the variables total and counter need to be initialized before they’re used. The variables
average and grade (for the calculated average and the user input, respectively) need not be
initialized, because their values will be replaced as they’re calculated or input.

The pseudocode statement

requires repetition to successively input each grade. We do not know in advance how many
grades will be entered, so we’ll use sentinel-controlled repetition. The user enters grades one
at a time. After entering the last grade, the user enters the sentinel value. The program tests
for the sentinel value after each grade is input and terminates the loop when the user enters
the sentinel value. The second refinement of the preceding pseudocode statement is then

In pseudocode, we do not use braces around the statements that form the body of the
While structure. We simply indent the statements under the While to show that they be-
long to the While. Again, pseudocode is only an informal program development aid.

The pseudocode statement

can be refined as follows:

Initialize variables

Initialize total to zero
Initialize counter to zero

Input, sum and count the quiz grades

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

Calculate and print the class average

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

90 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

We’re careful here to test for the possibility of division by zero—a logic error that, if unde-
tected, would cause the program to fail or produce invalid output. The complete second
refinement of the pseudocode for the class-average problem is shown in Fig. 3.7.

In Figs. 3.5 and 3.7, we included blank lines and indentation in the pseudocode to
make it more readable. The blank lines separate the algorithms into their phases and set
off control statements; the indentation emphasizes the bodies of the control statements.

The pseudocode algorithm in Fig. 3.7 solves the more general class-average problem.
This algorithm was developed after two refinements. Sometimes more are needed.

Error-Prevention Tip 3.4
When performing division (/) or remainder (%) calculations in which the right operand
could be zero, test for this and handle it (e.g., display an error message) rather than al-
lowing the error to occur.

1 Initialize total to zero
2 Initialize counter to zero
3
4 Prompt the user to enter the first grade
5 Input the first grade (possibly the sentinel)
6
7 While the user has not yet entered the sentinel
8 Add this grade into the running total
9 Add one to the grade counter

10 Prompt the user to enter the next grade
11 Input the next grade (possibly the sentinel)
12
13 If the counter is not equal to zero
14 Set the average to the total divided by the counter
15 Print the average
16 else
17 Print “No grades were entered”

Fig. 3.7 | Class-average pseudocode algorithm with sentinel-controlled repetition.

Software Engineering Observation 3.4
Terminate the top-down, stepwise refinement process when you’ve specified the pseudocode
algorithm in sufficient detail for you to convert the pseudocode to Java. Normally,
implementing the Java program is then straightforward.

Software Engineering Observation 3.5
Some programmers do not use program development tools like pseudocode. They feel that
their ultimate goal is to solve the problem on a computer and that writing pseudocode
merely delays the production of final outputs. Although this may work for simple and
familiar problems, it can lead to serious errors and delays in large, complex projects.

3.9 Formulating Algorithms: Sentinel-Controlled Repetition 91

Implementing Sentinel-Controlled Repetition
In Fig. 3.8, method main (lines 7–46) implements the pseudocode algorithm of Fig. 3.7.
Although each grade is an int, the averaging calculation is likely to produce a number with
a decimal point—in other words, a real (floating-point) number. The type int cannot rep-
resent such a number, so this class uses type double to do so. You’ll also see that control
statements may be stacked on top of one another (in sequence). The while statement (lines
22–30) is followed in sequence by an if…else statement (lines 34–45). Much of the code
in this program is identical to that in Fig. 3.6, so we concentrate on the new concepts.

1 // Fig. 3.8: ClassAverage.java
2 // Solving the class-average problem using sentinel-controlled repetition.
3 import java.util.Scanner; // program uses class Scanner
4
5 public class ClassAverage
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12 // initialization phase
13 int total = 0; // initialize sum of grades
14
15
16 // processing phase
17
18
19
20
21
22 while (grade != -1)
23 {
24 total = total + grade; // add grade to total
25 gradeCounter = gradeCounter + 1; // increment counter
26
27
28
29
30 }
31
32 // termination phase
33 // if user entered at least one grade...
34 if ()
35 {
36
37
38
39 // display total and average (with two digits of precision)
40 System.out.printf("%nTotal of the %d grades entered is %d%n",
41 gradeCounter, total);

Fig. 3.8 | Solving the class-average problem using sentinel-controlled repetition. (Part 1 of 2.)

int gradeCounter = 0; // initialize # of grades entered so far

// prompt for input and read grade from user
System.out.print("Enter grade or -1 to quit: ");
int grade = input.nextInt();

// loop until sentinel value read from user

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

gradeCounter != 0

// use number with decimal point to calculate average of grades
double average = (double) total / gradeCounter;

92 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

Floating-Point Number Precision and Memory Requirements
Most averages are not integers. So, this example calculates the class average as a floating-
point number—a number with a decimal point, such as 43.95, 0.0, –129.8873. Java pro-
vides two primitive types for storing floating-point numbers in memory—float and dou-
ble. Variables of type float represent single-precision floating-point numbers and can
hold up to seven significant digits. Variables of type double represent double-precision
floating-point numbers. These require twice as much memory as float variables and can
hold up to 15 significant digits—about double the precision of float variables.

Most programmers represent floating-point numbers with type double. In fact, Java
treats all floating-point numbers you type in a program’s source code (such as 7.33 and
0.0975) as double values by default. Such values in the source code are known as floating-
point literals. See Appendix D, Primitive Types, for the precise ranges of values for floats
and doubles.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Line 37 declares double variable average, which allows us to store the class average as a
floating-point number. Line 14 initializes gradeCounter to 0, because no grades have been
entered yet. Remember that this program uses sentinel-controlled repetition to input the
grades. To keep an accurate record of the number of grades entered, the program incre-
ments gradeCounter only when the user enters a valid grade.

Compare the program logic for sentinel-controlled repetition in this application with
that for counter-controlled repetition in Fig. 3.6. In counter-controlled repetition, each
iteration of the while statement (lines 17–23 of Fig. 3.6) reads a value from the user, for
the specified number of iterations. In sentinel-controlled repetition, the program reads the
first value (lines 18–19 of Fig. 3.8) before reaching the while. This value determines
whether the program’s flow of control should enter the body of the while. If the condition
of the while is false, the user entered the sentinel value, so the body of the while does not
execute (i.e., no grades were entered). If, on the other hand, the condition is true, the body
begins execution, and the loop adds the grade value to the total and increments the
gradeCounter (lines 24–25). Then lines 28–29 in the loop body input the next value from
the user. Next, program control reaches the closing right brace of the loop body at line 30,

42 System.out.printf("Class average is %.2f%n", average);
43 }
44 else // no grades were entered, so output appropriate message
45 System.out.println("No grades were entered");
46 }
47 } // end class ClassAverage

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. 3.8 | Solving the class-average problem using sentinel-controlled repetition. (Part 2 of 2.)

3.9 Formulating Algorithms: Sentinel-Controlled Repetition 93

so execution continues with the test of the while’s condition (line 22). The condition uses
the most recent grade input by the user to determine whether the loop body should exe-
cute again. The value of variable grade is always input from the user immediately before
the program tests the while condition. This allows the program to determine whether the
value just input is the sentinel value before the program processes that value (i.e., adds it to
the total). If the sentinel value is input, the loop terminates, and the program does not
add –1 to the total.

After the loop terminates, the if…else statement at lines 34–45 executes. The con-
dition at line 34 determines whether any grades were input. If none were input, the else
part (lines 44–45) of the if…else statement executes and displays the message "No
grades were entered" and the method returns control to the calling method.

Braces in a while statement
Notice the while statement’s block in Fig. 3.8 (lines 23–30). Without the braces, the loop
would consider its body to be only the first statement, which adds the grade to the total.
The last three statements in the block would fall outside the loop body, causing the com-
puter to interpret the code incorrectly as follows:

The preceding code would cause an infinite loop in the program if the user did not input
the sentinel -1 at line 19 (before the while statement).

Explicitly and Implicitly Converting Between Primitive Types
If at least one grade was entered, line 37 of Fig. 3.8 calculates the average of the grades.
Recall from Fig. 3.6 that integer division yields an integer result. Even though variable
average is declared as a double, if we had written the averaging calculation as

it would lose the fractional part of the quotient before the result of the division is assigned
to average. This occurs because total and gradeCounter are both integers, and integer
division yields an integer result.

Most averages are not whole numbers (e.g., 0, –22 and 1024). For this reason, we cal-
culate the class average in this example as a floating-point number. To perform a floating-

Good Programming Practice 3.3
In a sentinel-controlled loop, prompts should remind the user of the sentinel.

while (grade != -1)
total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter
// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

Common Programming Error 3.5
Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To
prevent this problem, some programmers enclose the body of every control statement in
braces, even if the body contains only a single statement.

double average = total / gradeCounter;

94 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

point calculation with integer values, we must temporarily treat these values as floating-
point numbers for use in the calculation. Java provides the unary cast operator to accom-
plish this task. Line 37 of Fig. 3.8 uses the (double) cast operator—a unary operator—to
create a temporary floating-point copy of its operand total (which appears to the right of
the operator). Using a cast operator in this manner is called explicit conversion or type
casting. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double copy of
total) divided by the integer gradeCounter. Java can evaluate only arithmetic expressions
in which the operands’ types are identical. To ensure this, Java performs an operation
called promotion (or implicit conversion) on selected operands. For example, in an
expression containing int and double values, the int values are promoted to double
values for use in the expression. In this example, the value of gradeCounter is promoted
to type double, then floating-point division is performed and the result of the calculation
is assigned to average. As long as the (double) cast operator is applied to any variable in
the calculation, the calculation will yield a double result. Later in this chapter, we discuss
all the primitive types. You’ll learn more about the promotion rules in Section 5.7.

A cast operator is formed by placing parentheses around any type’s name. The oper-
ator is a unary operator (i.e., an operator that takes only one operand). Java also supports
unary versions of the plus (+) and minus (–) operators, so you can write expressions like -
7 or +5. Cast operators associate from right to left and have the same precedence as other
unary operators, such as unary + and unary -. This precedence is one level higher than that
of the multiplicative operators *, / and %. (See the operator precedence chart in
Appendix A.) We indicate the cast operator with the notation (type) in our precedence
charts, to indicate that any type name can be used to form a cast operator.

Line 42 displays the class average. In this example, we display the class average rounded
to the nearest hundredth. The format specifier %.2f in printf’s format control string indi-
cates that variable average’s value should be displayed with two digits of precision to the
right of the decimal point—indicated by.2 in the format specifier. The three grades
entered during the sample execution (Fig. 3.8) total 257, which yields the average
85.666666…. Method printf uses the precision in the format specifier to round the value
to the specified number of digits. In this program, the average is rounded to the hun-
dredths position and is displayed as 85.67.

Floating-Point Number Precision
Floating-point numbers are not always 100% precise, but they have numerous applica-
tions. For example, when we speak of a “normal” body temperature of 98.6, we do not
need to be precise to a large number of digits. When we read the temperature on a ther-
mometer as 98.6, it may actually be 98.5999473210643. Calling this number simply 98.6
is fine for most applications involving body temperatures.

Floating-point numbers often arise as a result of division, such as in this example’s
class-average calculation. In conventional arithmetic, when we divide 10 by 3, the result is
3.3333333…, with the sequence of 3s repeating infinitely. The computer allocates only a

Common Programming Error 3.6
A cast operator can be used to convert between primitive numeric types, such as int and
double. Casting to the wrong type may cause compilation errors. 3.6

3.10 Formulating Algorithms: Nested Control Statements 95

fixed amount of space to hold such a value, so clearly the stored floating-point value can
be only an approximation.

Owing to the imprecise nature of floating-point numbers, type double is preferred
over type float, because double variables can represent floating-point numbers more
accurately. For this reason, we primarily use type double throughout the book. In some
applications, the precision of float and double variables will be inadequate. For precise
floating-point numbers (such as those required by monetary calculations), Java provides
class BigDecimal (package java.math), which we’ll discuss in Chapter 8.

3.10 Formulating Algorithms: Nested Control Statements
For the next example, we once again formulate an algorithm by using pseudocode and top-
down, stepwise refinement, and write a corresponding Java program. We’ve seen that con-
trol statements can be stacked on top of one another (in sequence). In this case study, we
examine the only other structured way control statements can be connected—namely, by
nesting one control statement within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real-estate
brokers. Last year, ten of the students who completed this course took the exam. The col-
lege wants to know how well its students did on the exam. You’ve been asked to write a
program to summarize the results. You’ve been given a list of these 10 students. Next to
each name is written a 1 if the student passed the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop
can be used, because the number of test results is known in advance.

2. Each test result has a numeric value—either a 1 or a 2. Each time it reads a test
result, the program must determine whether it’s a 1 or a 2. We test for a 1 in our
algorithm. If the number is not a 1, we assume that it’s a 2. (Exercise 3.24 con-
siders the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number who failed.

4. After the program has processed all the results, it must decide whether more than
eight students passed the exam.

Common Programming Error 3.7
Using floating-point numbers in a manner that assumes they’re represented precisely can
lead to incorrect results.

Musa
Highlight

96 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Once again, the top is a complete representation of the program, but several refinements
are likely to be needed before the pseudocode can evolve naturally into a Java program.

Our first refinement is

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process and a
variable is needed to store the user input. The variable in which the user input will be
stored is not initialized at the start of the algorithm, because its value is read from the user
during each iteration of the loop.

The pseudocode statement

can be refined as follows:

Notice that only the counters are initialized at the start of the algorithm.
The pseudocode statement

requires a loop that successively inputs the result of each exam. We know in advance that
there are precisely 10 exam results, so counter-controlled looping is appropriate. Inside the
loop (i.e., nested within the loop), a double-selection structure will determine whether each
exam result is a pass or a failure and will increment the appropriate counter. The refine-
ment of the preceding pseudocode statement is then

We use blank lines to isolate the If…Else control structure, which improves readability.

Analyze exam results and decide whether a bonus should be paid

Initialize variables
Input the 10 exam results, and count passes and failures
Print a summary of the exam results and decide whether a bonus should be paid

Initialize variables

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

Input the 10 exam results, and count passes and failures

While student counter is less than or equal to 10
Prompt the user to enter the next exam result
Input the next exam result

If the student passed
Add one to passes

Else
Add one to failures

Add one to student counter

3.10 Formulating Algorithms: Nested Control Statements 97

The pseudocode statement

can be refined as follows:

Complete Second Refinement of Pseudocode and Conversion to Class Analysis
The complete second refinement appears in Fig. 3.9. Notice that blank lines are also used
to set off the While structure for program readability. This pseudocode is now sufficiently
refined for conversion to Java.

The Java class that implements the pseudocode algorithm and two sample executions
are shown in Fig. 3.10. Lines 13, 14, 15 and 22 of main declare the variables that are used
to process the examination results.

Print a summary of the exam results and decide whether a bonus should be paid

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Bonus to instructor!”

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed

10 Add one to passes
11 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Print the number of passes
17 Print the number of failures
18
19 If more than eight students passed
20 Print “Bonus to instructor!”

Fig. 3.9 | Pseudocode for examination-results problem.

Error-Prevention Tip 3.5
Initializing local variables when they’re declared helps you avoid compilation errors that
might arise from attempts to use uninitialized variables. While Java does not require that
local-variable initializations be incorporated into declarations, it does require that each
local variable be given a value before its value is used in an expression.

98 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

The while statement (lines 18–32) loops 10 times. During each iteration, the loop
inputs and processes one exam result. Notice that the if…else statement (lines 25–28)
for processing each result is nested in the while statement. If the result is 1, the if…else
statement increments passes; otherwise, it assumes the result is 2 and increments fail-
ures. Line 31 increments studentCounter before the loop condition is tested again at line
18. After 10 values have been input, the loop terminates and line 35 displays the number
of passes and failures. The if statement at lines 38–39 determines whether more than
eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

1 // Fig. 3.10: Analysis.java
2 // Analysis of examination results using nested control statements.
3 import java.util.Scanner; // class uses class Scanner
4
5 public class Analysis
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12
13
14
15
16
17 // process 10 students using counter-controlled loop
18 while (studentCounter <= 10)
19 {
20 // prompt user for input and obtain value from user
21 System.out.print("Enter result (1 = pass, 2 = fail): ");
22 int result = input.nextInt();
23
24
25
26
27
28
29
30 // increment studentCounter so loop eventually terminates
31 studentCounter = studentCounter + 1;
32 }
33
34 // termination phase; prepare and display results
35
36
37
38
39
40 }
41 } // end class Analysis

Fig. 3.10 | Analysis of examination results using nested control statements. (Part 1 of 2.)

// initializing variables in declarations
int passes = 0;
int failures = 0;
int studentCounter = 1;

// if...else is nested in the while statement
if (result == 1)

passes = passes + 1;
else

failures = failures + 1;

System.out.printf("Passed: %d%nFailed: %d%n", passes, failures);

// determine whether more than 8 students passed
if (passes > 8)

System.out.println("Bonus to instructor!");

3.11 Compound Assignment Operators 99

Figure 3.10 shows the input and output from two sample excutions of the program.
During the first, the condition at line 38 of method main is true—more than eight stu-
dents passed the exam, so the program outputs a message to bonus the instructor.

3.11 Compound Assignment Operators
The compound assignment operators abbreviate assignment expressions. Statements like

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

For example, you can abbreviate the statement

with the addition compound assignment operator, +=, as

The += operator adds the value of the expression on its right to the value of the variable on
its left and stores the result in the variable on the left of the operator. Thus, the assignment

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Bonus to instructor!

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 6
Failed: 4

variable = variable operator expression;

variable operator= expression;

c = c + 3;

c += 3;

Fig. 3.10 | Analysis of examination results using nested control statements. (Part 2 of 2.)

Musa
Highlight

100 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

expression c += 3 adds 3 to c. Figure 3.11 shows the arithmetic compound assignment op-
erators, sample expressions using the operators and explanations of what the operators do.

3.12 Increment and Decrement Operators
Java provides two unary operators (summarized in Fig. 3.12) for adding 1 to or subtracting
1 from the value of a numeric variable. These are the unary increment operator, ++, and
the unary decrement operator, --. A program can increment by 1 the value of a variable
called c using the increment operator, ++, rather than the expression c = c + 1 or c += 1.
An increment or decrement operator that’s prefixed to (placed before) a variable is referred
to as the prefix increment or prefix decrement operator, respectively. An increment or
decrement operator that’s postfixed to (placed after) a variable is referred to as the postfix
increment or postfix decrement operator, respectively.

Using the prefix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as preincrementing (or predecrementing). This causes the variable to
be incremented (decremented) by 1; then the new value of the variable is used in the
expression in which it appears. Using the postfix increment (or decrement) operator to add
1 to (or subtract 1 from) a variable is known as postincrementing (or postdecrementing).

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
+= c += 7 c = c + 7 10 to c
-= d -= 4 d = d - 4 1 to d
*= e *= 5 e = e * 5 20 to e
/= f /= 3 f = f / 3 2 to f
%= g %= 9 g = g % 9 3 to g

Fig. 3.11 | Arithmetic compound assignment operators.

Operator
Operator
name

Sample
expression Explanation

++ prefix
increment

++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postfix
increment

a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- prefix
decrement

--b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postfix
decrement

b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 3.12 | Increment and decrement operators.

Musa
Highlight

3.12 Increment and Decrement Operators 101

This causes the current value of the variable to be used in the expression in which it
appears; then the variable’s value is incremented (decremented) by 1.

Difference Between Prefix Increment and Postfix Increment Operators
Figure 3.13 demonstrates the difference between the prefix increment and postfix incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

Line 9 initializes the variable c to 5, and line 10 outputs c’s initial value. Line 11 out-
puts the value of the expression c++. This expression postincrements the variable c, so c’s
original value (5) is output, then c’s value is incremented (to 6). Thus, line 11 outputs c’s
initial value (5) again. Line 12 outputs c’s new value (6) to prove that the variable’s value
was indeed incremented in line 11.

Line 17 resets c’s value to 5, and line 18 outputs c’s value. Line 19 outputs the value
of the expression ++c. This expression preincrements c, so its value is incremented; then
the new value (6) is output. Line 20 outputs c’s value again to show that the value of c is
still 6 after line 19 executes.

Good Programming Practice 3.4
Unlike binary operators, the unary increment and decrement operators should be placed
next to their operands, with no intervening spaces.

1 // Fig. 3.13: Increment.java
2 // Prefix increment and postfix increment operators.
3
4 public class Increment
5 {
6 public static void main(String[] args)
7 {
8 // demonstrate postfix increment operator
9 int c = 5;

10 System.out.printf("c before postincrement: %d%n", c); // prints 5
11
12
13
14 System.out.println(); // skip a line
15
16 // demonstrate prefix increment operator
17 c = 5;
18 System.out.printf(" c before preincrement: %d%n", c); // prints 5
19
20
21 }
22 } // end class Increment

c before postincrement: 5
postincrementing c: 5

c after postincrement: 6

c before preincrement: 5
preincrementing c: 6

c after preincrement: 6

Fig. 3.13 | Prefix increment and postfix increment operators.

System.out.printf(" postincrementing c: %d%n", c++); // prints 5
System.out.printf(" c after postincrement: %d%n", c); // prints 6

System.out.printf(" preincrementing c: %d%n", ++c); // prints 6
System.out.printf(" c after preincrement: %d%n", c); // prints 6

102 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

Simplifying Statements with the Arithmetic Compound Assignment, Increment and
Decrement Operators
The arithmetic compound assignment operators and the increment and decrement oper-
ators can be used to simplify program statements. For example, the three assignment state-
ments in Fig. 3.10 (lines 26, 28 and 31)

can be written more concisely with compound assignment operators as

with prefix increment operators as

or with postfix increment operators as

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same effect, and the prefix decrement and
postfix decrement forms have the same effect. It’s only when a variable appears in the con-
text of a larger expression that preincrementing and postincrementing the variable have
different effects (and similarly for predecrementing and postdecrementing).

Operator Precedence and Associativity
Figure 3.14 shows the precedence and associativity of the operators we’ve introduced.
They’re shown from top to bottom in decreasing order of precedence. The second column
describes the associativity of the operators at each level of precedence. The conditional op-
erator (?:); the unary operators increment (++), decrement (--), plus (+) and minus (-);
the cast operators and the assignment operators =, +=, -=, *=, /= and %= associate from right
to left. All the other operators in the operator precedence chart in Fig. 3.14 associate from
left to right. The third column lists the type of each group of operators.

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

passes += 1;
failures += 1;
studentCounter += 1;

++passes;
++failures;
++studentCounter;

passes++;
failures++;
studentCounter++;

Common Programming Error 3.8
Attempting to use the increment or decrement operator on an expression other than one to
which a value can be assigned is a syntax error. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not a variable.

Good Programming Practice 3.5
Refer to Appendix A, Operator Precedence Chart, when writing expressions containing many
operators. Confirm that the operators in the expression are performed in the order you expect.
If you’re uncertain about the evaluation order, break the expression into smaller statements
or use parentheses to force the evaluation order, exactly as you’d do in an algebraic expression.
Some operators such as assignment (=) associate right to left rather than left to right.

3.13 Primitive Types 103

3.13 Primitive Types
The table in Appendix D lists the eight primitive types in Java. Like its predecessor lan-
guages C and C++, Java requires all variables to have a type. For this reason, Java is referred
to as a strongly typed language.

In C and C++, programmers frequently have to write separate versions of programs to
support different computer platforms, because the primitive types are not guaranteed to
be identical from computer to computer. For example, an int on one machine might be
represented by 16 bits (2 bytes) of memory, on a second machine by 32 bits (4 bytes), and
on another machine by 64 bits (8 bytes). In Java, int values are always 32 bits (4 bytes).

Each type in Appendix D is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of Java want to ensure portability, they use
internationally recognized standards for character formats (Unicode; for more informa-
tion, visit www.unicode.org) and floating-point numbers (IEEE 754; for more informa-
tion, visit grouper.ieee.org/groups/754/).

3.14 (Optional) GUI and Graphics Case Study: Creating
Simple Drawings
An appealing feature of Java is its graphics support, which enables you to visually enhance
your applications. We now introduce one of Java’s graphical capabilities—drawing lines.
It also covers the basics of creating a window to display a drawing on the computer screen.

Java’s Coordinate System
To draw in Java, you must understand Java’s coordinate system (Fig. 3.15), a scheme for
identifying points on the screen. By default, the upper-left corner of a GUI component
has the coordinates (0, 0). A coordinate pair is composed of an x-coordinate (the horizon-
tal coordinate) and a y-coordinate (the vertical coordinate). The x-coordinate is the hor-

Operators Associativity Type

++ -- right to left unary postfix

++ -- + - (type) right to left unary prefix
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 3.14 | Precedence and associativity of the operators discussed so far.

Portability Tip 3.1
The primitive types in Java are portable across all computer platforms that support Java.

www.unicode.org
Musa
Highlight

104 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

izontal location moving from left to right. The y-coordinate is the vertical location moving
from top to bottom. The x-axis describes every horizontal coordinate, and the y-axis every
vertical coordinate. Coordinates indicate where graphics should be displayed on a screen.
Coordinate units are measured in pixels. The term pixel stands for “picture element.” A
pixel is a display monitor’s smallest unit of resolution.

First Drawing Application
Our first drawing application simply draws two lines. Class DrawPanel (Fig. 3.16) per-
forms the actual drawing, while class DrawPanelTest (Fig. 3.17) creates a window to dis-
play the drawing. In class DrawPanel, the import statements in lines 3–4 allow us to use
class Graphics (from package java.awt), which provides various methods for drawing
text and shapes onto the screen, and class JPanel (from package javax.swing), which pro-
vides an area on which we can draw.

Fig. 3.15 | Java coordinate system. Units are measured in pixels.

1 // Fig. 3.16: DrawPanel.java
2 // Using drawLine to connect the corners of a panel.
3
4
5
6
7 {
8 // draws an X from the corners of the panel
9

10 {
11 // call paintComponent to ensure the panel displays correctly
12
13
14
15
16
17 // draw a line from the upper-left to the lower-right
18
19
20 // draw a line from the lower-left to the upper-right
21
22 }
23 } // end class DrawPanel

Fig. 3.16 | Using drawLine to connect the corners of a panel.

(0, 0)

(x, y)+y

+x

y-axis

x-axis

import java.awt.Graphics;
import javax.swing.JPanel;

public class DrawPanel extends JPanel

public void paintComponent(Graphics g)

super.paintComponent(g);

int width = getWidth(); // total width
int height = getHeight(); // total height

g.drawLine(0, 0, width, height);

g.drawLine(0, height, width, 0);

3.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings 105

Line 6 uses the keyword extends to indicate that class DrawPanel is an enhanced type
of JPanel. The keyword extends represents a so-called inheritance relationship in which
our new class DrawPanel begins with the existing members (data and methods) from class
JPanel. The class from which DrawPanel inherits, JPanel, appears to the right of keyword
extends. In this inheritance relationship, JPanel is called the superclass and DrawPanel is
called the subclass. This results in a DrawPanel class that has the attributes (data) and
behaviors (methods) of class JPanel as well as the new features we’re adding in our Draw-
Panel class declaration—specifically, the ability to draw two lines along the diagonals of
the panel. Inheritance is explained in detail in Chapter 9. For now, you should mimic our
DrawPanel class when creating your own graphics programs.

Method paintComponent

Every JPanel, including our DrawPanel, has a paintComponent method (lines 9–22),
which the system automatically calls every time it needs to display the DrawPanel. Method
paintComponent must be declared as shown in line 9—otherwise, the system will not call

1 // Fig. 3.17: DrawPanelTest.java
2 // Creating JFrame to display DrawPanel.
3
4
5 public class DrawPanelTest
6 {
7 public static void main(String[] args)
8 {
9 // create a panel that contains our drawing

10 DrawPanel panel = new DrawPanel();
11
12 // create a new frame to hold the panel
13
14
15 // set the frame to exit when it is closed
16
17
18
19
20
21 }
22 } // end class DrawPanelTest

Fig. 3.17 | Creating JFrame to display DrawPanel.

import javax.swing.JFrame;

JFrame application = new JFrame();

application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

application.add(panel); // add the panel to the frame
application.setSize(250, 250); // set the size of the frame
application.setVisible(true); // make the frame visible

106 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

it. This method is called when a JPanel is first displayed on the screen, when it’s covered
then uncovered by a window on the screen, and when the window in which it appears is
resized. Method paintComponent requires one argument, a Graphics object, that’s provid-
ed by the system when it calls paintComponent. This Graphics object is used to draw lines,
rectangles, ovals and other graphics.

The first statement in every paintComponent method you create should always be

which ensures that the panel is properly rendered before we begin drawing on it. Next,
lines 14–15 call methods that class DrawPanel inherits from JPanel. Because DrawPanel
extends JPanel, DrawPanel can use any public methods of JPanel. Methods getWidth
and getHeight return the JPanel’s width and height, respectively. Lines 14–15 store these
values in the local variables width and height. Finally, lines 18 and 21 use the Graphics
variable g to call method drawLine to draw the two lines. Method drawLine draws a line
between two points represented by its four arguments. The first two arguments are the x-
and y-coordinates for one endpoint, and the last two arguments are the coordinates for the
other endpoint. If you resize the window, the lines will scale accordingly, because the argu-
ments are based on the width and height of the panel. Resizing the window in this appli-
cation causes the system to call paintComponent to redraw the DrawPanel’s contents.

Class DrawPanelTest
To display the DrawPanel on the screen, you must place it in a window. You create a win-
dow with an object of class JFrame. In DrawPanelTest.java (Fig. 3.17), line 3 imports
class JFrame from package javax.swing. Line 10 in main creates a DrawPanel object,
which contains our drawing, and line 13 creates a new JFrame that can hold and display
our panel. Line 16 calls JFrame method setDefaultCloseOperation with the argument
JFrame.EXIT_ON_CLOSE to indicate that the application should terminate when the user
closes the window. Line 18 uses class JFrame’s add method to attach the DrawPanel to the
JFrame. Line 19 sets the size of the JFrame. Method setSize takes two parameters that
represent the width and height of the JFrame, respectively. Finally, line 20 displays the
JFrame by calling its setVisible method with the argument true. When the JFrame is
displayed, the DrawPanel’s paintComponent method (lines 9–22 of Fig. 3.16) is implicitly
called, and the two lines are drawn (see the sample outputs in Fig. 3.17). Try resizing the
window to see that the lines always draw based on the window’s current width and height.

GUI and Graphics Case Study Exercises
3.1 Using loops and control statements to draw lines can lead to many interesting designs.

a) Create the design in the left screen capture of Fig. 3.18. This design draws lines from
the top-left corner, fanning them out until they cover the upper-left half of the panel.
One approach is to divide the width and height into an equal number of steps (we found
15 steps worked well). The first endpoint of a line will always be in the top-left corner
(0, 0). The second endpoint can be found by starting at the bottom-left corner and
moving up one vertical step and right one horizontal step. Draw a line between the two
endpoints. Continue moving up and to the right one step to find each successive end-
point. The figure should scale accordingly as you resize the window.

b) Modify part (a) to have lines fan out from all four corners, as shown in the right screen
capture of Fig. 3.18. Lines from opposite corners should intersect along the middle.

super.paintComponent(g);

3.15 Wrap-Up 107

3.2 Figure 3.19 displays two additional designs created using while loops and drawLine.
a) Create the design in the left screen capture of Fig. 3.19. Begin by dividing each edge

into an equal number of increments (we chose 15 again). The first line starts in the top-
left corner and ends one step right on the bottom edge. For each successive line, move
down one increment on the left edge and right one increment on the bottom edge. Con-
tinue drawing lines until you reach the bottom-right corner. The figure should scale as
you resize the window so that the endpoints always touch the edges.

b) Modify your answer in part (a) to mirror the design in all four corners, as shown in the
right screen capture of Fig. 3.19.

3.15 Wrap-Up
This chapter presented basic problem solving for building classes and developing methods
for these classes. We demonstrated how to construct an algorithm (i.e., an approach to
solving a problem), then how to refine the algorithm through several phases of pseudocode
development, resulting in Java code that can be executed as part of a method. The chapter
showed how to use top-down, stepwise refinement to plan out the specific actions that a
method must perform and the order in which the method must perform these actions.

Fig. 3.18 | Lines fanning from a corner.

Fig. 3.19 | Line art with loops and drawLine.

108 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

Only three types of control structures—sequence, selection and repetition—are
needed to develop any problem-solving algorithm. Specifically, this chapter demonstrated
the if single-selection statement, the if…else double-selection statement and the while
repetition statement. These are some of the building blocks used to construct solutions to
many problems. We used control-statement stacking to total and compute the average of
a set of student grades with counter- and sentinel-controlled repetition, and we used con-
trol-statement nesting to analyze and make decisions based on a set of exam results. We
introduced Java’s compound assignment operators and its increment and decrement oper-
ators. Finally, we discussed Java’s primitive types. In Chapter 4, we continue our discus-
sion of control statements, introducing the for, do…while and switch statements.

Summary
Section 3.1 Introduction
• Before writing a program to solve a problem, you must have a thorough understanding of the

problem and a carefully planned approach to solving it. You must also understand the building
blocks that are available and employ proven program-construction techniques.

Section 3.2 Algorithms
• Any computing problem can be solved by executing a series of actions (p. 73) in a specific order.

• A procedure for solving a problem in terms of the actions to execute and the order in which they
execute is called an algorithm (p. 73).

• Specifying the order in which statements execute in a program is called program control (p. 73).

Section 3.3 Pseudocode
• Pseudocode (p. 74) is an informal language that helps you develop algorithms without having to

worry about the strict details of Java language syntax.

• The pseudocode we use in this book is similar to everyday English—it’s convenient and user
friendly, but it’s not an actual computer programming language. You may, of course, use your
own native language(s) to develop your own pseudocode.

• Pseudocode helps you “think out” a program before attempting to write it in a programming lan-
guage, such as Java.

• Carefully prepared pseudocode can easily be converted to a corresponding Java program.

Section 3.4 Control Structures
• Normally, statements in a program are executed one after the other in the order in which they’re

written. This process is called sequential execution (p. 74).

• Various Java statements enable you to specify that the next statement to execute is not necessarily
the next one in sequence. This is called transfer of control (p. 74).

• Bohm and Jacopini demonstrated that all programs could be written in terms of only three control
structures (p. 74)—the sequence structure, the selection structure and the repetition structure.

• The term “control structures” comes from the field of computer science. The Java Language Spec-
ification refers to “control structures” as “control statements” (p. 75).

Summary 109

• The sequence structure is built into Java. Unless directed otherwise, the computer executes Java
statements one after the other in the order in which they’re written—that is, in sequence.

• Anywhere a single action may be placed, several actions may be placed in sequence.

• Activity diagrams (p. 75) are part of the UML. An activity diagram models the workflow (p. 75;
also called the activity) of a portion of a software system.

• Activity diagrams are composed of symbols (p. 75)—such as action-state symbols, diamonds and
small circles—that are connected by transition arrows, which represent the flow of the activity.

• Action states (p. 75) contain action expressions that specify particular actions to perform.

• The arrows in an activity diagram represent transitions, which indicate the order in which the
actions represented by the action states occur.

• The solid circle located at the top of an activity diagram represents the activity’s initial state
(p. 75)—the beginning of the workflow before the program performs the modeled actions.

• The solid circle surrounded by a hollow circle that appears at the bottom of the diagram repre-
sents the final state (p. 75)—the end of the workflow after the program performs its actions.

• Rectangles with their upper-right corners folded over are UML notes (p. 75)—explanatory re-
marks that describe the purpose of symbols in the diagram.

• Java has three types of selection statements (p. 76).

• The if single-selection statement (p. 76) selects or ignores one or more actions.

• The if…else double-selection statement selects between two actions or groups of actions.

• The switch statement is called a multiple-selection statement (p. 76) because it selects among
many different actions or groups of actions.

• Java provides the while, do…while and for repetition (also called iteration or looping) state-
ments that enable programs to perform statements repeatedly as long as a loop-continuation con-
dition remains true.

• The while and for statements perform the action(s) in their bodies zero or more times—if the
loop-continuation condition (p. 76) is initially false, the action(s) will not execute. The
do…while statement performs the action(s) in its body one or more times.

• The words if, else, switch, while, do and for are Java keywords. Keywords cannot be used as
identifiers, such as variable names.

• Every program is formed by combining as many sequence, selection and repetition statements
(p. 76) as is appropriate for the algorithm the program implements.

• Single-entry/single-exit control statements (p. 76) are attached to one another by connecting the
exit point of one to the entry point of the next. This is known as control-statement stacking.

• A control statement may also be nested (p. 76) inside another control statement.

Section 3.5 if Single-Selection Statement
• Programs use selection statements to choose among alternative courses of action.

• The single-selection if statement’s activity diagram contains the diamond symbol, which indi-
cates that a decision is to be made. The workflow follows a path determined by the symbol’s as-
sociated guard conditions (p. 77). If a guard condition is true, the workflow enters the action
state to which the corresponding transition arrow points.

• The if statement is a single-entry/single-exit control statement.

Section 3.6 if…else Double-Selection Statement
• The if single-selection statement performs an indicated action only when the condition is true.

110 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

• The if…else double-selection (p. 76) statement performs one action when the condition is true
and another action when the condition is false.

• A program can test multiple cases with nested if…else statements (p. 78).

• The conditional operator (?:, p. 81) is Java’s only ternary operator—it takes three operands. To-
gether, the operands and the ?: symbol form a conditional expression (p. 81).

• The Java compiler associates an else with the immediately preceding if unless told to do other-
wise by the placement of braces.

• The if statement expects one statement in its body. To include several statements in the body
of an if (or the body of an else for an if…else statement), enclose the statements in braces.

• A block (p. 81) of statements can be placed anywhere that a single statement can be placed.

• A logic error (p. 81) has its effect at execution time. A fatal logic error (p. 81) causes a program
to fail and terminate prematurely. A nonfatal logic error (p. 81) allows a program to continue
executing, but causes it to produce incorrect results.

• Just as a block can be placed anywhere a single statement can be placed, you can also use an empty
statement, represented by placing a semicolon (;) where a statement would normally be.

Section 3.7 while Repetition Statement
• The while repetition statement (p. 82) allows you to specify that a program should repeat an ac-

tion while some condition remains true.

• The UML’s merge (p. 82) symbol joins two flows of activity into one.

• The decision and merge symbols can be distinguished by the number of incoming and outgoing
transition arrows. A decision symbol has one transition arrow pointing to the diamond and two
or more transition arrows pointing out from the diamond to indicate possible transitions from
that point. Each transition arrow pointing out of a decision symbol has a guard condition. A
merge symbol has two or more transition arrows pointing to the diamond and only one transi-
tion arrow pointing from the diamond, to indicate multiple activity flows merging to continue
the activity. None of the transition arrows associated with a merge symbol has a guard condition.

Section 3.8 Formulating Algorithms: Counter-Controlled Repetition
• Counter-controlled repetition (p. 84) uses a variable called a counter (or control variable) to con-

trol the number of times a set of statements execute.

• Counter-controlled repetition is often called definite repetition (p. 84), because the number of
repetitions is known before the loop begins executing.

• A total (p. 84) is a variable used to accumulate the sum of several values. Variables used to store
totals are normally initialized to zero before being used in a program.

• A local variable’s declaration must appear before the variable is used in that method. A local vari-
able cannot be accessed outside the method in which it’s declared.

• Dividing two integers results in integer division—the calculation’s fractional part is truncated.

Section 3.9 Formulating Algorithms: Sentinel-Controlled Repetition
• In sentinel-controlled repetition (p. 88), a special value called a sentinel value (also called a signal

value, a dummy value or a flag value) is used to indicate “end of data entry.”

• A sentinel value must be chosen that cannot be confused with an acceptable input value.

• Top-down, stepwise refinement (p. 88) is essential to the development of well-structured programs.

• Division by zero is a logic error.

• To perform a floating-point calculation with integer values, cast one of the integers to type double.

Self-Review Exercises 111

• Java knows how to evaluate only arithmetic expressions in which the operands’ types are identi-
cal. To ensure this, Java performs an operation called promotion on selected operands.

• The unary cast operator is formed by placing parentheses around the name of a type.

Section 3.11 Compound Assignment Operators
• The compound assignment operators (p. 99) abbreviate assignment expressions. Statements of

the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or %, can be written in the form

variable operator= expression;

• The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

Section 3.12 Increment and Decrement Operators
• The unary increment operator, ++, and the unary decrement operator, --, add 1 to or subtract 1

from the value of a numeric variable (p. 100).

• An increment or decrement operator that’s prefixed (p. 100) to a variable is the prefix increment
or prefix decrement operator, respectively. An increment or decrement operator that’s postfixed
(p. 100) to a variable is the postfix increment or postfix decrement operator, respectively.

• Using the prefix increment or decrement operator to add or subtract 1 is known as preincrement-
ing or predecrementing, respectively.

• Preincrementing or predecrementing a variable causes the variable to be incremented or decre-
mented by 1; then the new value of the variable is used in the expression in which it appears.

• Using the postfix increment or decrement operator to add or subtract 1 is known as postincre-
menting or postdecrementing, respectively.

• Postincrementing or postdecrementing the variable causes its value to be used in the expression
in which it appears; then the variable’s value is incremented or decremented by 1.

• When incrementing or decrementing a variable in a statement by itself, the prefix and postfix
increment have the same effect, and the prefix and postfix decrement have the same effect.

Section 3.13 Primitive Types
• Java requires all variables to have a type. Thus, Java is referred to as a strongly typed language

(p. 103).

• Java uses Unicode characters and IEEE 754 floating-point numbers.

Self-Review Exercises
3.1 Fill in the blanks in each of the following statements:

a) All programs can be written in terms of three types of control structures: ,
and .

b) The statement is used to execute one action when a condition is true and
another when that condition is false.

c) Repeating a set of instructions a specific number of times is called repetition.
d) When it’s not known in advance how many times a set of statements will be repeated,

a(n) value can be used to terminate the repetition.
e) The structure is built into Java; by default, statements execute in the order

they appear.

112 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

f) Instance variables of types char, byte, short, int, long, float and double are all given
the value by default.

g) Java is a(n) language; it requires all variables to have a type.
h) If the increment operator is to a variable, first the variable is incremented by

1, then its new value is used in the expression.

3.2 State whether each of the following is true or false. If false, explain why.
a) An algorithm is a procedure for solving a problem in terms of the actions to execute and

the order in which they execute.
b) A set of statements contained within a pair of parentheses is called a block.
c) A selection statement specifies that an action is to be repeated while some condition re-

mains true.
d) A nested control statement appears in the body of another control statement.
e) Java provides the arithmetic compound assignment operators +=, -=, *=, /= and %= for

abbreviating assignment expressions.
f) The primitive types (boolean, char, byte, short, int, long, float and double) are por-

table across only Windows platforms.
g) Specifying the order in which statements execute in a program is called program control.
h) The unary cast operator (double) creates a temporary integer copy of its operand.
i) Instance variables of type boolean are given the value true by default.
j) Pseudocode helps you think out a program before attempting to write it in a program-

ming language.

3.3 Write four different Java statements that each add 1 to integer variable x.

3.4 Write Java statements to accomplish each of the following tasks:
a) Use one statement to assign the sum of x and y to z, then increment x by 1.
b) Test whether variable count is greater than 10. If it is, print "Count is greater than 10".
c) Use one statement to decrement the variable x by 1, then subtract it from variable total

and store the result in variable total.
d) Calculate the remainder after q is divided by divisor, and assign the result to q. Write

this statement in two different ways.

3.5 Write a Java statement to accomplish each of the following tasks:
a) Declare variables sum of type int and initialize it to 0.
b) Declare variables x of type int and initialize it to 1.
c) Add variable x to variable sum, and assign the result to variable sum.
d) Print "The sum is: ", followed by the value of variable sum.

3.6 Combine the statements that you wrote in Exercise 3.5 into a Java application that calcu-
lates and prints the sum of the integers from 1 to 10. Use a while statement to loop through the
calculation and increment statements. The loop should terminate when the value of x becomes 11.

3.7 Determine the value of the variables in the statement product *= x++; after the calculation
is performed. Assume that all variables are type int and initially have the value 5.

3.8 Identify and correct the errors in each of the following sets of code:
a) while (c <= 5)

{
product *= c;
++c;

b) if (gender == 1)
System.out.println("Woman");

else;
System.out.println("Man");

Answers to Self-Review Exercises 113

3.9 What is wrong with the following while statement?

while (z >= 0)
sum += z;

Answers to Self-Review Exercises
3.1 a) sequence, selection, repetition. b) if…else. c) counter-controlled (or definite). d) sen-
tinel, signal, flag or dummy. e) sequence. f) 0 (zero). g) strongly typed. h) prefixed.

3.2 a) True. b) False. A set of statements contained within a pair of braces ({ and }) is called a
block. c) False. A repetition statement specifies that an action is to be repeated while some condi-
tion remains true. d) True. e) True. f) False. The primitive types (boolean, char, byte, short, int,
long, float and double) are portable across all computer platforms that support Java. g) True.
h) False. The unary cast operator (double) creates a temporary floating-point copy of its operand.
i) False. Instance variables of type boolean are given the value false by default. j) True.

3.3 x = x + 1;
x += 1;
++x;
x++;

3.4 a) z = x++ + y;
b) if (count > 10)

System.out.println("Count is greater than 10");
c) total -= --x;
d) q %= divisor;

q = q % divisor;

3.5 a) int sum = 0;
b) int x = 1;
c) sum += x; or sum = sum + x;
d) System.out.printf("The sum is: %d%n", sum);

3.6 The program is as follows:

1 // Exercise 3.6: Calculate.java
2 // Calculate the sum of the integers from 1 to 10
3 public class Calculate
4 {
5 public static void main(String[] args)
6 {
7 int sum = 0;
8 int x = 1;
9

10 while (x <= 10) // while x is less than or equal to 10
11 {
12 sum += x; // add x to sum
13 ++x; // increment x
14 }
15
16 System.out.printf("The sum is: %d%n", sum);
17 }
18 } // end class Calculate

The sum is: 55

114 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

3.7 product = 25, x = 6

3.8 a) Error: The closing right brace of the while statement’s body is missing.
Correction: Add a closing right brace after the statement ++c;.

b) Error: The semicolon after else results in a logic error. The second output statement
will always be executed.
Correction: Remove the semicolon after else.

3.9 The value of the variable z is never changed in the while statement. Therefore, if the loop-
continuation condition (z >= 0) is true, an infinite loop is created. To prevent an infinite loop from
occurring, z must be decremented so that it eventually becomes less than 0.

Exercises
3.10 Compare and contrast the if single-selection statement and the while repetition statement.
How are these two statements similar? How are they different?

3.11 Explain what happens when a Java program attempts to divide one integer by another.
What happens to the fractional part of the calculation? How can you avoid that outcome?

3.12 Describe the two ways in which control statements can be combined.

3.13 What type of repetition would be appropriate for calculating the sum of the first 100 posi-
tive integers? What type would be appropriate for calculating the sum of an arbitrary number of pos-
itive integers? Briefly describe how each of these tasks could be performed.

3.14 What is the difference between preincrementing and postincrementing a variable?

3.15 Identify and correct the errors in each of the following pieces of code. [Note: There may be
more than one error in each piece of code.]

a) if (age >= 65);
System.out.println("Age is greater than or equal to 65");

else
System.out.println("Age is less than 65)";

b) int x = 1, total;
while (x <= 10)
{

total += x;
++x;

}
c) while (x <= 100)

total += x;
++x;

d) while (y > 0)
{

System.out.println(y);
++y;

3.16 What does the following program print?

1 // Exercise 3.16: Mystery.java
2 public class Mystery
3 {
4 public static void main(String[] args)
5 {
6 int x = 1;
7 int total = 0;

Exercises 115

For Exercises 3.17 through 3.20, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a Java program.
d) Test, debug and execute the Java program.
e) Process three complete sets of data.

3.17 (Gas Mileage) Drivers are concerned with the mileage their automobiles get. One driver has
kept track of several trips by recording the miles driven and gallons used for each tankful. Develop
a Java application that will input the miles driven and gallons used (both as integers) for each trip.
The program should calculate and display the miles per gallon obtained for each trip and print the
combined miles per gallon obtained for all trips up to this point. All averaging calculations should
produce floating-point results. Use class Scanner and sentinel-controlled repetition to obtain the
data from the user.

3.18 (Credit Limit Calculator) Develop a Java application that determines whether any of several
department-store customers has exceeded the credit limit on a charge account. For each customer,
the following facts are available:

a) account number
b) balance at the beginning of the month
c) total of all items charged by the customer this month
d) total of all credits applied to the customer’s account this month
e) allowed credit limit.

The program should input all these facts as integers, calculate the new balance (= beginning balance
+ charges – credits), display the new balance and determine whether the new balance exceeds the
customer’s credit limit. For those customers whose credit limit is exceeded, the program should dis-
play the message "Credit limit exceeded".

3.19 (Sales Commission Calculator) A large company pays its salespeople on a commission basis.
The salespeople receive $200 per week plus 9% of their gross sales for that week. For example, a
salesperson who sells $5,000 worth of merchandise in a week receives $200 plus 9% of $5000, or a
total of $650. You’ve been supplied with a list of the items sold by each salesperson. The values of
these items are as follows:

Item Value
1 239.99
2 129.75
3 99.95
4 350.89

Develop a Java application that inputs one salesperson’s items sold for last week and calculates and
displays that salesperson’s earnings. There’s no limit to the number of items that can be sold.

8
9 while (x <= 10)

10 {
11 int y = x * x;
12 System.out.println(y);
13 total += y;
14 ++x;
15 }
16
17 System.out.printf("Total is %d%n", total);
18 }
19 } // end class Mystery

116 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

3.20 (Salary Calculator) Develop a Java application that determines the gross pay for each of three
employees. The company pays straight time for the first 40 hours worked by each employee and time
and a half for all hours worked in excess of 40. You’re given a list of the employees, their number of
hours worked last week and their hourly rates. Your program should input this information for each
employee, then determine and display the employee’s gross pay. Use class Scanner to input the data.

3.21 (Find the Largest Number) The process of finding the largest value is used frequently in com-
puter applications. For example, a program that determines the winner of a sales contest would input
the number of units sold by each salesperson. The salesperson who sells the most units wins the con-
test. Write a pseudocode program, then a Java application that inputs a series of 10 integers and deter-
mines and prints the largest integer. Your program should use at least the following three variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed).

b) number: The integer most recently input by the user.
c) largest: The largest number found so far.

3.22 (Tabular Output) Write a Java application that uses looping to print the following table of
values:

3.23 (Find the Two Largest Numbers) Using an approach similar to that for Exercise 3.21, find
the two largest values of the 10 values entered. [Note: You may input each number only once.]

3.24 (Validating User Input) Modify the program in Fig. 3.10 to validate its inputs. For any in-
put, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

3.25 What does the following program print?

3.26 What does the following program print?

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

1 // Exercise 3.25: Mystery2.java
2 public class Mystery2
3 {
4 public static void main(String[] args)
5 {
6 int count = 1;
7
8 while (count <= 10)
9 {

10 System.out.println(count % 2 == 1 ? "****" : "++++++++");
11 ++count;
12 }
13 }
14 } // end class Mystery2

1 // Exercise 3.26: Mystery3.java
2 public class Mystery3
3 {
4 public static void main(String[] args)
5 {

Exercises 117

3.27 (Dangling-else Problem) Determine the output for each of the given sets of code when x
is 9 and y is 11 and when x is 11 and y is 9. The compiler ignores the indentation in a Java program.
Also, the Java compiler always associates an else with the immediately preceding if unless told to
do otherwise by the placement of braces ({}). On first glance, you may not be sure which if a par-
ticular else matches—this situation is referred to as the “dangling-else problem.” We’ve eliminat-
ed the indentation from the following code to make the problem more challenging. [Hint: Apply
the indentation conventions you’ve learned.]

a) if (x < 10)
if (y > 10)
System.out.println("*****");
else
System.out.println("#####");
System.out.println("$$$$$");

b) if (x < 10)
{
if (y > 10)
System.out.println("*****");
}
else
{
System.out.println("#####");
System.out.println("$$$$$");
}

3.28 (Another Dangling-else Problem) Modify the given code to produce the output shown in
each part of the problem. Use proper indentation techniques. Make no changes other than inserting
braces and changing the indentation of the code. The compiler ignores indentation in a Java pro-
gram. We’ve eliminated the indentation from the given code to make the problem more challeng-
ing. [Note: It’s possible that no modification is necessary for some of the parts.]

if (y == 8)
if (x == 5)
System.out.println("@@@@@");
else
System.out.println("#####");
System.out.println("$$$$$");
System.out.println("&&&&&");

6 int row = 10;
7
8 while (row >= 1)
9 {

10 int column = 1;
11
12 while (column <= 10)
13 {
14 System.out.print(row % 2 == 1 ? "<" : ">");
15 ++column;
16 }
17
18 --row;
19 System.out.println();
20 }
21 }
22 } // end class Mystery3

118 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

a) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@
$$$$$
&&&&&

b) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@

c) Assuming that x = 5 and y = 8, the following output is produced:

@@@@@

d) Assuming that x = 5 and y = 7, the following output is produced. [Note: The last three
output statements after the else are all part of a block.]

#####
$$$$$
&&&&&

3.29 (Square of Asterisks) Write an application that prompts the user to enter the size of the side
of a square, then displays a hollow square of that size made of asterisks. Your program should work
for squares of all side lengths between 1 and 20.

3.30 (Palindromes) A palindrome is a sequence of characters that reads the same backward as for-
ward. For example, each of the following five-digit integers is a palindrome: 12321, 55555, 45554
and 11611. Write an application that reads in a five-digit integer and determines whether it’s a pal-
indrome. If the number is not five digits long, display an error message and allow the user to enter
a new value.

3.31 (Printing the Decimal Equivalent of a Binary Number) Write an application that inputs an
integer containing only 0s and 1s (i.e., a binary integer) and prints its decimal equivalent. [Hint: Use
the remainder and division operators to pick off the binary number’s digits one at a time, from right
to left. In the decimal number system, the rightmost digit has a positional value of 1 and the next
digit to the left a positional value of 10, then 100, then 1000, and so on. The decimal number 234
can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. In the binary number system, the rightmost digit has
a positional value of 1, the next digit to the left a positional value of 2, then 4, then 8, and so on.
The decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8, or 1 + 0 + 4 + 8 or, 13.]

3.32 (Checkerboard Pattern of Asterisks) Write an application that uses only the output statements

System.out.print("* ");
System.out.print(" ");
System.out.println();

to display the checkerboard pattern that follows. A System.out.println method call with no argu-
ments causes the program to output a single newline character. [Hint: Repetition statements are
required.]

3.33 (Multiples of 2 with an Infinite Loop) Write an application that keeps displaying in the com-
mand window the multiples of the integer 2—namely, 2, 4, 8, 16, 32, 64, and so on. Your loop should
not terminate (i.e., it should create an infinite loop). What happens when you run this program?

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

Making a Difference 119

3.34 (What’s Wrong with This Code?) What is wrong with the following statement? Provide the
correct statement to add one to the sum of x and y.

System.out.println(++(x + y));

3.35 (Sides of a Triangle) Write an application that reads three nonzero values entered by the
user and determines and prints whether they could represent the sides of a triangle.

3.36 (Sides of a Right Triangle) Write an application that reads three nonzero integers and de-
termines and prints whether they could represent the sides of a right triangle.

3.37 (Factorial) The factorial of a nonnegative integer n is written as n! (pronounced “n factori-
al”) and is defined as follows:

n! = n · (n – 1) · (n – 2) · … · 1 (for values of n greater than or equal to 1)

and

n! = 1 (for n = 0)

For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.
a) Write an application that reads a nonnegative integer and computes and prints its fac-

torial.
b) Write an application that estimates the value of the mathematical constant e by using

the following formula. Allow the user to enter the number of terms to calculate.

c) Write an application that computes the value of ex by using the following formula. Al-
low the user to enter the number of terms to calculate.

Making a Difference
3.38 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypt it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

3.39 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak sometime this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it’s likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

ex 1
x
1!

x2

2!

x3

3!
----- …+ + + +=

120 Chapter 3 Control Statements: Part 1; Assignment, ++ and -- Operators

constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	Contents
	Foreword
	Preface
	Before You Begin
	1 Introduction to Computers, the Internet and Java
	1.1 Introduction
	1.2 Hardware and Software
	1.2.1 Moore’s Law
	1.2.2 Computer Organization

	1.3 Data Hierarchy
	1.4 Machine Languages, Assembly Languages and High-Level Languages
	1.5 Introduction to Object Technology
	1.5.1 The Automobile as an Object
	1.5.2 Methods and Classes
	1.5.3 Instantiation
	1.5.4 Reuse
	1.5.5 Messages and Method Calls
	1.5.6 Attributes and Instance Variables
	1.5.7 Encapsulation and Information Hiding
	1.5.8 Inheritance
	1.5.9 Interfaces
	1.5.10 Object-Oriented Analysis and Design (OOAD)
	1.5.11 The UML (Unified Modeling Language)

	1.6 Operating Systems
	1.6.1 Windows—A Proprietary Operating System
	1.6.2 Linux—An Open-Source Operating System
	1.6.3 Android

	1.7 Programming Languages
	1.8 Java
	1.9 A Typical Java Development Environment
	1.10 Test-Driving a Java Application
	1.11 Internet and World Wide Web
	1.11.1 The Internet: A Network of Networks
	1.11.2 The World Wide Web: Making the Internet User-Friendly
	1.11.3 Web Services and Mashups
	1.11.4 Ajax
	1.11.5 The Internet of Things

	1.12 Software Technologies
	1.13 Keeping Up-to-Date with Information Technologies

	2 Introduction to Java Applications; Input/Output and Operators
	2.1 Introduction
	2.2 Your First Program in Java: Printing a Line of Text
	2.3 Modifying Your First Java Program
	2.4 Displaying Text with printf
	2.5 Another Application: Adding Integers
	2.5.1 import Declarations
	2.5.2 Declaring Class Addition
	2.5.3 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
	2.5.4 Declaring Variables to Store Integers
	2.5.5 Prompting the User for Input
	2.5.6 Obtaining an int as Input from the User
	2.5.7 Prompting for and Inputting a Second int
	2.5.8 Using Variables in a Calculation
	2.5.9 Displaying the Result of the Calculation
	2.5.10 Java API Documentation

	2.6 Memory Concepts
	2.7 Arithmetic
	2.8 Decision Making: Equality and Relational Operators
	2.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
	2.10 Wrap-Up

	3 Control Statements: Part 1; Assignment, ++ and -- Operators
	3.1 Introduction
	3.2 Algorithms
	3.3 Pseudocode
	3.4 Control Structures
	3.5 if Single-Selection Statement
	3.6 if…else Double-Selection Statement
	3.7 while Repetition Statement
	3.8 Formulating Algorithms: Counter-Controlled Repetition
	3.9 Formulating Algorithms: Sentinel-Controlled Repetition
	3.10 Formulating Algorithms: Nested Control Statements
	3.11 Compound Assignment Operators
	3.12 Increment and Decrement Operators
	3.13 Primitive Types
	3.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
	3.15 Wrap-Up

	4 Control Statements: Part 2; Logical Operators
	4.1 Introduction
	4.2 Essentials of Counter-Controlled Repetition
	4.3 for Repetition Statement
	4.4 Examples Using the for Statement
	4.5 do…while Repetition Statement
	4.6 switch Multiple-Selection Statement
	4.7 break and continue Statements
	4.8 Logical Operators
	4.9 Structured Programming Summary
	4.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
	4.11 Wrap-Up

	5 Methods
	5.1 Introduction
	5.2 Program Modules in Java
	5.3 static Methods, static Variables and Class Math
	5.4 Declaring Methods
	5.5 Notes on Declaring and Using Methods
	5.6 Method-Call Stack and Stack Frames
	5.7 Argument Promotion and Casting
	5.8 Java API Packages
	5.9 Case Study: Secure Random-Number Generation
	5.10 Case Study: A Game of Chance; Introducing enum Types
	5.11 Scope of Declarations
	5.12 Method Overloading
	5.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
	5.14 Wrap-Up

	6 Arrays and ArrayLists
	6.1 Introduction
	6.2 Primitive Types vs. Reference Types
	6.3 Arrays
	6.4 Declaring and Creating Arrays
	6.5 Examples Using Arrays
	6.5.1 Creating and Initializing an Array
	6.5.2 Using an Array Initializer
	6.5.3 Calculating the Values to Store in an Array
	6.5.4 Summing the Elements of an Array
	6.5.5 Using Bar Charts to Display Array Data Graphically
	6.5.6 Using the Elements of an Array as Counters
	6.5.7 Using Arrays to Analyze Survey Results

	6.6 Exception Handling: Processing the Incorrect Response
	6.6.1 The try Statement
	6.6.2 Executing the catch Block
	6.6.3 toString Method of the Exception Parameter

	6.7 Enhanced for Statement
	6.8 Passing Arrays to Methods
	6.9 Pass-By-Value vs. Pass-By-Reference
	6.10 Multidimensional Arrays
	6.11 Variable-Length Argument Lists
	6.12 Using Command-Line Arguments
	6.13 Class Arrays
	6.14 Introduction to Collections and Class ArrayList
	6.15 (Optional) GUI and Graphics Case Study: Drawing Arcs
	6.16 Wrap-Up

	7 Introduction to Classes and Objects
	7.1 Introduction
	7.2 Instance Variables, set Methods and get Methods
	7.2.1 Account Class with an Instance Variable, a set Method and a get Method
	7.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	7.2.3 Compiling and Executing an App with Multiple Classes
	7.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	7.2.5 Additional Notes on This Example
	7.2.6 Software Engineering with private Instance Variables and public set and get Methods

	7.3 Default and Explicit Initialization for Instance Variables
	7.4 Account Class: Initializing Objects with Constructors
	7.4.1 Declaring an Account Constructor for Custom Object Initialization
	7.4.2 Class AccountTest: Initializing Account Objects When They’re Created

	7.5 Account Class with a Balance; Floating-Point Numbers
	7.5.1 Account Class with a balance Instance Variable of Type double
	7.5.2 AccountTest Class to Use Class Account

	7.6 Case Study: Card Shuffling and Dealing Simulation
	7.7 Case Study: Class GradeBook Using an Array to Store Grades
	7.8 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.9 Wrap-Up

	8 Classes and Objects: A Deeper Look
	8.1 Introduction
	8.2 Time Class Case Study
	8.3 Controlling Access to Members
	8.4 Referring to the Current Object’s Members with the this Reference
	8.5 Time Class Case Study: Overloaded Constructors
	8.6 Default and No-Argument Constructors
	8.7 Notes on Set and Get Methods
	8.8 Composition
	8.9 enum Types
	8.10 Garbage Collection
	8.11 static Class Members
	8.12 static Import
	8.13 final Instance Variables
	8.14 Package Access
	8.15 Using BigDecimal for Precise Monetary Calculations
	8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	8.17 Wrap-Up

	9 Object-Oriented Programming: Inheritance
	9.1 Introduction
	9.2 Superclasses and Subclasses
	9.3 protected Members
	9.4 Relationship Between Superclasses and Subclasses
	9.4.1 Creating and Using a CommissionEmployee Class
	9.4.2 Creating and Using a BasePlusCommissionEmployee Class
	9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	9.5 Constructors in Subclasses
	9.6 Class Object
	9.7 (Optional) GUI and Graphics Case Study: Displaying Text and Images Using Labels
	9.8 Wrap-Up

	10 Object-Oriented Programming: Polymorphism and Interfaces
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

	10.6 Allowed Assignments Between Superclass and Subclass Variables
	10.7 final Methods and Classes
	10.8 A Deeper Explanation of Issues with Calling Methods from Constructors
	10.9 Creating and Using Interfaces
	10.9.1 Developing a Payable Hierarchy
	10.9.2 Interface Payable
	10.9.3 Class Invoice
	10.9.4 Modifying Class Employee to Implement Interface Payable
	10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.9.7 Some Common Interfaces of the Java API

	10.10 Java SE 8 Interface Enhancements
	10.10.1 default Interface Methods
	10.10.2 static Interface Methods
	10.10.3 Functional Interfaces

	10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
	10.12 Wrap-Up

	11 Exception Handling: A Deeper Look
	11.1 Introduction
	11.2 Example: Divide by Zero without Exception Handling
	11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	11.4 When to Use Exception Handling
	11.5 Java Exception Hierarchy
	11.6 finally Block
	11.7 Stack Unwinding and Obtaining Information from an Exception Object
	11.8 Chained Exceptions
	11.9 Declaring New Exception Types
	11.10 Preconditions and Postconditions
	11.11 Assertions
	11.12 try-with-Resources: Automatic Resource Deallocation
	11.13 Wrap-Up

	12 GUI Components: Part 1
	12.1 Introduction
	12.2 Java’s Nimbus Look-and-Feel
	12.3 Simple GUI-Based Input/Output with JOptionPane
	12.4 Overview of Swing Components
	12.5 Displaying Text and Images in a Window
	12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	12.7 Common GUI Event Types and Listener Interfaces
	12.8 How Event Handling Works
	12.9 JButton
	12.10 Buttons That Maintain State
	12.10.1 JCheckBox
	12.10.2 JRadioButton

	12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	12.12 JList
	12.13 Multiple-Selection Lists
	12.14 Mouse Event Handling
	12.15 Adapter Classes
	12.16 JPanel Subclass for Drawing with the Mouse
	12.17 Key Event Handling
	12.18 Introduction to Layout Managers
	12.18.1 FlowLayout
	12.18.2 BorderLayout
	12.18.3 GridLayout

	12.19 Using Panels to Manage More Complex Layouts
	12.20 JTextArea
	12.21 Wrap-Up

	13 Graphics and Java 2D
	13.1 Introduction
	13.2 Graphics Contexts and Graphics Objects
	13.3 Color Control
	13.4 Manipulating Fonts
	13.5 Drawing Lines, Rectangles and Ovals
	13.6 Drawing Arcs
	13.7 Drawing Polygons and Polylines
	13.8 Java 2D API
	13.9 Wrap-Up

	14 Strings, Characters and Regular Expressions
	14.1 Introduction
	14.2 Fundamentals of Characters and Strings
	14.3 Class String
	14.3.1 String Constructors
	14.3.2 String Methods length, charAt and getChars
	14.3.3 Comparing Strings
	14.3.4 Locating Characters and Substrings in Strings
	14.3.5 Extracting Substrings from Strings
	14.3.6 Concatenating Strings
	14.3.7 Miscellaneous String Methods
	14.3.8 String Method valueOf

	14.4 Class StringBuilder
	14.4.1 StringBuilder Constructors
	14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	14.4.4 StringBuilder append Methods
	14.4.5 StringBuilder Insertion and Deletion Methods

	14.5 Class Character
	14.6 Tokenizing Strings
	14.7 Regular Expressions, Class Pattern and Class Matcher
	14.8 Wrap-Up

	15 Files, Streams and Object Serialization
	15.1 Introduction
	15.2 Files and Streams
	15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	15.4 Sequential-Access Text Files
	15.4.1 Creating a Sequential-Access Text File
	15.4.2 Reading Data from a Sequential-Access Text File
	15.4.3 Case Study: A Credit-Inquiry Program
	15.4.4 Updating Sequential-Access Files

	15.5 Object Serialization
	15.5.1 Creating a Sequential-Access File Using Object Serialization
	15.5.2 Reading and Deserializing Data from a Sequential-Access File

	15.6 Opening Files with JFileChooser
	15.7 (Optional) Additional java.io Classes
	15.7.1 Interfaces and Classes for Byte-Based Input and Output
	15.7.2 Interfaces and Classes for Character-Based Input and Output

	15.8 Wrap-Up

	16 Generic Collections
	16.1 Introduction
	16.2 Collections Overview
	16.3 Type-Wrapper Classes
	16.4 Autoboxing and Auto-Unboxing
	16.5 Interface Collection and Class Collections
	16.6 Lists
	16.6.1 ArrayList and Iterator
	16.6.2 LinkedList

	16.7 Collections Methods
	16.7.1 Method sort
	16.7.2 Method shuffle
	16.7.3 Methods reverse, fill, copy, max and min
	16.7.4 Method binarySearch
	16.7.5 Methods addAll, frequency and disjoint

	16.8 Stack Class of Package java.util
	16.9 Class PriorityQueue and Interface Queue
	16.10 Sets
	16.11 Maps
	16.12 Properties Class
	16.13 Synchronized Collections
	16.14 Unmodifiable Collections
	16.15 Abstract Implementations
	16.16 Wrap-Up

	17 Java SE 8 Lambdas and Streams
	17.1 Introduction
	17.2 Functional Programming Technologies Overview
	17.2.1 Functional Interfaces
	17.2.2 Lambda Expressions
	17.2.3 Streams

	17.3 IntStream Operations
	17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	17.3.2 Terminal Operations count, min, max, sum and average
	17.3.3 Terminal Operation reduce
	17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	17.3.5 Intermediate Operation: Mapping
	17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed

	17.4 Stream<Integer> Manipulations
	17.4.1 Creating a Stream<Integer>
	17.4.2 Sorting a Stream and Collecting the Results
	17.4.3 Filtering a Stream and Storing the Results for Later Use
	17.4.4 Filtering and Sorting a Stream and Collecting the Results
	17.4.5 Sorting Previously Collected Results

	17.5 Stream<String> Manipulations
	17.5.1 Mapping Strings to Uppercase Using a Method Reference
	17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order

	17.6 Stream<Employee> Manipulations
	17.6.1 Creating and Displaying a List<Employee>
	17.6.2 Filtering Employees with Salaries in a Specified Range
	17.6.3 Sorting Employees By Multiple Fields
	17.6.4 Mapping Employees to Unique Last Name Strings
	17.6.5 Grouping Employees By Department
	17.6.6 Counting the Number of Employees in Each Department
	17.6.7 Summing and Averaging Employee Salaries

	17.7 Creating a Stream<String> from a File
	17.8 Generating Streams of Random Values
	17.9 Lambda Event Handlers
	17.10 Additional Notes on Java SE 8 Interfaces
	17.11 Java SE 8 and Functional Programming Resources
	17.12 Wrap-Up

	18 Recursion
	18.1 Introduction
	18.2 Recursion Concepts
	18.3 Example Using Recursion: Factorials
	18.4 Reimplementing Class FactorialCalculator Using Class BigInteger
	18.5 Example Using Recursion: Fibonacci Series
	18.6 Recursion and the Method-Call Stack
	18.7 Recursion vs. Iteration
	18.8 Towers of Hanoi
	18.9 Fractals
	18.9.1 Koch Curve Fractal
	18.9.2 (Optional) Case Study: Lo Feather Fractal
	18.10 Recursive Backtracking
	18.11 Wrap-Up

	19 Searching, Sorting and Big O
	19.1 Introduction
	19.2 Linear Search
	19.3 Big O Notation
	19.3.1 O(1) Algorithms
	19.3.2 O(n) Algorithms
	19.3.3 O(n[sup(2)]) Algorithms
	19.3.4 Big O of the Linear Search

	19.4 Binary Search
	19.4.1 Binary Search Implementation
	19.4.2 Efficiency of the Binary Search

	19.5 Sorting Algorithms
	19.6 Selection Sort
	19.6.1 Selection Sort Implementation
	19.6.2 Efficiency of the Selection Sort

	19.7 Insertion Sort
	19.7.1 Insertion Sort Implementation
	19.7.2 Efficiency of the Insertion Sort

	19.8 Merge Sort
	19.8.1 Merge Sort Implementation
	19.8.2 Efficiency of the Merge Sort

	19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms
	19.10 Wrap-Up

	20 Generic Classes and Methods
	20.1 Introduction
	20.2 Motivation for Generic Methods
	20.3 Generic Methods: Implementation and Compile-Time Translation
	20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.7 Raw Types
	20.8 Wildcards in Methods That Accept Type Parameters
	20.9 Wrap-Up

	21 Custom Generic Data Structures
	21.1 Introduction
	21.2 Self-Referential Classes
	21.3 Dynamic Memory Allocation
	21.4 Linked Lists
	21.4.1 Singly Linked Lists
	21.4.2 Implementing a Generic List Class
	21.4.3 Generic Classes ListNode and List
	21.4.4 Class ListTest
	21.4.5 List Method insertAtFront
	21.4.6 List Method insertAtBack
	21.4.7 List Method removeFromFront
	21.4.8 List Method removeFromBack
	21.4.9 List Method print
	21.4.10 Creating Your Own Packages

	21.5 Stacks
	21.6 Queues
	21.7 Trees
	21.8 Wrap-Up

	22 GUI Components: Part 2
	22.1 Introduction
	22.2 JSlider
	22.3 Understanding Windows in Java
	22.4 Using Menus with Frames
	22.5 JPopupMenu
	22.6 Pluggable Look-and-Feel
	22.7 JDesktopPane and JInternalFrame
	22.8 JTabbedPane
	22.9 BoxLayout Layout Manager
	22.10 GridBagLayout Layout Manager
	22.11 Wrap-Up

	23 Concurrency
	23.1 Introduction
	23.2 Thread States and Life Cycle
	23.2.1 New and Runnable States
	23.2.2 Waiting State
	23.2.3 Timed Waiting State
	23.2.4 Blocked State
	23.2.5 Terminated State
	23.2.6 Operating-System View of the Runnable State
	23.2.7 Thread Priorities and Thread Scheduling
	23.2.8 Indefinite Postponement and Deadlock

	23.3 Creating and Executing Threads with the Executor Framework
	23.4 Thread Synchronization
	23.4.1 Immutable Data
	23.4.2 Monitors
	23.4.3 Unsynchronized Mutable Data Sharing
	23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic

	23.5 Producer/Consumer Relationship without Synchronization
	23.6 Producer/Consumer Relationship: ArrayBlockingQueue
	23.7 (Advanced) Producer/Consumer Relationship with synchronized, wait, notify and notifyAll
	23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
	23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition Interfaces
	23.10 Concurrent Collections
	23.11 Multithreading with GUI: SwingWorker
	23.11.1 Performing Computations in a Worker Thread: Fibonacci Numbers
	23.11.2 Processing Intermediate Results: Sieve of Eratosthenes

	23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API
	23.13 Java SE 8: Sequential vs. Parallel Streams
	23.14 (Advanced) Interfaces Callable and Future
	23.15 (Advanced) Fork/Join Framework
	23.16 Wrap-Up

	24 Accessing Databases with JDBC
	24.1 Introduction
	24.2 Relational Databases
	24.3 A books Database
	24.4 SQL
	24.4.1 Basic SELECT Query
	24.4.2 WHERE Clause
	24.4.3 ORDER BY Clause
	24.4.4 Merging Data from Multiple Tables: INNER JOIN
	24.4.5 INSERT Statement
	24.4.6 UPDATE Statement
	24.4.7 DELETE Statement

	24.5 Setting up a Java DB Database
	24.5.1 Creating the Chapter’s Databases on Windows
	24.5.2 Creating the Chapter’s Databases on Mac OS X
	24.5.3 Creating the Chapter’s Databases on Linux

	24.6 Manipulating Databases with JDBC
	24.6.1 Connecting to and Querying a Database
	24.6.2 Querying the books Database

	24.7 RowSet Interface
	24.8 PreparedStatements
	24.9 Stored Procedures
	24.10 Transaction Processing
	24.11 Wrap-Up

	25 JavaFX GUI: Part 1
	25.1 Introduction
	25.2 JavaFX Scene Builder and the NetBeans IDE
	25.3 JavaFX App Window Structure
	25.4 Welcome App—Displaying Text and an Image
	25.4.1 Creating the App’s Project
	25.4.2 NetBeans Projects Window—Viewing the Project Contents
	25.4.3 Adding an Image to the Project
	25.4.4 Opening JavaFX Scene Builder from NetBeans
	25.4.5 Changing to a VBox Layout Container
	25.4.6 Configuring the VBox Layout Container
	25.4.7 Adding and Configuring a Label
	25.4.8 Adding and Configuring an ImageView
	25.4.9 Running the Welcome App

	25.5 Tip Calculator App—Introduction to Event Handling
	25.5.1 Test-Driving the Tip Calculator App
	25.5.2 Technologies Overview
	25.5.3 Building the App’s GUI
	25.5.4 TipCalculator Class
	25.5.5 TipCalculatorController Class

	25.6 Features Covered in the Online JavaFX Chapters
	25.7 Wrap-Up

	Chapters on the Web
	A: Operator Precedence Chart
	B: ASCII Character Set
	C: Keywords and ReservedWords
	D: Primitive Types
	E: Using the Debugger
	E.1 Introduction
	E.2 Breakpoints and the run, stop, cont and print Commands
	E.3 The print and set Commands
	E.4 Controlling Execution Using the step, step up and next Commands
	E.5 The watch Command
	E.6 The clear Command
	E.7 Wrap-Up

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

