
4Control Statements: Part 2;
Logical Operators

The wheel is come full circle.
—William Shakespeare

All the evolution we know of
proceeds from the vague to the
definite.
—Charles Sanders Peirce

O b j e c t i v e s
In this chapter you’ll:

� Learn the essentials of
counter-controlled repetition.

� Use the for and do…while
repetition statements to
execute statements in a
program repeatedly.

� Understand multiple
selection using the switch
selection statement.

� Use the break and
continue program control
statements to alter the flow
of control.

� Use the logical operators to
form complex conditional
expressions in control
statements.

122 Chapter 4 Control Statements: Part 2; Logical Operators

4.1 Introduction
This chapter continues our presentation of structured programming theory and principles
by introducing all but one of Java’s remaining control statements. We demonstrate Java’s
for, do…while and switch statements. Through a series of short examples using while
and for, we explore the essentials of counter-controlled repetition. We use a switch state-
ment to count the number of A, B, C, D and F grade equivalents in a set of numeric grades
entered by the user. We introduce the break and continue program-control statements.
We discuss Java’s logical operators, which enable you to use more complex conditional ex-
pressions in control statements. Finally, we summarize Java’s control statements and the
proven problem-solving techniques presented in this chapter and Chapter 3.

4.2 Essentials of Counter-Controlled Repetition
This section uses the while repetition statement introduced in Chapter 3 to formalize the
elements required to perform counter-controlled repetition, which requires

1. a control variable (or loop counter)

2. the initial value of the control variable

3. the increment by which the control variable is modified each time through the
loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines if looping should continue.

To see these elements of counter-controlled repetition, consider the application of
Fig. 4.1, which uses a loop to display the numbers from 1 through 10.

4.1 Introduction
4.2 Essentials of Counter-Controlled

Repetition
4.3 for Repetition Statement
4.4 Examples Using the for Statement
4.5 do…while Repetition Statement
4.6 switchMultiple-Selection Statement

4.7 break and continue Statements
4.8 Logical Operators
4.9 Structured Programming Summary

4.10 (Optional) GUI and Graphics Case
Study: Drawing Rectangles and Ovals

4.11 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making a Difference

1 // Fig. 4.1: WhileCounter.java
2 // Counter-controlled repetition with the while repetition statement.
3
4 public class WhileCounter
5 {
6 public static void main(String[] args)
7 {

Fig. 4.1 | Counter-controlled repetition with the while repetition statement. (Part 1 of 2.)

Musa
Highlight

Musa
Highlight

4.2 Essentials of Counter-Controlled Repetition 123

In Fig. 4.1, the elements of counter-controlled repetition are defined in lines 8, 10
and 13. Line 8 declares the control variable (counter) as an int, reserves space for it in
memory and sets its initial value to 1. Variable counter also could have been declared and
initialized with the following local-variable declaration and assignment statements:

Line 12 displays control variable counter’s value during each iteration of the loop. Line
13 increments the control variable by 1 for each iteration of the loop. The loop-continua-
tion condition in the while (line 10) tests whether the value of the control variable is less
than or equal to 10 (the final value for which the condition is true). The program per-
forms the body of this while even when the control variable is 10. The loop terminates
when the control variable exceeds 10 (i.e., counter becomes 11).

The program in Fig. 4.1 can be made more concise by initializing counter to 0 in line
8 and preincrementing counter in the while condition as follows:

This code saves a statement, because the while condition performs the increment before
testing the condition. (Recall from Section 3.12 that the precedence of ++ is higher than
that of <=.) Coding in such a condensed fashion takes practice, might make code more dif-
ficult to read, debug, modify and maintain, and typically should be avoided.

8
9

10 while () // loop-continuation condition
11 {
12 System.out.printf("%d ", counter);
13
14 }
15
16 System.out.println();
17 }
18 } // end class WhileCounter

1 2 3 4 5 6 7 8 9 10

int counter; // declare counter
counter = 1; // initialize counter to 1

Common Programming Error 4.1
Because floating-point values may be approximate, controlling loops with floating-point
variables may result in imprecise counter values and inaccurate termination tests.

Error-Prevention Tip 4.1
Use integers to control counting loops.

while (++counter <= 10) // loop-continuation condition
System.out.printf("%d ", counter);

Software Engineering Observation 4.1
“Keep it simple” is good advice for most of the code you’ll write.

Fig. 4.1 | Counter-controlled repetition with the while repetition statement. (Part 2 of 2.)

int counter = 1; // declare and initialize control variable

counter <= 10

++counter; // increment control variable

124 Chapter 4 Control Statements: Part 2; Logical Operators

4.3 for Repetition Statement
Section 4.2 presented the essentials of counter-controlled repetition. The while statement
can be used to implement any counter-controlled loop. Java also provides the for repeti-
tion statement, which specifies the counter-controlled-repetition details in a single line of
code. Figure 4.2 reimplements the application of Fig. 4.1 using for.

When the for statement (lines 10–11) begins executing, the control variable counter
is declared and initialized to 1. (Recall from Section 4.2 that the first two elements of
counter-controlled repetition are the control variable and its initial value.) Next, the pro-
gram checks the loop-continuation condition, counter <= 10, which is between the two
required semicolons. Because the initial value of counter is 1, the condition initially is
true. Therefore, the body statement (line 11) displays control variable counter’s value,
namely 1. After executing the loop’s body, the program increments counter in the expres-
sion counter++, which appears to the right of the second semicolon. Then the loop-con-
tinuation test is performed again to determine whether the program should continue with
the next iteration of the loop. At this point, the control variable’s value is 2, so the condi-
tion is still true (the final value is not exceeded)—thus, the program performs the body
statement again (i.e., the next iteration of the loop). This process continues until the num-
bers 1 through 10 have been displayed and the counter’s value becomes 11, causing the
loop-continuation test to fail and repetition to terminate (after 10 repetitions of the loop
body). Then the program performs the first statement after the for—in this case, line 13.

Figure 4.2 uses (in line 10) the loop-continuation condition counter <= 10. If you
incorrectly specified counter < 10 as the condition, the loop would iterate only nine times.
This is a common logic error called an off-by-one error.

1 // Fig. 4.2: ForCounter.java
2 // Counter-controlled repetition with the for repetition statement.
3
4 public class ForCounter
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13 System.out.println();
14 }
15 } // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 4.2 | Counter-controlled repetition with the for repetition statement.

Common Programming Error 4.2
Using an incorrect relational operator or an incorrect final value of a loop counter in the
loop-continuation condition of a repetition statement can cause an off-by-one error.

// for statement header includes initialization,
// loop-continuation condition and increment
for (int counter = 1; counter <= 10; counter++)

System.out.printf("%d ", counter);

Musa
Highlight

4.3 for Repetition Statement 125

A Closer Look at the for Statement’s Header
Figure 4.3 takes a closer look at the for statement in Fig. 4.2. The first line—including
the keyword for and everything in parentheses after for (line 10 in Fig. 4.2)—is some-
times called the for statement header. The for header “does it all”—it specifies each item
needed for counter-controlled repetition with a control variable. If there’s more than one
statement in the body of the for, braces are required to define the body of the loop.

General Format of a for Statement
The general format of the for statement is

where the initialization expression names the loop’s control variable and optionally provides
its initial value, loopContinuationCondition determines whether the loop should continue ex-
ecuting and increment modifies the control variable’s value, so that the loop-continuation
condition eventually becomes false. The two semicolons in the for header are required. If
the loop-continuation condition is initially false, the program does not execute the for
statement’s body. Instead, execution proceeds with the statement following the for.

Representing a for Statement with an Equivalent while Statement
The for statement often can be represented with an equivalent while statement as follows:

Error-Prevention Tip 4.2
Using the final value and operator <= in a loop’s condition helps avoid off-by-one errors.
For a loop that outputs 1 to 10, the loop-continuation condition should be counter <= 10
rather than counter < 10 (which causes an off-by-one error) or counter < 11 (which is cor-
rect). Many programmers prefer so-called zero-based counting, in which to count 10 times,
counterwould be initialized to zero and the loop-continuation test would be counter < 10.

Error-Prevention Tip 4.3
As Chapter 3 mentioned, integers can overflow, causing logic errors. A loop’s control vari-
able also could overflow. Write your loop conditions carefully to prevent this.

o

Fig. 4.3 | for statement header components.

for (initialization; loopContinuationCondition; increment)
statement

initialization;
while (loopContinuationCondition)
{

statement
increment;

}

Initial value of
control variable

Loop-continuation
condition

Incrementing of
control variable

for keyword Control variable Required semicolon Required semicolon

for (int counter = 1; counter <= 10; counter++)

126 Chapter 4 Control Statements: Part 2; Logical Operators

In Section 4.7, we show a case in which a for statement cannot be represented with an
equivalent while statement. Typically, for statements are used for counter-controlled rep-
etition and while statements for sentinel-controlled repetition. However, while and for
can each be used for either repetition type.

Scope of a for Statement’s Control Variable
If the initialization expression in the for header declares the control variable (i.e., the con-
trol variable’s type is specified before the variable name, as in Fig. 4.2), the control variable
can be used only in that for statement—it will not exist outside it. This restricted use is
known as the variable’s scope. The scope of a variable defines where it can be used in a
program. For example, a local variable can be used only in the method that declares it and
only from the point of declaration through the end of the method. Scope is discussed in
detail in Chapter 5, Methods.

Expressions in a for Statement’s Header Are Optional
All three expressions in a for header are optional. If the loopContinuationCondition is
omitted, Java assumes that the loop-continuation condition is always true, thus creating an
infinite loop. You might omit the initialization expression if the program initializes the
control variable before the loop. You might omit the increment expression if the program
calculates the increment with statements in the loop’s body or if no increment is needed.
The increment expression in a for acts as if it were a standalone statement at the end of
the for’s body. Therefore, the expressions

are equivalent increment expressions in a for statement. Many programmers prefer coun-
ter++ because it’s concise and because a for loop evaluates its increment expression after
its body executes, so the postfix increment form seems more natural. In this case, the vari-
able being incremented does not appear in a larger expression, so preincrementing and
postincrementing actually have the same effect.

Common Programming Error 4.3
When a for statement’s control variable is declared in the initialization section of the
for’s header, using the control variable after the for’s body is a compilation error.

counter = counter + 1
counter += 1
++counter
counter++

Common Programming Error 4.4
Placing a semicolon immediately to the right of the right parenthesis of a for header makes
that for’s body an empty statement. This is normally a logic error.

Error-Prevention Tip 4.4
Infinite loops occur when the loop-continuation condition in a repetition statement never
becomes false. To prevent this situation in a counter-controlled loop, ensure that the
control variable is modified during each iteration of the loop so that the loop-continuation
condition will eventually become false. In a sentinel-controlled loop, ensure that the sen-
tinel value is able to be input.

4.3 for Repetition Statement 127

Placing Arithmetic Expressions in a for Statement’s Header
The initialization, loop-continuation condition and increment portions of a for statement
can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x and y
are not modified in the body of the loop, the statement

is equivalent to the statement

The increment of a for statement may also be negative, in which case it’s a decrement, and
the loop counts downward.

Using a for Statement’s Control Variable in the Statement’s Body
Programs frequently display the control-variable value or use it in calculations in the loop
body, but this use is not required. The control variable is commonly used to control repe-
tition without being mentioned in the body of the for.

UML Activity Diagram for the for Statement
The for statement’s UML activity diagram is similar to that of the while statement
(Fig. 3.4). Figure 4.4 shows the activity diagram of the for statement in Fig. 4.2. The
diagram makes it clear that initialization occurs once before the loop-continuation test is
evaluated the first time, and that incrementing occurs each time through the loop after the
body statement executes.

for (int j = x; j <= 4 * x * y; j += y / x)

for (int j = 2; j <= 80; j += 5)

Error-Prevention Tip 4.5
Although the value of the control variable can be changed in the body of a for loop, avoid
doing so, because this practice can lead to subtle errors.

Fig. 4.4 | UML activity diagram for the for statement in Fig. 4.2.

Determine whether
looping should
continue

System.out.printf(“%d ”, counter);

[counter > 10]

[counter <= 10]

int counter = 1

counter++

Display the
counter value

Initialize
control variable

Increment the
control variable

128 Chapter 4 Control Statements: Part 2; Logical Operators

4.4 Examples Using the for Statement
The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write only the appropriate for header. Note the change in the rela-
tional operator for the loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 to 1 in decrements of 1.

c) Vary the control variable from 7 to 77 in increments of 7.

d) Vary the control variable from 20 to 2 in decrements of 2.

e) Vary the control variable over the values 2, 5, 8, 11, 14, 17, 20.

f) Vary the control variable over the values 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

Application: Summing the Even Integers from 2 to 20
We now consider two sample applications that demonstrate simple uses of for. The ap-
plication in Fig. 4.5 uses a for statement to sum the even integers from 2 to 20 and store
the result in an int variable called total.

for (int i = 1; i <= 100; i++)

for (int i = 100; i >= 1; i--)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

for (int i = 99; i >= 0; i -= 11)

Common Programming Error 4.5
Using an incorrect relational operator in the loop-continuation condition of a loop that
counts downward (e.g., using i <= 1 instead of i >= 1 in a loop counting down to 1) is
usually a logic error.

Common Programming Error 4.6
Do not use equality operators (!= or ==) in a loop-continuation condition if the loop’s control
variable increments or decrements by more than 1. For example, consider the for statement
header for (int counter = 1; counter != 10; counter += 2). The loop-continuation test
counter != 10 never becomes false (resulting in an infinite loop) because counter incre-
ments by 2 after each iteration.

1 // Fig. 4.5: Sum.java
2 // Summing integers with the for statement.
3
4 public class Sum
5 {

Fig. 4.5 | Summing integers with the for statement. (Part 1 of 2.)

Musa
Highlight

4.4 Examples Using the for Statement 129

The initialization and increment expressions can be comma-separated lists that enable
you to use multiple initialization expressions or multiple increment expressions. For
example, although this is discouraged, you could merge the body of the for statement in
lines 11–12 of Fig. 4.5 into the increment portion of the for header by using a comma as
follows:

Application: Compound-Interest Calculations
Let’s use the for statement to compute compound interest. Consider the following prob-
lem:

A person invests $1,000 in a savings account yielding 5% interest. Assuming that all
the interest is left on deposit, calculate and print the amount of money in the account
at the end of each year for 10 years. Use the following formula to determine the
amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. 4.6) involves a loop that performs the indicated
calculation for each of the 10 years the money remains on deposit. Lines 8–10 in method
main declare double variables amount, principal and rate, and initialize principal to
1000.0 and rate to 0.05. Java treats floating-point constants like 1000.0 and 0.05 as type
double. Similarly, Java treats whole-number constants like 7 and -22 as type int.

6 public static void main(String[] args)
7 {
8
9

10 // total even integers from 2 through 20
11
12
13
14 System.out.printf("Sum is %d%n", total);
15 }
16 } // end class Sum

Sum is 110

for (int number = 2; number <= 20; total += number, number += 2)
; // empty statement

Good Programming Practice 4.1
For readability limit the size of control-statement headers to a single line if possible.

Fig. 4.5 | Summing integers with the for statement. (Part 2 of 2.)

int total = 0;

for (int number = 2; number <= 20; number += 2)
total += number;

130 Chapter 4 Control Statements: Part 2; Logical Operators

Formatting Strings with Field Widths and Justification
Line 13 outputs the headers for two columns of output. The first column displays the year
and the second column the amount on deposit at the end of that year. We use the format
specifier %20s to output the String "Amount on Deposit". The integer 20 between the %
and the conversion character s indicates that the value should be displayed with a field
width of 20—that is, printf displays the value with at least 20 character positions. If the
value to be output is less than 20 character positions wide (17 characters in this example),
the value is right justified in the field by default. If the year value to be output were more
than four character positions wide, the field width would be extended to the right to
accommodate the entire value—this would push the amount field to the right, upsetting
the neat columns of our tabular output. To output values left justified, simply precede the
field width with the minus sign (–) formatting flag (e.g., %-20s).

1 // Fig. 4.6: Interest.java
2 // Compound-interest calculations with for.
3
4 public class Interest
5 {
6 public static void main(String[] args)
7 {
8 double amount; // amount on deposit at end of each year
9 double principal = 1000.0; // initial amount before interest

10 double rate = 0.05; // interest rate
11
12 // display headers
13 System.out.printf("%s %n", "Year", "Amount on deposit");
14
15
16
17
18
19
20
21
22
23
24 }
25 } // end class Interest

Year Amount on deposit
1 1,050.00
2 1,102.50
3 1,157.63
4 1,215.51
5 1,276.28
6 1,340.10
7 1,407.10
8 1,477.46
9 1,551.33
10 1,628.89

Fig. 4.6 | Compound-interest calculations with for.

%20s

// calculate amount on deposit for each of ten years
for (int year = 1; year <= 10; ++year)
{

// calculate new amount for specified year
amount = principal * Math.pow(1.0 + rate, year);

// display the year and the amount
System.out.printf("%4d%,20.2f%n", year, amount);

}

4.4 Examples Using the for Statement 131

Performing the Interest Calculations with static Method pow of Class Math
The for statement (lines 16–23) executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1. This loop terminates when year becomes 11. (Variable
year represents n in the problem statement.)

Classes provide methods that perform common tasks on objects. In fact, most methods
must be called on a specific object. For example, to output text in Fig. 4.6, line 13 calls
method printf on the System.out object, and to input int values from the user at the key-
board you called method nextInt on a Scanner object. Some classes also provide methods
that perform common tasks and do not require objects. These are called static methods.
For example, Java does not include an exponentiation operator, so the designers of Java’s
Math class defined static method pow for raising a value to a power. You can call a static
method by specifying the class name followed by a dot (.) and the method name, as in

In Chapter 5, you’ll learn how to implement static methods in your own classes.
We use static method pow of class Math to perform the compound-interest calcula-

tion in Fig. 4.6. Math.pow(x, y) calculates the value of x raised to the yth power. The
method receives two double arguments and returns a double value. Line 19 performs the
calculation a = p(1 + r)n, where a is amount, p is principal, r is rate and n is year. Class
Math is defined in package java.lang, so you do not need to import class Math to use it.

The body of the for statement contains the calculation 1.0 + rate, which appears as
an argument to the Math.pow method. In fact, this calculation produces the same result
each time through the loop, so repeating it in every iteration of the loop is wasteful.

Formatting Floating-Point Numbers
After each calculation, line 22 outputs the year and the amount on deposit at the end of
that year. The year is output in a field width of four characters (as specified by %4d). The
amount is output as a floating-point number with the format specifier %,20.2f. The com-
ma (,) formatting flag indicates that the floating-point value should be output with a
grouping separator. The actual separator used is specific to the user’s locale (i.e., country).
For example, in the United States, the number will be output using commas to separate
every three digits and a decimal point to separate the fractional part of the number, as in
1,234.45. The number 20 in the format specification indicates that the value should be
output right justified in a field width of 20 characters. The .2 specifies the formatted num-
ber’s precision—in this case, the number is rounded to the nearest hundredth and output
with two digits to the right of the decimal point.

A Warning about Displaying Rounded Values
We declared variables amount, principal and rate to be of type double in this example.
We’re dealing with fractional parts of dollars and thus need a type that allows decimal
points in its values. Unfortunately, floating-point numbers can cause trouble. Here’s a
simple explanation of what can go wrong when using double (or float) to represent dollar

ClassName.methodName(arguments)

Performance Tip 4.1
In loops, avoid calculations for which the result never changes—such calculations should
typically be placed before the loop. Many of today’s sophisticated optimizing compilers will
place such calculations outside loops in the compiled code.

132 Chapter 4 Control Statements: Part 2; Logical Operators

amounts (assuming that dollar amounts are displayed with two digits to the right of the
decimal point): Two double dollar amounts stored in the machine could be 14.234
(which would normally be rounded to 14.23 for display purposes) and 18.673 (which
would normally be rounded to 18.67 for display purposes). When these amounts are add-
ed, they produce the internal sum 32.907, which would normally be rounded to 32.91 for
display purposes. Thus, your output could appear as

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You’ve been warned!

4.5 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while, the
program tests the loop-continuation condition at the beginning of the loop, before execut-
ing the loop’s body; if the condition is false, the body never executes. The do…while state-
ment tests the loop-continuation condition after executing the loop’s body; therefore, the
body always executes at least once. When a do…while statement terminates, execution con-
tinues with the next statement in sequence. Figure 4.7 uses a do…while to output the
numbers 1–10.

14.23
+ 18.67

32.91

Error-Prevention Tip 4.6
Do not use variables of type double (or float) to perform precise monetary calculations.
The imprecision of floating-point numbers can lead to errors. In the exercises, you’ll learn
how to use integers to perform precise monetary calculations—Java also provides class
java.math.BigDecimal for this purpose, which we demonstrate in Fig. 8.16.

1 // Fig. 4.7: DoWhileTest.java
2 // do...while repetition statement.
3
4 public class DoWhileTest
5 {
6 public static void main(String[] args)
7 {
8 int counter = 1;
9

10
11
12
13
14
15
16 System.out.println();
17 }
18 } // end class DoWhileTest

Fig. 4.7 | do…while repetition statement. (Part 1 of 2.)

do
{

System.out.printf("%d ", counter);
++counter;

} while (counter <= 10); // end do...while

Musa
Highlight

4.5 do…while Repetition Statement 133

Line 8 declares and initializes control variable counter. Upon entering the do…while
statement, line 12 outputs counter’s value and line 13 increments counter. Then the pro-
gram evaluates the loop-continuation test at the bottom of the loop (line 14). If the condi-
tion is true, the loop continues at the first body statement (line 12). If the condition is false,
the loop terminates and the program continues at the next statement after the loop.

UML Activity Diagram for the do…while Repetition Statement
Figure 4.8 contains the UML activity diagram for the do…while statement. This diagram
makes it clear that the loop-continuation condition is not evaluated until after the loop
performs the action state at least once. Compare this activity diagram with that of the while
statement (Fig. 3.4).

Braces in a do…while Repetition Statement
It isn’t necessary to use braces in the do…while repetition statement if there’s only one
statement in the body. However, many programmers include the braces, to avoid confu-
sion between the while and do…while statements. For example,

is normally the first line of a while statement. A do…while statement with no braces
around a single-statement body appears as:

1 2 3 4 5 6 7 8 9 10

Fig. 4.8 | do…while repetition statement UML activity diagram.

while (condition)

Fig. 4.7 | do…while repetition statement. (Part 2 of 2.)

Determine whether
looping should
continue [counter > 10]

[counter <= 10]

++counter

Display the
counter value

Increment the
control variable

System.out.printf(“%d ”, counter);

134 Chapter 4 Control Statements: Part 2; Logical Operators

which can be confusing. A reader may misinterpret the last line—while(condition);—as
a while statement containing an empty statement (the semicolon by itself). Thus, the
do…while statement with one body statement is usually written with braces as follows:

4.6 switch Multiple-Selection Statement
Chapter 3 discussed the if single-selection statement and the if…else double-selection
statement. The switch multiple-selection statement performs different actions based on
the possible values of a constant integral expression of type byte, short, int or char. As
of Java SE 7, the expression may also be a String.

Using a switch Statement to Count A, B, C, D and F Grades
Figure 4.9 calculates the class average of a set of numeric grades entered by the user, and
uses a switch statement to determine whether each grade is the equivalent of an A, B, C,
D or F and to increment the appropriate grade counter. The program also displays a sum-
mary of the number of students who received each grade.

Like earlier versions of the class-average program, the main method of class Letter-
Grades (Fig. 4.9) declares local variables total (line 9) and gradeCounter (line 10) to
keep track of the sum of the grades entered by the user and the number of grades entered,
respectively. Lines 11–15 declare counter variables for each grade category. Note that the
variables in lines 9–15 are explicitly initialized to 0.

Method main has two key parts. Lines 26–56 read an arbitrary number of integer
grades from the user using sentinel-controlled repetition, update instance variables total
and gradeCounter, and increment an appropriate letter-grade counter for each grade
entered. Lines 59–80 output a report containing the total of all grades entered, the average
of the grades and the number of students who received each letter grade. Let’s examine
these parts in more detail.

do
statement

while (condition);

do
{

statement
} while (condition);

Good Programming Practice 4.2
Always include braces in a do…while statement. This helps eliminate ambiguity between
the while statement and a do…while statement containing only one statement.

1 // Fig. 4.9: LetterGrades.java
2 // LetterGrades class uses the switch statement to count letter grades.
3 import java.util.Scanner;
4
5 public class LetterGrades
6 {
7 public static void main(String[] args)
8 {

Fig. 4.9 | LetterGrades class uses the switch statement to count letter grades. (Part 1 of 3.)

Musa
Highlight

4.6 switch Multiple-Selection Statement 135

9
10
11
12
13
14
15
16
17 Scanner input = new Scanner(System.in);
18
19 System.out.printf("%s%n%s%n %s%n %s%n",
20 "Enter the integer grades in the range 0-100.",
21 "Type the end-of-file indicator to terminate input:",
22 "On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter",
23 "On Windows type <Ctrl> z then press Enter");
24
25 // loop until user enters the end-of-file indicator
26 while ()
27 {
28 int grade = input.nextInt(); // read grade
29 total += grade; // add grade to total
30 ++gradeCounter; // increment number of grades
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 } // end while
57
58 // display grade report
59 System.out.printf("%nGrade Report:%n");
60

Fig. 4.9 | LetterGrades class uses the switch statement to count letter grades. (Part 2 of 3.)

int total = 0; // sum of grades
int gradeCounter = 0; // number of grades entered
int aCount = 0; // count of A grades
int bCount = 0; // count of B grades
int cCount = 0; // count of C grades
int dCount = 0; // count of D grades
int fCount = 0; // count of F grades

input.hasNext()

// increment appropriate letter-grade counter
switch (grade / 10)
{

case 9: // grade was between 90
case 10: // and 100, inclusive

++aCount;
break; // exits switch

case 8: // grade was between 80 and 89
++bCount;
break; // exits switch

case 7: // grade was between 70 and 79
++cCount;
break; // exits switch

case 6: // grade was between 60 and 69
++dCount;
break; // exits switch

default: // grade was less than 60
++fCount;
break; // optional; exits switch anyway

} // end switch

136 Chapter 4 Control Statements: Part 2; Logical Operators

Reading Grades from the User
Lines 19–23 prompt the user to enter integer grades and to type the end-of-file indicator
to terminate the input. The end-of-file indicator is a system-dependent keystroke combi-

61 // if user entered at least one grade...
62 if (gradeCounter != 0)
63 {
64 // calculate average of all grades entered
65 double average = (double) total / gradeCounter;
66
67 // output summary of results
68 System.out.printf("Total of the %d grades entered is %d%n",
69 gradeCounter, total);
70 System.out.printf("Class average is %.2f%n", average);
71 System.out.printf("%n%s%n%s%d%n%s%d%n%s%d%n%s%d%n%s%d%n",
72 "Number of students who received each grade:",
73 "A: ", aCount, // display number of A grades
74 "B: ", bCount, // display number of B grades
75 "C: ", cCount, // display number of C grades
76 "D: ", dCount, // display number of D grades
77 "F: ", fCount); // display number of F grades
78 } // end if
79 else // no grades were entered, so output appropriate message
80 System.out.println("No grades were entered");
81 } // end main
82 } // end class LetterGrades

Enter the integer grades in the range 0-100.
Type the end-of-file indicator to terminate input:

On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter
On Windows type <Ctrl> z then press Enter

99
92
45
57
63
71
76
85
90
100
^Z

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80

Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2

Fig. 4.9 | LetterGrades class uses the switch statement to count letter grades. (Part 3 of 3.)

4.6 switch Multiple-Selection Statement 137

nation which the user enters to indicate that there’s no more data to input. In Chapter 15,
Files, Streams and Object Serialization, you’ll see how the end-of-file indicator is used
when a program reads its input from a file.

On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence

on a line by itself. This notation means to simultaneously press both the Ctrl key and the
d key. On Windows systems, end-of-file can be entered by typing

[Note: On some systems, you must press Enter after typing the end-of-file key sequence.
Also, Windows typically displays the characters ^Z on the screen when the end-of-file in-
dicator is typed, as shown in the output of Fig. 4.9.]

The while statement (lines 26–56) obtains the user input. The condition at line 26
calls Scanner method hasNext to determine whether there’s more data to input. This
method returns the boolean value true if there’s more data; otherwise, it returns false.
The returned value is then used as the value of the condition in the while statement.
Method hasNext returns false once the user types the end-of-file indicator.

Line 28 inputs a grade value from the user. Line 29 adds grade to total. Line 30
increments gradeCounter. These variables are used to compute the average of the grades.
Lines 33–55 use a switch statement to increment the appropriate letter-grade counter
based on the numeric grade entered.

Processing the Grades
The switch statement (lines 33–55) determines which counter to increment. We assume
that the user enters a valid grade in the range 0–100. A grade in the range 90–100 repre-
sents A, 80–89 represents B, 70–79 represents C, 60–69 represents D and 0–59 represents
F. The switch statement consists of a block that contains a sequence of case labels and
an optional default case. These are used in this example to determine which counter to
increment based on the grade.

When the flow of control reaches the switch, the program evaluates the expression in
the parentheses (grade / 10) following keyword switch. This is the switch’s controlling
expression. The program compares this expression’s value (which must evaluate to an inte-
gral value of type byte, char, short or int, or to a String) with each case label. The con-
trolling expression in line 33 performs integer division, which truncates the fractional part
of the result. Thus, when we divide a value from 0 to 100 by 10, the result is always a value
from 0 to 10. We use several of these values in our case labels. For example, if the user
enters the integer 85, the controlling expression evaluates to 8. The switch compares 8
with each case label. If a match occurs (case 8: at line 40), the program executes that
case’s statements. For the integer 8, line 41 increments bCount, because a grade in the 80s
is a B. The break statement (line 42) causes program control to proceed with the first
statement after the switch—in this program, we reach the end of the while loop, so con-

<Ctrl> d

<Ctrl> z

Portability Tip 4.1
The keystroke combinations for entering end-of-file are system dependent.

138 Chapter 4 Control Statements: Part 2; Logical Operators

trol returns to the loop-continuation condition in line 26 to determine whether the loop
should continue executing.

The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the cases at
lines 35–36 that test for the values 9 and 10 (both of which represent the grade A). Listing
cases consecutively in this manner with no statements between them enables the cases to per-
form the same set of statements—when the controlling expression evaluates to 9 or 10, the
statements in lines 37–38 will execute. The switch statement does not provide a mechanism
for testing ranges of values, so every value you need to test must be listed in a separate case
label. Each case can have multiple statements. The switch statement differs from other con-
trol statements in that it does not require braces around multiple statements in a case.

case without a break Statement
Without break statements, each time a match occurs in the switch, the statements for that
case and subsequent cases execute until a break statement or the end of the switch is en-
countered. This is often referred to as “falling through” to the statements in subsequent
cases. (This feature is perfect for writing a concise program that displays the iterative song
“The Twelve Days of Christmas” in Exercise 4.29.)

The default Case
If no match occurs between the controlling expression’s value and a case label, the
default case (lines 52–54) executes. We use the default case in this example to process
all controlling-expression values that are less than 6—that is, all failing grades. If no match
occurs and the switch does not contain a default case, program control simply continues
with the first statement after the switch.

Displaying the Grade Report
Lines 59–80 output a report based on the grades entered (as shown in the input/output
window in Fig. 4.9). Line 62 determines whether the user entered at least one grade—this
helps us avoid dividing by zero. If so, line 65 calculates the average of the grades. Lines 68–
77 then output the total of all the grades, the class average and the number of students who
received each letter grade. If no grades were entered, line 80 outputs an appropriate mes-
sage. The output in Fig. 4.9 shows a sample grade report based on 10 grades.

switch Statement UML Activity Diagram
Figure 4.10 shows the UML activity diagram for the general switch statement. Most
switch statements use a break in each case to terminate the switch statement after pro-
cessing the case. Figure 4.10 emphasizes this by including break statements in the activity
diagram. The diagram makes it clear that the break statement at the end of a case causes
control to exit the switch statement immediately.

Common Programming Error 4.7
Forgetting a break statement when one is needed in a switch is a logic error.

Error-Prevention Tip 4.7
In a switch statement, ensure that you test for all possible values of the controlling expres-
sion.

4.6 switch Multiple-Selection Statement 139

The break statement is not required for the switch’s last case (or the optional
default case, when it appears last), because execution continues with the next statement
after the switch.

Notes on the Expression in Each case of a switch

When using the switch statement, remember that each case must contain a String ot a
constant integral expression—that is, any combination of integer constants that evaluates
to a constant integer value (e.g., –7, 0 or 221). An integer constant is simply an integer val-
ue. In addition, you can use character constants—specific characters in single quotes, such
as 'A', '7' or '$'—which represent the integer values of characters and enum constants (in-
troduced in Section 5.10). (Appendix B shows the integer values of the characters in the
ASCII character set, which is a subset of the Unicode® character set used by Java.)

The expression in each case can also be a constant variable—a variable containing a
value which does not change for the entire program. Such a variable is declared with key-
word final (discussed in Chapter 5). Java has a feature called enum types, which we also
present in Chapter 5—enum type constants can also be used in case labels.

Fig. 4.10 | switch multiple-selection statement UML activity diagram with break statements.

Error-Prevention Tip 4.8
Provide a default case in switch statements. This focuses you on the need to process ex-
ceptional conditions.

Good Programming Practice 4.3
Although each case and the default case in a switch can occur in any order, place the de-
fault case last. When the default case is listed last, the break for that case is not required.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

case b

case z

case a

[false]

[true]

[true]

[true]

[false]

[false]

140 Chapter 4 Control Statements: Part 2; Logical Operators

In Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces, we
present a more elegant way to implement switch logic—we use a technique called poly-
morphism to create programs that are often clearer, easier to maintain and easier to extend
than programs using switch logic.

4.7 break and continue Statements
In addition to selection and repetition statements, Java provides statements break (which
we discussed in the context of the switch statement)and continue (presented in this sec-
tion and online Appendix L) to alter the flow of control. The preceding section showed
how break can be used to terminate a switch statement’s execution. This section discusses
how to use break in repetition statements.

break Statement
The break statement, when executed in a while, for, do…while or switch, causes imme-
diate exit from that statement. Execution continues with the first statement after the con-
trol statement. Common uses of the break statement are to escape early from a loop or to
skip the remainder of a switch (as in Fig. 4.9). Figure 4.11 demonstrates a break state-
ment exiting a for.

When the if statement nested at lines 11–12 in the for statement (lines 9–15) detects
that count is 5, the break statement at line 12 executes. This terminates the for statement,
and the program proceeds to line 17 (immediately after the for statement), which displays
a message indicating the value of the control variable when the loop terminated. The loop
fully executes its body only four times instead of 10.

1 // Fig. 4.11: BreakTest.java
2 // break statement exiting a for statement.
3 public class BreakTest
4 {
5 public static void main(String[] args)
6 {
7 int count; // control variable also used after loop terminates
8
9 for (count = 1; count <= 10; count++) // loop 10 times

10 {
11 if (count == 5)
12
13
14 System.out.printf("%d ", count);
15 }
16
17 System.out.printf("%nBroke out of loop at count = %d%n", count);
18 }
19 } // end class BreakTest

1 2 3 4
Broke out of loop at count = 5

Fig. 4.11 | break statement exiting a for statement.

break; // terminates loop if count is 5

Musa
Highlight

4.7 break and continue Statements 141

continue Statement
The continue statement, when executed in a while, for or do…while, skips the remain-
ing statements in the loop body and proceeds with the next iteration of the loop. In while
and do…while statements, the program evaluates the loop-continuation test immediately
after the continue statement executes. In a for statement, the increment expression exe-
cutes, then the program evaluates the loop-continuation test.

Figure 4.12 uses continue (line 10) to skip the statement at line 12 when the nested
if determines that count’s value is 5. When the continue statement executes, program
control continues with the increment of the control variable in the for statement (line 7).

In Section 4.3, we stated that while could be used in most cases in place of for. This
is not true when the increment expression in the while follows a continue statement. In
this case, the increment does not execute before the program evaluates the repetition-con-
tinuation condition, so the while does not execute in the same manner as the for.

1 // Fig. 4.12: ContinueTest.java
2 // continue statement terminating an iteration of a for statement.
3 public class ContinueTest
4 {
5 public static void main(String[] args)
6 {
7 for (int count = 1; count <= 10; count++) // loop 10 times
8 {
9 if (count == 5)

10
11
12 System.out.printf("%d ", count);
13 }
14
15 System.out.printf("%nUsed continue to skip printing 5%n");
16 }
17 } // end class ContinueTest

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Fig. 4.12 | continue statement terminating an iteration of a for statement.

Software Engineering Observation 4.2
Some programmers feel that break and continue violate structured programming. Since the
same effects are achievable with structured programming techniques, these programmers do
not use break or continue.

Software Engineering Observation 4.3
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Sometimes one of these goals is achieved at the expense of the other.
For all but the most performance-intensive situations, apply the following rule of thumb:
First, make your code simple and correct; then make it fast and small, but only if necessary.

continue; // skip remaining code in loop body if count is 5

142 Chapter 4 Control Statements: Part 2; Logical Operators

4.8 Logical Operators
The if, if…else, while, do…while and for statements each require a condition to de-
termine how to continue a program’s flow of control. So far, we’ve studied only simple
conditions, such as count <= 10, number != sentinelValue and total > 1000. Simple con-
ditions are expressed in terms of the relational operators >, <, >= and <= and the equality
operators == and !=, and each expression tests only one condition. To test multiple condi-
tions in the process of making a decision, we performed these tests in separate statements
or in nested if or if…else statements. Sometimes control statements require more com-
plex conditions to determine a program’s flow of control.

Java’s logical operators enable you to form more complex conditions by combining
simple conditions. The logical operators are && (conditional AND), || (conditional OR), &
(boolean logical AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive OR)
and ! (logical NOT). [Note: The &, | and ^ operators are also bitwise operators when they’re
applied to integral operands. We discuss the bitwise operators in online Appendix K.]

Conditional AND (&&) Operator
Suppose we wish to ensure at some point in a program that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

This if statement contains two simple conditions. The condition gender == FEMALE com-
pares variable gender to the constant FEMALE to determine whether a person is female. The
condition age >= 65 might be evaluated to determine whether a person is a senior citizen.
The if statement considers the combined condition

which is true if and only if both simple conditions are true. In this case, the if statement’s
body increments seniorFemales by 1. If either or both of the simple conditions are false,
the program skips the increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added, as in:

The table in Fig. 4.13 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
called truth tables. Java evaluates to false or true all expressions that include relational
operators, equality operators or logical operators.

if (gender == FEMALE && age >= 65)
++seniorFemales;

gender == FEMALE && age >= 65

(gender == FEMALE) && (age >= 65)

expression1 expression2 expression1 && expression2

false false false
false true false
true false false
true true true

Fig. 4.13 | && (conditional AND) operator truth table.

Musa
Highlight

4.8 Logical Operators 143

Conditional OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following program segment:

The preceding statement also contains two simple conditions. The condition semester-
Average >= 90 evaluates to determine whether the student deserves an A in the course be-
cause of a solid performance throughout the semester. The condition finalExam >= 90
evaluates to determine whether the student deserves an A in the course because of an out-
standing performance on the final exam. The if statement then considers the combined
condition

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not printed is when both of the simple condi-
tions are false. Figure 4.14 shows the truth table for operator conditional OR (||). Oper-
ator && has a higher precedence than operator ||. Both operators associate from left to
right.

Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. Thus, evaluation of the expression

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and
continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the
condition age >= 65 is true). This feature of conditional AND and conditional OR ex-
pressions is called short-circuit evaluation.

if ((semesterAverage >= 90) || (finalExam >= 90))
System.out.println ("Student grade is A");

(semesterAverage >= 90) || (finalExam >= 90)

expression1 expression2 expression1 || expression2

false false false
false true true
true false true
true true true

Fig. 4.14 | || (conditional OR) operator truth table.

(gender == FEMALE) && (age >= 65)

Common Programming Error 4.8
In expressions using operator &&, a condition—we’ll call this the dependent condition—
may require another condition to be true for the evaluation of the dependent condition to be
meaningful. In this case, the dependent condition should be placed after the && operator to
prevent errors. Consider the expression (i != 0) && (10 / i == 2). The dependent condition
(10 / i == 2)must appear after the && operator to prevent the possibility of division by zero.

144 Chapter 4 Control Statements: Part 2; Logical Operators

Boolean Logical AND (&) and Boolean Logical Inclusive OR (|) Operators
The boolean logical AND (&) and boolean logical inclusive OR (|) operators are identical
to the && and || operators, except that the & and | operators always evaluate both of their
operands (i.e., they do not perform short-circuit evaluation). So, the expression

evaluates age >= 65 regardless of whether gender is equal to 1. This is useful if the right
operand has a required side effect—a modification of a variable’s value. For example, the
expression

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented, regardless of whether the overall expression is true or false.

Boolean Logical Exclusive OR (^)
A simple condition containing the boolean logical exclusive OR (^) operator is true if and
only if one of its operands is true and the other is false. If both are true or both are false,
the entire condition is false. Figure 4.15 is a truth table for the boolean logical exclusive
OR operator (^). This operator is guaranteed to evaluate both of its operands.

Logical Negation (!) Operator
The ! (logical NOT, also called logical negation or logical complement) operator “revers-
es” the meaning of a condition. Unlike the logical operators &&, ||, &, | and ^, which are
binary operators that combine two conditions, the logical negation operator is a unary op-
erator that has only one condition as an operand. The operator is placed before a condition
to choose a path of execution if the original condition (without the logical negation oper-
ator) is false, as in the program segment

(gender == 1) & (age >= 65)

(birthday == true) | (++age >= 65)

Error-Prevention Tip 4.9
For clarity, avoid expressions with side effects (such as assignments) in conditions. They
can make code harder to understand and can lead to subtle logic errors.

Error-Prevention Tip 4.10
Assignment (=) expressions generally should not be used in conditions. Every condition
must result in a boolean value; otherwise, a compilation error occurs. In a condition, an
assignment will compile only if a boolean expression is assigned to a boolean variable.

expression1 expression2 expression1 ^ expression2

false false false
false true true
true false true
true true false

Fig. 4.15 | ^ (boolean logical exclusive OR) operator truth table.

if (! (grade == sentinelValue))
System.out.printf("The next grade is %d%n", grade);

4.8 Logical Operators 145

which executes the printf call only if grade is not equal to sentinelValue. The paren-
theses around the condition grade == sentinelValue are needed because the logical ne-
gation operator has a higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written as follows:

This flexibility can help you express a condition in a more convenient manner. Figure 4.16
is a truth table for the logical negation operator.

Logical Operators Example
Figure 4.17 uses logical operators to produce the truth tables discussed in this section.
The output shows the boolean expression that was evaluated and its result. We used the
%b format specifier to display the word “true” or the word “false” based on a boolean ex-
pression’s value. Lines 9–13 produce the truth table for &&. Lines 16–20 produce the truth
table for ||. Lines 23–27 produce the truth table for &. Lines 30–35 produce the truth
table for |. Lines 38–43 produce the truth table for ^. Lines 46–47 produce the truth table
for !.

if (grade != sentinelValue)
System.out.printf("The next grade is %d%n", grade);

expression !expression

false true
true false

Fig. 4.16 | ! (logical NOT) operator truth table.

1 // Fig. 4.17: LogicalOperators.java
2 // Logical operators.
3
4 public class LogicalOperators
5 {
6 public static void main(String[] args)
7 {
8 // create truth table for && (conditional AND) operator
9 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",

10 "Conditional AND (&&)", "false && false", ,
11 "false && true", ,
12 "true && false", ,
13 "true && true",);
14
15 // create truth table for || (conditional OR) operator
16 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
17 "Conditional OR (||)", "false || false", ,
18 "false || true", ,
19 "true || false", ,
20 "true || true",);

Fig. 4.17 | Logical operators. (Part 1 of 3.)

(false && false)
(false && true)
(true && false)
(true && true)

(false || false)
(false || true)
(true || false)
(true || true)

146 Chapter 4 Control Statements: Part 2; Logical Operators

21
22 // create truth table for & (boolean logical AND) operator
23 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
24 "Boolean logical AND (&)", "false & false", ,
25 "false & true", ,
26 "true & false", ,
27 "true & true",);
28
29 // create truth table for | (boolean logical inclusive OR) operator
30 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
31 "Boolean logical inclusive OR (|)",
32 "false | false", ,
33 "false | true", ,
34 "true | false", ,
35 "true | true",);
36
37 // create truth table for ^ (boolean logical exclusive OR) operator
38 System.out.printf("%s%n%s: %b%n%s: %b%n%s: %b%n%s: %b%n%n",
39 "Boolean logical exclusive OR (^)",
40 "false ^ false", ,
41 "false ^ true", ,
42 "true ^ false", ,
43 "true ^ true",);
44
45 // create truth table for ! (logical negation) operator
46 System.out.printf("%s%n%s: %b%n%s: %b%n", "Logical NOT (!)",
47 "!false", , "!true",);
48 }
49 } // end class LogicalOperators

Conditional AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Conditional OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Boolean logical AND (&)
false & false: false
false & true: false
true & false: false
true & true: true

Boolean logical inclusive OR (|)
false | false: false
false | true: true
true | false: true
true | true: true

Fig. 4.17 | Logical operators. (Part 2 of 3.)

(false & false)
(false & true)
(true & false)
(true & true)

(false | false)
(false | true)
(true | false)
(true | true)

(false ^ false)
(false ^ true)
(true ^ false)
(true ^ true)

(!false) (!true)

4.9 Structured Programming Summary 147

Precedence and Associativity of the Operators Presented So Far
Figure 4.18 shows the precedence and associativity of the Java operators introduced so far.
The operators are shown from top to bottom in decreasing order of precedence.

4.9 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is much younger than architecture,
and our collective wisdom is considerably sparser. We’ve learned that structured program-
ming produces programs that are easier than unstructured programs to understand, test,
debug, modify and even prove correct in a mathematical sense.

Java Control Statements Are Single-Entry/Single-Exit
Figure 4.19 uses UML activity diagrams to summarize Java’s control statements. The ini-
tial and final states indicate the single entry point and the single exit point of each control

Boolean logical exclusive OR (^)
false ^ false: false
false ^ true: true
true ^ false: true
true ^ true: false

Logical NOT (!)
!false: true
!true: false

Operators Associativity Type

++ -- right to left unary postfix

++ -- + - ! (type) right to left unary prefix
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
& left to right boolean logical AND
^ left to right boolean logical exclusive OR
| left to right boolean logical inclusive OR
&& left to right conditional AND
|| left to right conditional OR
?: right to left conditional
= += -= *= /= %= right to left assignment

Fig. 4.18 | Precedence/associativity of the operators discussed so far.

Fig. 4.17 | Logical operators. (Part 3 of 3.)

148 Chapter 4 Control Statements: Part 2; Logical Operators

Fig. 4.19 | Java’s single-entry/single-exit sequence, selection and repetition statements.

break

[t][f]

if…else statement
(double selection)

if statement
(single selection)

[t]

[f]

[t]

[f]

break
[t]

break
[t]

[f]

[f]

switch statement with breaks
(multiple selection)

Sequence Selection

Repetition

default processing

initialization

increment

.
.
.

.
.
.

[t]

[f]

for statement

[t]

[f]

while statement

[t]

[f]

do…while statement

4.9 Structured Programming Summary 149

statement. Arbitrarily connecting individual symbols in an activity diagram can lead to un-
structured programs. Therefore, the programming profession has chosen a limited set of
control statements that can be combined in only two simple ways to build structured pro-
grams.

For simplicity, Java includes only single-entry/single-exit control statements—there’s
only one way to enter and only one way to exit each control statement. Connecting control
statements in sequence to form structured programs is simple. The final state of one con-
trol statement is connected to the initial state of the next—that is, the control statements
are placed one after another in a program in sequence. We call this control-statement
stacking. The rules for forming structured programs also allow for control statements to be
nested.

Rules for Forming Structured Programs
Figure 4.20 shows the rules for forming structured programs. The rules assume that action
states may be used to indicate any action. The rules also assume that we begin with the
simplest activity diagram (Fig. 4.21) consisting of only an initial state, an action state, a
final state and transition arrows.

Applying the rules in Fig. 4.20 always results in a properly structured activity diagram
with a neat, building-block appearance. For example, repeatedly applying rule 2 to the sim-
plest activity diagram results in an activity diagram containing many action states in sequence
(Fig. 4.22). Rule 2 generates a stack of control statements, so let’s call rule 2 the stacking rule.
The vertical dashed lines in Fig. 4.22 are not part of the UML—we use them to separate the
four activity diagrams that demonstrate rule 2 of Fig. 4.20 being applied.

Rules for forming structured programs

1. Begin with the simplest activity diagram (Fig. 4.21).

2. Any action state can be replaced by two action states in sequence.

3. Any action state can be replaced by any control statement (sequence of
action states, if, if…else, switch, while, do…while or for).

4. Rules 2 and 3 can be applied as often as you like and in any order.

Fig. 4.20 | Rules for forming structured programs.

Fig. 4.21 | Simplest activity diagram.

action state

150 Chapter 4 Control Statements: Part 2; Logical Operators

Rule 3 is called the nesting rule. Repeatedly applying rule 3 to the simplest activity dia-
gram results in one with neatly nested control statements. For example, in Fig. 4.23, the
action state in the simplest activity diagram is replaced with a double-selection (if…else)
statement. Then rule 3 is applied again to the action states in the double-selection statement,
replacing each with a double-selection statement. The dashed action-state symbol around
each double-selection statement represents the action state that was replaced. [Note: The
dashed arrows and dashed action-state symbols shown in Fig. 4.23 are not part of the UML.
They’re used here to illustrate that any action state can be replaced with a control statement.]

Rule 4 generates larger, more involved and more deeply nested statements. The dia-
grams that emerge from applying the rules in Fig. 4.20 constitute the set of all possible
structured activity diagrams and hence the set of all possible structured programs. The
beauty of the structured approach is that we use only seven simple single-entry/single-exit
control statements and assemble them in only two simple ways.

If the rules in Fig. 4.20 are followed, an “unstructured’ activity diagram (like the one
in Fig. 4.24) cannot be created. If you’re uncertain about whether a particular diagram is
structured, apply the rules of Fig. 4.20 in reverse to reduce it to the simplest activity dia-
gram. If you can reduce it, the original diagram is structured; otherwise, it’s not.

Three Forms of Control
Structured programming promotes simplicity. Only three forms of control are needed to
implement an algorithm:

• sequence

• selection

• repetition

The sequence structure is trivial. Simply list the statements to execute in the order in
which they should execute. Selection is implemented in one of three ways:

o

Fig. 4.22 | Repeatedly applying rule 2 of Fig. 4.20 to the simplest activity diagram.

action state action state

apply
rule 2

apply
rule 2

apply
rule 2

action stateaction state

action state action state

action state action state

.
.
.

4.9 Structured Programming Summary 151

Fig. 4.23 | Repeatedly applying rule 3 of Fig. 4.20 to the simplest activity diagram.

Fig. 4.24 | “Unstructured” activity diagram.

action stateaction state

[t][f]

[t][f]

[t][f][t][f]

action state

action stateaction state action stateaction state

apply
rule 3

apply
rule 3

apply
rule 3

action state

action state

action state action state

152 Chapter 4 Control Statements: Part 2; Logical Operators

• if statement (single selection)

• if…else statement (double selection)

• switch statement (multiple selection)

In fact, it’s straightforward to prove that the simple if statement is sufficient to provide
any form of selection—everything that can be done with the if…else statement and the
switch statement can be implemented by combining if statements (although perhaps not
as clearly and efficiently).

Repetition is implemented in one of three ways:

• while statement

• do…while statement

• for statement

[Note: There’s a fourth repetition statement—the enhanced for statement—that we discuss
in Section 6.6.] It’s straightforward to prove that the while statement is sufficient to pro-
vide any form of repetition. Everything that can be done with do…while and for can be
done with the while statement (although perhaps not as conveniently).

Combining these results illustrates that any form of control ever needed in a Java pro-
gram can be expressed in terms of

• sequence

• if statement (selection)

• while statement (repetition)

and that these can be combined in only two ways—stacking and nesting. Indeed, structured
programming is the essence of simplicity.

4.10 (Optional) GUI and Graphics Case Study: Drawing
Rectangles and Ovals
Our next program (Fig. 4.25) demonstrates drawing rectangles and ovals, using the
Graphics methods drawRect and drawOval, respectively. Method paintComponent (lines
10–21) performs the actual drawing. Remember, the first statement in every paintCompo-
nent method must be a call to super.paintComponent, as in line 12. Lines 14–20 loop 10
times to draw 10 rectangles and 10 ovals.

1 // Fig. 4.25: Shapes.java
2 // Drawing a cascade of shapes based on the user’s choice.
3 import java.awt.Graphics;
4 import javax.swing.JPanel;
5 import javax.swing.JFrame;
6
7 public class Shapes extends JPanel
8 {

Fig. 4.25 | Drawing a cascade of shapes based on the user’s choice. (Part 1 of 2.)

4.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals 153

Lines 16–17 call Graphics method drawRect, which requires four arguments. The
first two represent the x- and y-coordinates of the upper-left corner of the rectangle; the
next two represent the rectangle’s width and height. In this example, we start at a position
10 pixels down and 10 pixels right of the top-left corner, and every iteration of the loop
moves the upper-left corner another 10 pixels down and to the right. The width and the
height of the rectangle start at 50 pixels and increase by 10 pixels in each iteration.

Lines 18–19 in the loop draw ovals. Method drawOval creates an imaginary rectangle
called a bounding rectangle and places inside it an oval that touches the midpoints of all
four sides. The method’s four arguments represent the x- and y-coordinates of the upper-

9 // draws a cascade of shapes starting from the top-left corner
10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g);
13
14 for (int i = 0; i < 10; i++)
15 {
16
17
18
19
20 }
21 }
22
23 public static void main(String[] args)
24 {
25 Shapes panel = new Shapes(); // create the panel
26 JFrame application = new JFrame(); // creates a new JFrame
27
28 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
29 application.add(panel);
30 application.setSize(500, 290);
31 application.setVisible(true);
32 }
33 } // end class Shapes

Fig. 4.25 | Drawing a cascade of shapes based on the user’s choice. (Part 2 of 2.)

g.drawRect(10 + i * 10, 10 + i * 10,
50 + i * 10, 50 + i * 10);

g.drawOval(240 + i * 10, 10 + i * 10,
50 + i * 10, 50 + i * 10);

154 Chapter 4 Control Statements: Part 2; Logical Operators

left corner of the bounding rectangle and the bounding rectangle’s width and height. The
values passed to drawOval in this example are exactly the same as those passed to drawRect
in lines 16–17, except that the first oval’s bounding box has an x-coordinate that starts 240
pixels from the left side of the panel. Since the width and height of the bounding rectangle
are identical in this example, lines 18–19 draw a circle. As an exercise, modify the program
to draw both rectangles and ovals with the same arguments. This will allow you to see how
each oval touches all four sides of the corresponding rectangle.

Line 25 in main creates a Shapes object. Lines 26–31 perform the standard operations
that create and set up a window in this case study—create a frame, set it to exit the appli-
cation when closed, add the drawing to the frame, set the frame size and make it visible.

GUI and Graphics Case Study Exercise
4.1 Draw 12 concentric circles in the center of a JPanel (Fig. 4.26). The innermost circle
should have a radius of 10 pixels, and each successive circle should have a radius 10 pixels larger than
the previous one. Begin by finding the center of the JPanel. To get the upper-left corner of a circle,
move up one radius and to the left one radius from the center. The width and height of the bound-
ing rectangle are both the same as the circle’s diameter (i.e., twice the radius).

4.11 Wrap-Up
In this chapter, we completed our introduction to control statements, which enable you to
control the flow of execution in methods. Chapter 3 discussed if, if…else and while.
This chapter demonstrated for, do…while and switch. We showed that any algorithm can
be developed using combinations of the sequence structure, the three types of selection state-
ments—if, if…else and switch—and the three types of repetition statements—while,
do…while and for. In this chapter and Chapter 3, we discussed how you can combine these
building blocks to utilize proven program-construction and problem-solving techniques.
You used the break statement to exit a switch statement and to immediately terminate a
loop, and used a continue statement to terminate a loop’s current iteration and proceed with
the loop’s next iteration. This chapter also introduced Java’s logical operators, which enable
you to use more complex conditional expressions in control statements. In Chapter 5, we ex-
amine methods.

Fig. 4.26 | Drawing concentric circles.

Summary 155

Summary
Section 4.2 Essentials of Counter-Controlled Repetition
• Counter-controlled repetition (p. 122) requires a control variable, the initial value of the control

variable, the increment by which the control variable is modified each time through the loop (al-
so known as each iteration of the loop) and the loop-continuation condition that determines
whether looping should continue.

• You can declare a variable and initialize it in the same statement.

Section 4.3 for Repetition Statement
• The while statement can be used to implement any counter-controlled loop.

• The for statement (p. 124) specifies all the details of counter-controlled repetition in its header

• When the for statement begins executing, its control variable is declared and initialized. If the
loop-continuation condition is initially true, the body executes. After executing the loop’s body,
the increment expression executes. Then the loop-continuation test is performed again to deter-
mine whether the program should continue with the next iteration of the loop.

• The general format of the for statement is

for (initialization; loopContinuationCondition; increment)
statement

where the initialization expression names the loop’s control variable and provides its initial value,
loopContinuationCondition determines whether the loop should continue executing and incre-
ment modifies the control variable’s value, so that the loop-continuation condition eventually be-
comes false. The two semicolons in the for header are required.

• Most for statements can be represented with equivalent while statements as follows:

initialization;

while (loopContinuationCondition)
{

statement
increment;

}

• Typically, for statements are used for counter-controlled repetition and while statements for
sentinel-controlled repetition.

• If the initialization expression in the for header declares the control variable, the control variable
can be used only in that for statement—it will not exist outside the for statement.

• The expressions in a for header are optional. If the loopContinuationCondition is omitted, Java
assumes that it’s always true, thus creating an infinite loop. You might omit the initialization ex-
pression if the control variable is initialized before the loop. You might omit the increment expres-
sion if the increment is calculated with statements in the loop’s body or if no increment is needed.

• The increment expression in a for acts as if it’s a standalone statement at the end of the for’s body.

• A for statement can count downward by using a negative increment—i.e., a decrement (p. 127).

• If the loop-continuation condition is initially false, the for statement’s body does not execute.

Section 4.4 Examples Using the for Statement
• Java treats floating-point constants like 1000.0 and 0.05 as type double. Similarly, Java treats

whole-number constants like 7 and -22 as type int.

• The format specifier %4s outputs a String in a field width (p. 130) of 4—that is, printf displays
the value with at least 4 character positions. If the value to be output is less than 4 character po-

156 Chapter 4 Control Statements: Part 2; Logical Operators

sitions wide, the value is right justified (p. 130) in the field by default. If the value is greater than
4 character positions wide, the field width expands to accommodate the appropriate number of
characters. To left justify (p. 130) the value, use a negative integer to specify the field width.

• Math.pow(x, y) (p. 131) calculates the value of x raised to the yth power. The method receives
two double arguments and returns a double value.

• The comma (,) formatting flag (p. 131) in a format specifier indicates that a floating-point value
should be output with a grouping separator (p. 131). The actual separator used is specific to the
user’s locale (i.e., country). In the United States, the number will have commas separating every
three digits and a decimal point separating the fractional part of the number, as in 1,234.45.

• The . in a format specifier indicates that the integer to its right is the number’s precision.

Section 4.5 do…while Repetition Statement
• The do…while statement (p. 132) is similar to the while statement. In the while, the program tests

the loop-continuation condition at the beginning of the loop, before executing its body; if the con-
dition is false, the body never executes. The do…while statement tests the loop-continuation con-
dition after executing the loop’s body; therefore, the body always executes at least once.

Section 4.6 switch Multiple-Selection Statement
• The switch statement (p. 134) performs different actions based on the possible values of a constant

integral expression (a constant value of type byte, short, int or char, but not long), or a String.

• The end-of-file indicator is a system-dependent keystroke combination that terminates user in-
put. On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence <Ctrl>
d on a line by itself. This notation means to simultaneously press both the Ctrl key and the d key.
On Windows systems, enter end-of-file by typing <Ctrl> z.

• Scanner method hasNext (p. 137) determines whether there’s more data to input. This method
returns the boolean value true if there’s more data; otherwise, it returns false. As long as the
end-of-file indicator has not been typed, method hasNext will return true.

• The switch statement consists of a block that contains a sequence of case labels (p. 137) and an
optional default case (p. 137).

• In a switch, the program evaluates the controlling expression and compares its value with each
case label. If a match occurs, the program executes the statements for that case.

• Listing cases consecutively with no statements between them enables the cases to perform the
same set of statements.

• Every value you wish to test in a switch must be listed in a separate case label.

• Each case can have multiple statements, and these need not be placed in braces.

• A case’s statements typically end with a break statement (p. 137) that terminates the switch’s
execution.

• Without break statements, each time a match occurs in the switch, the statements for that case
and subsequent cases execute until a break statement or the end of the switch is encountered.

• If no match occurs between the controlling expression’s value and a case label, the optional
default case executes. If no match occurs and the switch does not contain a default case, pro-
gram control simply continues with the first statement after the switch.

Section 4.7 break and continue Statements
• The break statement, when executed in a while, for, do…while or switch, causes immediate

exit from that statement.

Self-Review Exercises 157

• The continue statement (p. 140), when executed in a while, for or do…while, skips the loop’s
remaining body statements and proceeds with its next iteration. In while and do…while state-
ments, the program evaluates the loop-continuation test immediately. In a for statement, the in-
crement expression executes, then the program evaluates the loop-continuation test.

Section 4.8 Logical Operators
• Simple conditions are expressed in terms of the relational operators >, <, >= and <= and the equal-

ity operators == and !=, and each expression tests only one condition.

• Logical operators (p. 142) enable you to form more complex conditions by combining simple con-
ditions. The logical operators are && (conditional AND), || (conditional OR), & (boolean logical
AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive OR) and ! (logical NOT).

• To ensure that two conditions are both true, use the && (conditional AND) operator. If either or
both of the simple conditions are false, the entire expression is false.

• To ensure that either or both of two conditions are true, use the || (conditional OR) operator,
which evaluates to true if either or both of its simple conditions are true.

• A condition using && or || operators (p. 142) uses short-circuit evaluation (p. 143)—they’re
evaluated only until it’s known whether the condition is true or false.

• The & and | operators (p. 144) work identically to the && and || operators but always evaluate
both operands.

• A simple condition containing the boolean logical exclusive OR (^; p. 144) operator is true if and
only if one of its operands is true and the other is false. If both operands are true or both are false,
the entire condition is false. This operator is also guaranteed to evaluate both of its operands.

• The unary ! (logical NOT; p. 144) operator “reverses” the value of a condition.

Self-Review Exercises
4.1 Fill in the blanks in each of the following statements:

a) Typically, statements are used for counter-controlled repetition and
statements for sentinel-controlled repetition.

b) The do…while statement tests the loop-continuation condition executing
the loop’s body; therefore, the body always executes at least once.

c) The statement selects among multiple actions based on the possible values
of an integer variable or expression, or a String.

d) The statement, when executed in a repetition statement, skips the remaining
statements in the loop body and proceeds with the next iteration of the loop.

e) The operator can be used to ensure that two conditions are both true before
choosing a certain path of execution.

f) If the loop-continuation condition in a for header is initially , the program
does not execute the for statement’s body.

g) Methods that perform common tasks and do not require objects are called
methods.

4.2 State whether each of the following is true or false. If false, explain why.
a) The default case is required in the switch selection statement.
b) The break statement is required in the last case of a switch selection statement.
c) The expression ((x > y) && (a < b)) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands are true.
e) The comma (,) formatting flag in a format specifier (e.g., %,20.2f) indicates that a value

should be output with a thousands separator.

158 Chapter 4 Control Statements: Part 2; Logical Operators

f) To test for a range of values in a switch statement, use a hyphen (–) between the start
and end values of the range in a case label.

g) Listing cases consecutively with no statements between them enables the cases to per-
form the same set of statements.

4.3 Write a Java statement or a set of Java statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99, using a for statement. Assume that the integer

variables sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3, using the pow method.
c) Print the integers from 1 to 20, using a while loop and the counter variable i. Assume

that the variable i has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation i % 5. When the value of this expression is 0, print a newline
character; otherwise, print a tab character. Assume that this code is an application. Use
the System.out.println() method to output the newline character, and use the Sys-
tem.out.print('\t') method to output the tab character.]

d) Repeat part (c), using a for statement.

4.4 Find the error in each of the following code segments, and explain how to correct it:
a) i = 1;

while (i <= 10);
++i;

}
b) for (k = 0.1; k != 1.0; k += 0.1)

System.out.println(k);
c) switch (n)

{
case 1:

System.out.println("The number is 1");
case 2:

System.out.println("The number is 2");
break;

default:
System.out.println("The number is not 1 or 2");
break;

}
d) The following code should print the values 1 to 10:

n = 1;
while (n < 10)

System.out.println(n++);

Answers to Self-Review Exercises
4.1 a) for, while. b) after. c) switch. d) continue. e) && (conditional AND). f) false. g) static.

4.2 a) False. The default case is optional. If no default action is needed, then there’s no need
for a default case. b) False. The break statement is used to exit the switch statement. The break
statement is not required for the last case in a switch statement. c) False. Both of the relational ex-
pressions must be true for the entire expression to be true when using the && operator. d) True.
e) True. f) False. The switch statement does not provide a mechanism for testing ranges of values,
so every value that must be tested should be listed in a separate case label. g) True.

4.3 a) sum = 0;
for (count = 1; count <= 99; count += 2)

sum += count;

Exercises 159

b) double result = Math.pow(2.5, 3);
c) i = 1;

while (i <= 20)
{

System.out.print(i);

if (i % 5 == 0)
System.out.println();

else
System.out.print('\t');

++i;
}

d) for (i = 1; i <= 20; i++)
{

System.out.print(i);

if (i % 5 == 0)
System.out.println();

else
System.out.print('\t');

}

4.4 a) Error: The semicolon after the while header causes an infinite loop, and there’s a miss-
ing left brace.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for statement may not work, because
floating-point numbers are represented only approximately by most computers.
Correction: Use an integer, and perform the proper calculation in order to get the values
you desire:

for (k = 1; k != 10; k++)
System.out.println((double) k / 10);

c) Error: The missing code is the break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
omission is not necessarily an error if you want the statement of case 2: to execute every
time the case 1: statement executes.

d) Error: An improper relational operator is used in the while’s continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

Exercises
4.5 Describe the four basic elements of counter-controlled repetition.

4.6 Compare and contrast the while and for repetition statements.

4.7 Discuss a situation in which it would be more appropriate to use a do…while statement
than a while statement. Explain why.

4.8 Compare and contrast the break and continue statements.

4.9 Find and correct the error(s) in each of the following segments of code:
a) For (i = 100, i >= 1, i++)

System.out.println(i);

160 Chapter 4 Control Statements: Part 2; Logical Operators

b) The following code should print whether integer value is odd or even:

switch (value % 2)
{

case 0:
System.out.println("Even integer");

case 1:
System.out.println("Odd integer");

}

c) The following code should output the odd integers from 19 to 1:

for (i = 19; i >= 1; i += 2)
System.out.println(i);

d) The following code should output the even integers from 2 to 100:

counter = 2;

do
{

System.out.println(counter);
counter += 2;

} While (counter < 100);

4.10 What does the following program do?

4.11 (Find the Smallest Value) Write an application that finds the smallest of several integers.
Assume that the first value read specifies the number of values to input from the user.

4.12 (Calculating the Product of Odd Integers) Write an application that calculates the product
of the odd integers from 1 to 15.

4.13 (Factorials) Factorials are used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) is equal to the product of the positive integers from
1 to n. Write an application that calculates the factorials of 1 through 20. Use type long. Display the
results in tabular format. What difficulty might prevent you from calculating the factorial of 100?

4.14 (Modified Compound-Interest Program) Modify the compound-interest application of
Fig. 4.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9% and 10%. Use a for loop to
vary the interest rate.

4.15 (Triangle Printing Program) Write an application that displays the following patterns sep-
arately, one below the other. Use for loops to generate the patterns. All asterisks (*) should be print-

1 // Exercise 4.10: Printing.java
2 public class Printing
3 {
4 public static void main(String[] args)
5 {
6 for (int i = 1; i <= 10; i++)
7 {
8 for (int j = 1; j <= 5; j++)
9 System.out.print('@');

10
11 System.out.println();
12 }
13 }
14 } // end class Printing

Exercises 161

ed by a single statement of the form System.out.print('*'); which causes the asterisks to print side
by side. A statement of the form System.out.println(); can be used to move to the next line. A
statement of the form System.out.print(' '); can be used to display a space for the last two pat-
terns. There should be no other output statements in the program. [Hint: The last two patterns re-
quire that each line begin with an appropriate number of blank spaces.]

(a) (b) (c) (d)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

4.16 (Bar Chart Printing Program) One interesting application of computers is to display
graphs and bar charts. Write an application that reads five numbers between 1 and 30. For each
number that’s read, your program should display the same number of adjacent asterisks. For exam-
ple, if your program reads the number 7, it should display *******. Display the bars of asterisks after
you read all five numbers.

4.17 (Calculating Sales) An online retailer sells five products whose retail prices are as follows:
Product 1, $2.98; product 2, $4.50; product 3, $9.98; product 4, $4.49 and product 5, $6.87.
Write an application that reads a series of pairs of numbers as follows:

a) product number
b) quantity sold

Your program should use a switch statement to determine the retail price for each product. It
should calculate and display the total retail value of all products sold. Use a sentinel-controlled
loop to determine when the program should stop looping and display the final results.

4.18 (Modified Compound-Interest Program) Modify the application in Fig. 4.6 to use only in-
tegers to calculate the compound interest. [Hint: Treat all monetary amounts as integral numbers
of pennies. Then break the result into its dollars and cents portions by using the division and re-
mainder operations, respectively. Insert a period between the dollars and the cents portions.]

4.19 Assume that i = 1, j = 2, k = 3 and m = 2. What does each of the following statements print?
a) System.out.println(i == 1);
b) System.out.println(j == 3);
c) System.out.println((i >= 1) && (j < 4));
d) System.out.println((m <= 99) & (k < m));
e) System.out.println((j >= i) || (k == m));
f) System.out.println((k + m < j) | (3 - j >= k));
g) System.out.println(!(k > m));

4.20 (Calculating the Value of π) Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by computing the first 200,000 terms of this
series. How many terms do you have to use before you first get a value that begins with 3.14159?

π 4
4
3
---–

4
5

4
7
---–

4
9

4
11
------– …+ + +=

162 Chapter 4 Control Statements: Part 2; Logical Operators

4.21 (Pythagorean Triples) A right triangle can have sides whose lengths are all integers. The set
of three integer values for the lengths of the sides of a right triangle is called a Pythagorean triple.
The lengths of the three sides must satisfy the relationship that the sum of the squares of two of the
sides is equal to the square of the hypotenuse. Write an application that displays a table of the
Pythagorean triples for side1, side2 and the hypotenuse, all no larger than 500. Use a triple-nested
for loop that tries all possibilities. This method is an example of “brute-force” computing. You’ll
learn in more advanced computer science courses that for many interesting problems there’s no
known algorithmic approach other than using sheer brute force.

4.22 (Modified Triangle Printing Program) Modify Exercise 4.15 to combine your code from
the four separate triangles of asterisks such that all four patterns print side by side. [Hint: Make clev-
er use of nested for loops.]

4.23 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, &, ||, |, ^ and !.
De Morgan’s laws can sometimes make it more convenient for us to express a logical expression.
These laws state that the expression !(condition1 && condition2) is logically equivalent to the expres-
sion (!condition1 || !condition2). Also, the expression !(condition1 || condition2) is logically
equivalent to the expression (!condition1 && !condition2). Use De Morgan’s laws to write equivalent
expressions for each of the following, then write an application to show that both the original ex-
pression and the new expression in each case produce the same value:

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

4.24 (Diamond Printing Program) Write an application that prints the following diamond
shape. You may use output statements that print a single asterisk (*), a single space or a single new-
line character. Maximize your use of repetition (with nested for statements), and minimize the
number of output statements.

4.25 (Modified Diamond Printing Program) Modify the application you wrote in Exercise 4.24
to read an odd number in the range 1–19 to specify the number of rows in the diamond. Your pro-
gram should then display a diamond of the appropriate size.

4.26 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, these statements can always be replaced by structured statements, although doing so can
be awkward. Describe in general how you’d remove any break statement from a loop in a program
and replace it with some structured equivalent. [Hint: The break statement exits a loop from the
body of the loop. The other way to exit is by failing the loop-continuation test. Consider using in
the loop-continuation test a second test that indicates “early exit because of a ‘break’ condition.”]
Use the technique you develop here to remove the break statement from the application in
Fig. 4.11.

*

*

Making a Difference 163

4.27 What does the following program segment do?

for (i = 1; i <= 5; i++)
{

for (j = 1; j <= 3; j++)
{

for (k = 1; k <= 4; k++)
System.out.print('*');

System.out.println();
} // end inner for

System.out.println();
} // end outer for

4.28 Describe in general how you’d remove any continue statement from a loop in a program
and replace it with some structured equivalent. Use the technique you develop here to remove the
continue statement from the program in Fig. 4.12.

4.29 (“The Twelve Days of Christmas” Song) Write an application that uses repetition and
switch statements to print the song “The Twelve Days of Christmas.” One switch statement should
be used to print the day (“first,” “second,” and so on). A separate switch statement should be used
to print the remainder of each verse. Visit the website en.wikipedia.org/wiki/The_Twelve_Days_
of_Christmas_(song) for the lyrics of the song.

Making a Difference
4.30 (Global Warming Facts Quiz) The controversial issue of global warming has been widely
publicized by the film “An Inconvenient Truth,” featuring former Vice President Al Gore. Mr. Gore
and a U.N. network of scientists, the Intergovernmental Panel on Climate Change, shared the 2007
Nobel Peace Prize in recognition of “their efforts to build up and disseminate greater knowledge
about man-made climate change.” Research both sides of the global warming issue online (you
might want to search for phrases like “global warming skeptics”). Create a five-question multiple-
choice quiz on global warming, each question having four possible answers (numbered 1–4). Be ob-
jective and try to fairly represent both sides of the issue. Next, write an application that administers
the quiz, calculates the number of correct answers (zero through five) and returns a message to the
user. If the user correctly answers five questions, print “Excellent”; if four, print “Very good”; if
three or fewer, print “Time to brush up on your knowledge of global warming,” and include a list
of some of the websites where you found your facts.

4.31 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at www.fairtax.org. Research how the pro-
posed FairTax works. One suggestion is to eliminate income taxes and most other taxes in favor of
a 23% consumption tax on all products and services that you buy. Some FairTax opponents ques-
tion the 23% figure and say that because of the way the tax is calculated, it would be more accurate
to say the rate is 30%—check this carefully. Write a program that prompts the user to enter expenses
in various expense categories they have (e.g., housing, food, clothing, transportation, education,
health care, vacations), then prints the estimated FairTax that person would pay.

4.32 (Facebook User Base Growth) According to CNNMoney.com, Facebook hit one billion us-
ers in October 2012. Using the compound-growth technique you learned in Fig. 4.6 and assuming
its user base grows at a rate of 4% per month, how many months will it take for Facebook to grow
its user base to 1.5 billion users? How many months will it take for Facebook to grow its user base
to two billion users?

www.fairtax.org

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	Contents
	Foreword
	Preface
	Before You Begin
	1 Introduction to Computers, the Internet and Java
	1.1 Introduction
	1.2 Hardware and Software
	1.2.1 Moore’s Law
	1.2.2 Computer Organization

	1.3 Data Hierarchy
	1.4 Machine Languages, Assembly Languages and High-Level Languages
	1.5 Introduction to Object Technology
	1.5.1 The Automobile as an Object
	1.5.2 Methods and Classes
	1.5.3 Instantiation
	1.5.4 Reuse
	1.5.5 Messages and Method Calls
	1.5.6 Attributes and Instance Variables
	1.5.7 Encapsulation and Information Hiding
	1.5.8 Inheritance
	1.5.9 Interfaces
	1.5.10 Object-Oriented Analysis and Design (OOAD)
	1.5.11 The UML (Unified Modeling Language)

	1.6 Operating Systems
	1.6.1 Windows—A Proprietary Operating System
	1.6.2 Linux—An Open-Source Operating System
	1.6.3 Android

	1.7 Programming Languages
	1.8 Java
	1.9 A Typical Java Development Environment
	1.10 Test-Driving a Java Application
	1.11 Internet and World Wide Web
	1.11.1 The Internet: A Network of Networks
	1.11.2 The World Wide Web: Making the Internet User-Friendly
	1.11.3 Web Services and Mashups
	1.11.4 Ajax
	1.11.5 The Internet of Things

	1.12 Software Technologies
	1.13 Keeping Up-to-Date with Information Technologies

	2 Introduction to Java Applications; Input/Output and Operators
	2.1 Introduction
	2.2 Your First Program in Java: Printing a Line of Text
	2.3 Modifying Your First Java Program
	2.4 Displaying Text with printf
	2.5 Another Application: Adding Integers
	2.5.1 import Declarations
	2.5.2 Declaring Class Addition
	2.5.3 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
	2.5.4 Declaring Variables to Store Integers
	2.5.5 Prompting the User for Input
	2.5.6 Obtaining an int as Input from the User
	2.5.7 Prompting for and Inputting a Second int
	2.5.8 Using Variables in a Calculation
	2.5.9 Displaying the Result of the Calculation
	2.5.10 Java API Documentation

	2.6 Memory Concepts
	2.7 Arithmetic
	2.8 Decision Making: Equality and Relational Operators
	2.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
	2.10 Wrap-Up

	3 Control Statements: Part 1; Assignment, ++ and -- Operators
	3.1 Introduction
	3.2 Algorithms
	3.3 Pseudocode
	3.4 Control Structures
	3.5 if Single-Selection Statement
	3.6 if…else Double-Selection Statement
	3.7 while Repetition Statement
	3.8 Formulating Algorithms: Counter-Controlled Repetition
	3.9 Formulating Algorithms: Sentinel-Controlled Repetition
	3.10 Formulating Algorithms: Nested Control Statements
	3.11 Compound Assignment Operators
	3.12 Increment and Decrement Operators
	3.13 Primitive Types
	3.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
	3.15 Wrap-Up

	4 Control Statements: Part 2; Logical Operators
	4.1 Introduction
	4.2 Essentials of Counter-Controlled Repetition
	4.3 for Repetition Statement
	4.4 Examples Using the for Statement
	4.5 do…while Repetition Statement
	4.6 switch Multiple-Selection Statement
	4.7 break and continue Statements
	4.8 Logical Operators
	4.9 Structured Programming Summary
	4.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
	4.11 Wrap-Up

	5 Methods
	5.1 Introduction
	5.2 Program Modules in Java
	5.3 static Methods, static Variables and Class Math
	5.4 Declaring Methods
	5.5 Notes on Declaring and Using Methods
	5.6 Method-Call Stack and Stack Frames
	5.7 Argument Promotion and Casting
	5.8 Java API Packages
	5.9 Case Study: Secure Random-Number Generation
	5.10 Case Study: A Game of Chance; Introducing enum Types
	5.11 Scope of Declarations
	5.12 Method Overloading
	5.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
	5.14 Wrap-Up

	6 Arrays and ArrayLists
	6.1 Introduction
	6.2 Primitive Types vs. Reference Types
	6.3 Arrays
	6.4 Declaring and Creating Arrays
	6.5 Examples Using Arrays
	6.5.1 Creating and Initializing an Array
	6.5.2 Using an Array Initializer
	6.5.3 Calculating the Values to Store in an Array
	6.5.4 Summing the Elements of an Array
	6.5.5 Using Bar Charts to Display Array Data Graphically
	6.5.6 Using the Elements of an Array as Counters
	6.5.7 Using Arrays to Analyze Survey Results

	6.6 Exception Handling: Processing the Incorrect Response
	6.6.1 The try Statement
	6.6.2 Executing the catch Block
	6.6.3 toString Method of the Exception Parameter

	6.7 Enhanced for Statement
	6.8 Passing Arrays to Methods
	6.9 Pass-By-Value vs. Pass-By-Reference
	6.10 Multidimensional Arrays
	6.11 Variable-Length Argument Lists
	6.12 Using Command-Line Arguments
	6.13 Class Arrays
	6.14 Introduction to Collections and Class ArrayList
	6.15 (Optional) GUI and Graphics Case Study: Drawing Arcs
	6.16 Wrap-Up

	7 Introduction to Classes and Objects
	7.1 Introduction
	7.2 Instance Variables, set Methods and get Methods
	7.2.1 Account Class with an Instance Variable, a set Method and a get Method
	7.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	7.2.3 Compiling and Executing an App with Multiple Classes
	7.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	7.2.5 Additional Notes on This Example
	7.2.6 Software Engineering with private Instance Variables and public set and get Methods

	7.3 Default and Explicit Initialization for Instance Variables
	7.4 Account Class: Initializing Objects with Constructors
	7.4.1 Declaring an Account Constructor for Custom Object Initialization
	7.4.2 Class AccountTest: Initializing Account Objects When They’re Created

	7.5 Account Class with a Balance; Floating-Point Numbers
	7.5.1 Account Class with a balance Instance Variable of Type double
	7.5.2 AccountTest Class to Use Class Account

	7.6 Case Study: Card Shuffling and Dealing Simulation
	7.7 Case Study: Class GradeBook Using an Array to Store Grades
	7.8 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.9 Wrap-Up

	8 Classes and Objects: A Deeper Look
	8.1 Introduction
	8.2 Time Class Case Study
	8.3 Controlling Access to Members
	8.4 Referring to the Current Object’s Members with the this Reference
	8.5 Time Class Case Study: Overloaded Constructors
	8.6 Default and No-Argument Constructors
	8.7 Notes on Set and Get Methods
	8.8 Composition
	8.9 enum Types
	8.10 Garbage Collection
	8.11 static Class Members
	8.12 static Import
	8.13 final Instance Variables
	8.14 Package Access
	8.15 Using BigDecimal for Precise Monetary Calculations
	8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	8.17 Wrap-Up

	9 Object-Oriented Programming: Inheritance
	9.1 Introduction
	9.2 Superclasses and Subclasses
	9.3 protected Members
	9.4 Relationship Between Superclasses and Subclasses
	9.4.1 Creating and Using a CommissionEmployee Class
	9.4.2 Creating and Using a BasePlusCommissionEmployee Class
	9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	9.5 Constructors in Subclasses
	9.6 Class Object
	9.7 (Optional) GUI and Graphics Case Study: Displaying Text and Images Using Labels
	9.8 Wrap-Up

	10 Object-Oriented Programming: Polymorphism and Interfaces
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

	10.6 Allowed Assignments Between Superclass and Subclass Variables
	10.7 final Methods and Classes
	10.8 A Deeper Explanation of Issues with Calling Methods from Constructors
	10.9 Creating and Using Interfaces
	10.9.1 Developing a Payable Hierarchy
	10.9.2 Interface Payable
	10.9.3 Class Invoice
	10.9.4 Modifying Class Employee to Implement Interface Payable
	10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.9.7 Some Common Interfaces of the Java API

	10.10 Java SE 8 Interface Enhancements
	10.10.1 default Interface Methods
	10.10.2 static Interface Methods
	10.10.3 Functional Interfaces

	10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
	10.12 Wrap-Up

	11 Exception Handling: A Deeper Look
	11.1 Introduction
	11.2 Example: Divide by Zero without Exception Handling
	11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	11.4 When to Use Exception Handling
	11.5 Java Exception Hierarchy
	11.6 finally Block
	11.7 Stack Unwinding and Obtaining Information from an Exception Object
	11.8 Chained Exceptions
	11.9 Declaring New Exception Types
	11.10 Preconditions and Postconditions
	11.11 Assertions
	11.12 try-with-Resources: Automatic Resource Deallocation
	11.13 Wrap-Up

	12 GUI Components: Part 1
	12.1 Introduction
	12.2 Java’s Nimbus Look-and-Feel
	12.3 Simple GUI-Based Input/Output with JOptionPane
	12.4 Overview of Swing Components
	12.5 Displaying Text and Images in a Window
	12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	12.7 Common GUI Event Types and Listener Interfaces
	12.8 How Event Handling Works
	12.9 JButton
	12.10 Buttons That Maintain State
	12.10.1 JCheckBox
	12.10.2 JRadioButton

	12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	12.12 JList
	12.13 Multiple-Selection Lists
	12.14 Mouse Event Handling
	12.15 Adapter Classes
	12.16 JPanel Subclass for Drawing with the Mouse
	12.17 Key Event Handling
	12.18 Introduction to Layout Managers
	12.18.1 FlowLayout
	12.18.2 BorderLayout
	12.18.3 GridLayout

	12.19 Using Panels to Manage More Complex Layouts
	12.20 JTextArea
	12.21 Wrap-Up

	13 Graphics and Java 2D
	13.1 Introduction
	13.2 Graphics Contexts and Graphics Objects
	13.3 Color Control
	13.4 Manipulating Fonts
	13.5 Drawing Lines, Rectangles and Ovals
	13.6 Drawing Arcs
	13.7 Drawing Polygons and Polylines
	13.8 Java 2D API
	13.9 Wrap-Up

	14 Strings, Characters and Regular Expressions
	14.1 Introduction
	14.2 Fundamentals of Characters and Strings
	14.3 Class String
	14.3.1 String Constructors
	14.3.2 String Methods length, charAt and getChars
	14.3.3 Comparing Strings
	14.3.4 Locating Characters and Substrings in Strings
	14.3.5 Extracting Substrings from Strings
	14.3.6 Concatenating Strings
	14.3.7 Miscellaneous String Methods
	14.3.8 String Method valueOf

	14.4 Class StringBuilder
	14.4.1 StringBuilder Constructors
	14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	14.4.4 StringBuilder append Methods
	14.4.5 StringBuilder Insertion and Deletion Methods

	14.5 Class Character
	14.6 Tokenizing Strings
	14.7 Regular Expressions, Class Pattern and Class Matcher
	14.8 Wrap-Up

	15 Files, Streams and Object Serialization
	15.1 Introduction
	15.2 Files and Streams
	15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	15.4 Sequential-Access Text Files
	15.4.1 Creating a Sequential-Access Text File
	15.4.2 Reading Data from a Sequential-Access Text File
	15.4.3 Case Study: A Credit-Inquiry Program
	15.4.4 Updating Sequential-Access Files

	15.5 Object Serialization
	15.5.1 Creating a Sequential-Access File Using Object Serialization
	15.5.2 Reading and Deserializing Data from a Sequential-Access File

	15.6 Opening Files with JFileChooser
	15.7 (Optional) Additional java.io Classes
	15.7.1 Interfaces and Classes for Byte-Based Input and Output
	15.7.2 Interfaces and Classes for Character-Based Input and Output

	15.8 Wrap-Up

	16 Generic Collections
	16.1 Introduction
	16.2 Collections Overview
	16.3 Type-Wrapper Classes
	16.4 Autoboxing and Auto-Unboxing
	16.5 Interface Collection and Class Collections
	16.6 Lists
	16.6.1 ArrayList and Iterator
	16.6.2 LinkedList

	16.7 Collections Methods
	16.7.1 Method sort
	16.7.2 Method shuffle
	16.7.3 Methods reverse, fill, copy, max and min
	16.7.4 Method binarySearch
	16.7.5 Methods addAll, frequency and disjoint

	16.8 Stack Class of Package java.util
	16.9 Class PriorityQueue and Interface Queue
	16.10 Sets
	16.11 Maps
	16.12 Properties Class
	16.13 Synchronized Collections
	16.14 Unmodifiable Collections
	16.15 Abstract Implementations
	16.16 Wrap-Up

	17 Java SE 8 Lambdas and Streams
	17.1 Introduction
	17.2 Functional Programming Technologies Overview
	17.2.1 Functional Interfaces
	17.2.2 Lambda Expressions
	17.2.3 Streams

	17.3 IntStream Operations
	17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	17.3.2 Terminal Operations count, min, max, sum and average
	17.3.3 Terminal Operation reduce
	17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	17.3.5 Intermediate Operation: Mapping
	17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed

	17.4 Stream<Integer> Manipulations
	17.4.1 Creating a Stream<Integer>
	17.4.2 Sorting a Stream and Collecting the Results
	17.4.3 Filtering a Stream and Storing the Results for Later Use
	17.4.4 Filtering and Sorting a Stream and Collecting the Results
	17.4.5 Sorting Previously Collected Results

	17.5 Stream<String> Manipulations
	17.5.1 Mapping Strings to Uppercase Using a Method Reference
	17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order

	17.6 Stream<Employee> Manipulations
	17.6.1 Creating and Displaying a List<Employee>
	17.6.2 Filtering Employees with Salaries in a Specified Range
	17.6.3 Sorting Employees By Multiple Fields
	17.6.4 Mapping Employees to Unique Last Name Strings
	17.6.5 Grouping Employees By Department
	17.6.6 Counting the Number of Employees in Each Department
	17.6.7 Summing and Averaging Employee Salaries

	17.7 Creating a Stream<String> from a File
	17.8 Generating Streams of Random Values
	17.9 Lambda Event Handlers
	17.10 Additional Notes on Java SE 8 Interfaces
	17.11 Java SE 8 and Functional Programming Resources
	17.12 Wrap-Up

	18 Recursion
	18.1 Introduction
	18.2 Recursion Concepts
	18.3 Example Using Recursion: Factorials
	18.4 Reimplementing Class FactorialCalculator Using Class BigInteger
	18.5 Example Using Recursion: Fibonacci Series
	18.6 Recursion and the Method-Call Stack
	18.7 Recursion vs. Iteration
	18.8 Towers of Hanoi
	18.9 Fractals
	18.9.1 Koch Curve Fractal
	18.9.2 (Optional) Case Study: Lo Feather Fractal
	18.10 Recursive Backtracking
	18.11 Wrap-Up

	19 Searching, Sorting and Big O
	19.1 Introduction
	19.2 Linear Search
	19.3 Big O Notation
	19.3.1 O(1) Algorithms
	19.3.2 O(n) Algorithms
	19.3.3 O(n[sup(2)]) Algorithms
	19.3.4 Big O of the Linear Search

	19.4 Binary Search
	19.4.1 Binary Search Implementation
	19.4.2 Efficiency of the Binary Search

	19.5 Sorting Algorithms
	19.6 Selection Sort
	19.6.1 Selection Sort Implementation
	19.6.2 Efficiency of the Selection Sort

	19.7 Insertion Sort
	19.7.1 Insertion Sort Implementation
	19.7.2 Efficiency of the Insertion Sort

	19.8 Merge Sort
	19.8.1 Merge Sort Implementation
	19.8.2 Efficiency of the Merge Sort

	19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms
	19.10 Wrap-Up

	20 Generic Classes and Methods
	20.1 Introduction
	20.2 Motivation for Generic Methods
	20.3 Generic Methods: Implementation and Compile-Time Translation
	20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.7 Raw Types
	20.8 Wildcards in Methods That Accept Type Parameters
	20.9 Wrap-Up

	21 Custom Generic Data Structures
	21.1 Introduction
	21.2 Self-Referential Classes
	21.3 Dynamic Memory Allocation
	21.4 Linked Lists
	21.4.1 Singly Linked Lists
	21.4.2 Implementing a Generic List Class
	21.4.3 Generic Classes ListNode and List
	21.4.4 Class ListTest
	21.4.5 List Method insertAtFront
	21.4.6 List Method insertAtBack
	21.4.7 List Method removeFromFront
	21.4.8 List Method removeFromBack
	21.4.9 List Method print
	21.4.10 Creating Your Own Packages

	21.5 Stacks
	21.6 Queues
	21.7 Trees
	21.8 Wrap-Up

	22 GUI Components: Part 2
	22.1 Introduction
	22.2 JSlider
	22.3 Understanding Windows in Java
	22.4 Using Menus with Frames
	22.5 JPopupMenu
	22.6 Pluggable Look-and-Feel
	22.7 JDesktopPane and JInternalFrame
	22.8 JTabbedPane
	22.9 BoxLayout Layout Manager
	22.10 GridBagLayout Layout Manager
	22.11 Wrap-Up

	23 Concurrency
	23.1 Introduction
	23.2 Thread States and Life Cycle
	23.2.1 New and Runnable States
	23.2.2 Waiting State
	23.2.3 Timed Waiting State
	23.2.4 Blocked State
	23.2.5 Terminated State
	23.2.6 Operating-System View of the Runnable State
	23.2.7 Thread Priorities and Thread Scheduling
	23.2.8 Indefinite Postponement and Deadlock

	23.3 Creating and Executing Threads with the Executor Framework
	23.4 Thread Synchronization
	23.4.1 Immutable Data
	23.4.2 Monitors
	23.4.3 Unsynchronized Mutable Data Sharing
	23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic

	23.5 Producer/Consumer Relationship without Synchronization
	23.6 Producer/Consumer Relationship: ArrayBlockingQueue
	23.7 (Advanced) Producer/Consumer Relationship with synchronized, wait, notify and notifyAll
	23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
	23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition Interfaces
	23.10 Concurrent Collections
	23.11 Multithreading with GUI: SwingWorker
	23.11.1 Performing Computations in a Worker Thread: Fibonacci Numbers
	23.11.2 Processing Intermediate Results: Sieve of Eratosthenes

	23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API
	23.13 Java SE 8: Sequential vs. Parallel Streams
	23.14 (Advanced) Interfaces Callable and Future
	23.15 (Advanced) Fork/Join Framework
	23.16 Wrap-Up

	24 Accessing Databases with JDBC
	24.1 Introduction
	24.2 Relational Databases
	24.3 A books Database
	24.4 SQL
	24.4.1 Basic SELECT Query
	24.4.2 WHERE Clause
	24.4.3 ORDER BY Clause
	24.4.4 Merging Data from Multiple Tables: INNER JOIN
	24.4.5 INSERT Statement
	24.4.6 UPDATE Statement
	24.4.7 DELETE Statement

	24.5 Setting up a Java DB Database
	24.5.1 Creating the Chapter’s Databases on Windows
	24.5.2 Creating the Chapter’s Databases on Mac OS X
	24.5.3 Creating the Chapter’s Databases on Linux

	24.6 Manipulating Databases with JDBC
	24.6.1 Connecting to and Querying a Database
	24.6.2 Querying the books Database

	24.7 RowSet Interface
	24.8 PreparedStatements
	24.9 Stored Procedures
	24.10 Transaction Processing
	24.11 Wrap-Up

	25 JavaFX GUI: Part 1
	25.1 Introduction
	25.2 JavaFX Scene Builder and the NetBeans IDE
	25.3 JavaFX App Window Structure
	25.4 Welcome App—Displaying Text and an Image
	25.4.1 Creating the App’s Project
	25.4.2 NetBeans Projects Window—Viewing the Project Contents
	25.4.3 Adding an Image to the Project
	25.4.4 Opening JavaFX Scene Builder from NetBeans
	25.4.5 Changing to a VBox Layout Container
	25.4.6 Configuring the VBox Layout Container
	25.4.7 Adding and Configuring a Label
	25.4.8 Adding and Configuring an ImageView
	25.4.9 Running the Welcome App

	25.5 Tip Calculator App—Introduction to Event Handling
	25.5.1 Test-Driving the Tip Calculator App
	25.5.2 Technologies Overview
	25.5.3 Building the App’s GUI
	25.5.4 TipCalculator Class
	25.5.5 TipCalculatorController Class

	25.6 Features Covered in the Online JavaFX Chapters
	25.7 Wrap-Up

	Chapters on the Web
	A: Operator Precedence Chart
	B: ASCII Character Set
	C: Keywords and ReservedWords
	D: Primitive Types
	E: Using the Debugger
	E.1 Introduction
	E.2 Breakpoints and the run, stop, cont and print Commands
	E.3 The print and set Commands
	E.4 Controlling Execution Using the step, step up and next Commands
	E.5 The watch Command
	E.6 The clear Command
	E.7 Wrap-Up

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

