
9 Object-Oriented
Programming: Inheritance

Say not you know another
entirely,
till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as the
number of a class the class of all
classes similar to the given class.
—Bertrand Russell

O b j e c t i v e s
In this chapter you’ll:

� Understand inheritance and
how to use it to develop new
classes based on existing
classes.

� Learn the notions of
superclasses and subclasses
and the relationship between
them.

� Use keyword extends to
create a class that inherits
attributes and behaviors from
another class.

� Use access modifier
protected in a superclass
to give subclass methods
access to these superclass
members.

� Access superclass members
with super from a subclass.

� Learn how constructors are
used in inheritance
hierarchies.

� Learn about the methods of
class Object, the direct or
indirect superclass of all
classes.

9.1 Introduction 353

9.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing inheritance, in which a new class is created by acquiring an existing class’s mem-
bers and possibly embellishing them with new or modified capabilities. With inheritance,
you can save time during program development by basing new classes on existing proven
and debugged high-quality software. This also increases the likelihood that a system will
be implemented and maintained effectively.

When creating a class, rather than declaring completely new members, you can des-
ignate that the new class should inherit the members of an existing class. The existing class
is called the superclass, and the new class is the subclass. (The C++ programming language
refers to the superclass as the base class and the subclass as the derived class.) A subclass
can become a superclass for future subclasses.

A subclass can add its own fields and methods. Therefore, a subclass is more specific
than its superclass and represents a more specialized group of objects. The subclass exhibits
the behaviors of its superclass and can modify those behaviors so that they operate appro-
priately for the subclass. This is why inheritance is sometimes referred to as specialization.

The direct superclass is the superclass from which the subclass explicitly inherits. An
indirect superclass is any class above the direct superclass in the class hierarchy, which
defines the inheritance relationships among classes—as you’ll see in Section 9.2, diagrams
help you understand these relationships. In Java, the class hierarchy begins with class
Object (in package java.lang), which every class in Java directly or indirectly extends (or
“inherits from”). Section 9.6 lists the methods of class Object that are inherited by all
other Java classes. Java supports only single inheritance, in which each class is derived
from exactly one direct superclass. Unlike C++, Java does not support multiple inheritance
(which occurs when a class is derived from more than one direct superclass). Chapter 10,
Object-Oriented Programming: Polymorphism and Interfaces, explains how to use Java
interfaces to realize many of the benefits of multiple inheritance while avoiding the associ-
ated problems.

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members
9.4 Relationship Between Superclasses and

Subclasses
9.4.1 Creating and Using a

CommissionEmployee Class
9.4.2 Creating and Using a

BasePlusCommissionEmployee Class
9.4.3 Creating a CommissionEmployee–

BasePlusCommissionEmployee
Inheritance Hierarchy

9.4.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using protected
Instance Variables

9.4.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
private Instance Variables

9.5 Constructors in Subclasses
9.6 Class Object
9.7 (Optional) GUI and Graphics

Case Study: Displaying Text and
Images Using Labels

9.8 Wrap-Up

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

Musa
Highlight

354 Chapter 9 Object-Oriented Programming: Inheritance

We distinguish between the is-a relationship and the has-a relationship. Is-a repre-
sents inheritance. In an is-a relationship, an object of a subclass can also be treated as an object
of its superclass—e.g., a car is a vehicle. By contrast, has-a represents composition (see
Chapter 8). In a has-a relationship, an object contains as members references to other objects—
e.g., a car has a steering wheel (and a car object has a reference to a steering-wheel object).

New classes can inherit from classes in class libraries. Organizations develop their
own class libraries and can take advantage of others available worldwide. Some day, most
new software likely will be constructed from standardized reusable components, just as
automobiles and most computer hardware are constructed today. This will facilitate the
rapid development of more powerful, abundant and economical software.

9.2 Superclasses and Subclasses
Often, an object of one class is an object of another class as well. For example, a CarLoan
is a Loan as are HomeImprovementLoans and MortgageLoans. Thus, in Java, class CarLoan
can be said to inherit from class Loan. In this context, class Loan is a superclass and class
CarLoan is a subclass. A CarLoan is a specific type of Loan, but it’s incorrect to claim that
every Loan is a CarLoan—the Loan could be any type of loan. Figure 9.1 lists several simple
examples of superclasses and subclasses—superclasses tend to be “more general” and sub-
classes “more specific.”

Because every subclass object is an object of its superclass, and one superclass can have
many subclasses, the set of objects represented by a superclass is often larger than the set
of objects represented by any of its subclasses. For example, the superclass Vehicle repre-
sents all vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car
represents a smaller, more specific subset of vehicles.

University Community Member Hierarchy
Inheritance relationships form treelike hierarchical structures. A superclass exists in a hier-
archical relationship with its subclasses. Let’s develop a sample class hierarchy (Fig. 9.2),
also called an inheritance hierarchy. A university community has thousands of members,
including employees, students and alumni. Employees are either faculty or staff members.
Faculty members are either administrators (e.g., deans and department chairpersons) or
teachers. The hierarchy could contain many other classes. For example, students can be
graduate or undergraduate students. Undergraduate students can be freshmen, sopho-
mores, juniors or seniors.

Superclass Subclasses

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, MortgageLoan
Employee Faculty, Staff
BankAccount CheckingAccount, SavingsAccount

Fig. 9.1 | Inheritance examples.

Musa
Highlight

9.2 Superclasses and Subclasses 355

Each arrow in the hierarchy represents an is-a relationship. As we follow the arrows
upward in this class hierarchy, we can state, for example, that “an Employee is a
CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct
superclass of Employee, Student and Alumnus and is an indirect superclass of all the other
classes in the diagram. Starting from the bottom, you can follow the arrows and apply the
is-a relationship up to the topmost superclass. For example, an Administrator is a Fac-
ulty member, is an Employee, is a CommunityMember and, of course, is an Object.

Shape Hierarchy
Now consider the Shape inheritance hierarchy in Fig. 9.3. This hierarchy begins with su-
perclass Shape, which is extended by subclasses TwoDimensionalShape and ThreeDim-
ensionalShape—Shapes are either TwoDimensionalShapes or ThreeDimensionalShapes.
The third level of this hierarchy contains specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. 9.2, we can follow the arrows from the bottom of the
diagram to the topmost superclass in this class hierarchy to identify several is-a relation-
ships. For example, a Triangle is a TwoDimensionalShape and is a Shape, while a Sphere
is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many other
classes. For example, ellipses and trapezoids also are TwoDimensionalShapes.

Fig. 9.2 | Inheritance hierarchy UML class diagram for university CommunityMembers.

Fig. 9.3 | Inheritance hierarchy UML class diagram for Shapes.

Student

CommunityMember

Administrator

AlumnusEmployee

StaffFaculty

Teacher

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

356 Chapter 9 Object-Oriented Programming: Inheritance

Not every class relationship is an inheritance relationship. In Chapter 8, we discussed
the has-a relationship, in which classes have members that are references to objects of other
classes. Such relationships create classes by composition of existing classes. For example,
given the classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an
Employee is a BirthDate or that an Employee is a TelephoneNumber. However, an
Employee has a BirthDate, and an Employee has a TelephoneNumber.

It’s possible to treat superclass objects and subclass objects similarly—their common-
alities are expressed in the superclass’s members. Objects of all classes that extend a
common superclass can be treated as objects of that superclass—such objects have an is-a
relationship with the superclass. Later in this chapter and in Chapter 10, we consider
many examples that take advantage of the is-a relationship.

A subclass can customize methods that it inherits from its superclass. To do this, the
subclass overrides (redefines) the superclass method with an appropriate implementation,
as we’ll see in the chapter’s code examples.

9.3 protected Members
Chapter 8 discussed access modifiers public and private. A class’s public members are
accessible wherever the program has a reference to an object of that class or one of its sub-
classes. A class’s private members are accessible only within the class itself. In this section,
we introduce the access modifier protected. Using protected access offers an intermedi-
ate level of access between public and private. A superclass’s protected members can be
accessed by members of that superclass, by members of its subclasses and by members of
other classes in the same package—protected members also have package access.

All public and protected superclass members retain their original access modifier
when they become members of the subclass—public members of the superclass become
public members of the subclass, and protected members of the superclass become pro-
tected members of the subclass. A superclass’s private members are not accessible outside
the class itself. Rather, they’re hidden from its subclasses and can be accessed only through
the public or protected methods inherited from the superclass.

Subclass methods can refer to public and protected members inherited from the
superclass simply by using the member names. When a subclass method overrides an inher-
ited superclass method, the superclass version of the method can be accessed from the sub-
class by preceding the superclass method name with keyword super and a dot (.)
separator. We discuss accessing overridden members of the superclass in Section 9.4.

Software Engineering Observation 9.1
Methods of a subclass cannot directly access private members of their superclass. A
subclass can change the state of private superclass instance variables only through non-
private methods provided in the superclass and inherited by the subclass.

Software Engineering Observation 9.2
Declaring private instance variables helps you test, debug and correctly modify systems.
If a subclass could access its superclass’s private instance variables, classes that inherit
from that subclass could access the instance variables as well. This would propagate access
to what should be private instance variables, and the benefits of information hiding
would be lost.

9.4 Relationship Between Superclasses and Subclasses 357

9.4 Relationship Between Superclasses and Subclasses
We now use an inheritance hierarchy containing types of employees in a company’s payroll
application to discuss the relationship between a superclass and its subclass. In this com-
pany, commission employees (who will be represented as objects of a superclass) are paid a
percentage of their sales, while base-salaried commission employees (who will be represented
as objects of a subclass) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between these classes into five examples.
The first declares class CommissionEmployee, which directly inherits from class Object and
declares as private instance variables a first name, last name, social security number, com-
mission rate and gross (i.e., total) sales amount.

The second example declares class BasePlusCommissionEmployee, which also directly
inherits from class Object and declares as private instance variables a first name, last
name, social security number, commission rate, gross sales amount and base salary. We
create this class by writing every line of code the class requires—we’ll soon see that it’s much
more efficient to create it by inheriting from class CommissionEmployee.

The third example declares a new BasePlusCommissionEmployee class that extends
class CommissionEmployee (i.e., a BasePlusCommissionEmployee is a CommissionEm-
ployee who also has a base salary). This software reuse lets us write much less code when
developing the new subclass. In this example, class BasePlusCommissionEmployee
attempts to access class CommissionEmployee’s private members—this results in compi-
lation errors, because the subclass cannot access the superclass’s private instance variables.

The fourth example shows that if CommissionEmployee’s instance variables are
declared as protected, the BasePlusCommissionEmployee subclass can access that data
directly. Both BasePlusCommissionEmployee classes contain identical functionality, but
we show how the inherited version is easier to create and manage.

After we discuss the convenience of using protected instance variables, we create the
fifth example, which sets the CommissionEmployee instance variables back to private to
enforce good software engineering. Then we show how the BasePlusCommissionEm-
ployee subclass can use CommissionEmployee’s public methods to manipulate (in a con-
trolled manner) the private instance variables inherited from CommissionEmployee.

9.4.1 Creating and Using a CommissionEmployee Class
We begin by declaring class CommissionEmployee (Fig. 9.4). Line 4 begins the class dec-
laration and indicates that class CommissionEmployee extends (i.e., inherits from) class Ob-
ject (from package java.lang). This causes class CommissionEmployee to inherit the class
Object’s methods—class Object does not have any fields. If you don’t explicitly specify
which class a new class extends, the class extends Object implicitly. For this reason, you
typically will not include “extends Object” in your code—we do so in this one example
only for demonstration purposes.

Overview of Class CommissionEmployee’s Methods and Instance Variables
Class CommissionEmployee’s public services include a constructor (lines 13–34) and
methods earnings (lines 87–90) and toString (lines 93–101). Lines 37–52 declare pub-
lic get methods for the class’s final instance variables (declared in lines 6–8) firstName,
lastName and socialSecurityNumber. These three instance variables are declared final
because they do not need to be modified after they’re initialized—this is also why we do

Musa
Highlight

358 Chapter 9 Object-Oriented Programming: Inheritance

not provide corresponding set methods. Lines 55–84 declare public set and get methods
for the class’s grossSales and commissionRate instance variables (declared in lines 9–10).
The class declares its instance variables as private, so objects of other classes cannot di-
rectly access these variables.

1 // Fig. 9.4: CommissionEmployee.java
2 // CommissionEmployee class represents an employee paid a
3 // percentage of gross sales.
4
5 {
6 private final String firstName;
7 private final String lastName;
8 private final String socialSecurityNumber;
9 private double grossSales; // gross weekly sales

10 private double commissionRate; // commission percentage
11
12 // five-argument constructor
13 public CommissionEmployee(String firstName, String lastName,
14 String socialSecurityNumber, double grossSales,
15 double commissionRate)
16 {
17 // implicit call to Object's default constructor occurs here
18
19 // if grossSales is invalid throw exception
20 if (grossSales < 0.0)
21 throw new IllegalArgumentException(
22 "Gross sales must be >= 0.0");
23
24 // if commissionRate is invalid throw exception
25 if (commissionRate <= 0.0 || commissionRate >= 1.0)
26 throw new IllegalArgumentException(
27 "Commission rate must be > 0.0 and < 1.0");
28
29 this.firstName = firstName;
30 this.lastName = lastName;
31 this.socialSecurityNumber = socialSecurityNumber;
32 this.grossSales = grossSales;
33 this.commissionRate = commissionRate;
34 } // end constructor
35
36 // return first name
37 public String getFirstName()
38 {
39 return firstName;
40 }
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 }

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 1 of 3.)

public class CommissionEmployee extends Object

9.4 Relationship Between Superclasses and Subclasses 359

47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 }
53
54 // set gross sales amount
55 public void setGrossSales(double grossSales)
56 {
57 if (grossSales < 0.0)
58 throw new IllegalArgumentException(
59 "Gross sales must be >= 0.0");
60
61 this.grossSales = grossSales;
62 }
63
64 // return gross sales amount
65 public double getGrossSales()
66 {
67 return grossSales;
68 }
69
70 // set commission rate
71 public void setCommissionRate(double commissionRate)
72 {
73 if (commissionRate <= 0.0 || commissionRate >= 1.0)
74 throw new IllegalArgumentException(
75 "Commission rate must be > 0.0 and < 1.0");
76
77 this.commissionRate = commissionRate;
78 }
79
80 // return commission rate
81 public double getCommissionRate()
82 {
83 return commissionRate;
84 }
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 2 of 3.)

// calculate earnings
public double earnings()
{

return commissionRate * grossSales;
}

// return String representation of CommissionEmployee object
@Override // indicates that this method overrides a superclass method
public String toString()
{

return String.format("%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f",
"commission employee", firstName, lastName,
"social security number", socialSecurityNumber,

360 Chapter 9 Object-Oriented Programming: Inheritance

Class CommissionEmployee’s Constructor
Constructors are not inherited, so class CommissionEmployee does not inherit class
Object’s constructor. However, a superclass’s constructors are still available to be called by
subclasses. In fact, Java requires that the first task of any subclass constructor is to call its direct
superclass’s constructor, either explicitly or implicitly (if no constructor call is specified), to
ensure that the instance variables inherited from the superclass are initialized properly. The
syntax for calling a superclass constructor explicitly is discussed in Section 9.4.3. In this
example, class CommissionEmployee’s constructor calls class Object’s constructor implic-
itly. If the code does not include an explicit call to the superclass constructor, Java implic-
itly calls the superclass’s default or no-argument constructor. The comment in line 17 of
Fig. 9.4 indicates where the implicit call to the superclass Object’s default constructor is
made (you do not write the code for this call). Object’s default constructor does nothing.
Even if a class does not have constructors, the default constructor that the compiler im-
plicitly declares for the class will call the superclass’s default or no-argument constructor.

After the implicit call to Object’s constructor, lines 20–22 and 25–27 validate the
grossSales and commissionRate arguments. If these are valid (that is, the constructor
does not throw an IllegalArgumentException), lines 29–33 assign the constructor’s
arguments to the class’s instance variables.

We did not validate the values of arguments firstName, lastName and socialSecu-
rityNumber before assigning them to the corresponding instance variables. We could val-
idate the first and last names—perhaps to ensure that they’re of a reasonable length.
Similarly, a social security number could be validated using regular expressions
(Section 14.7) to ensure that it contains nine digits, with or without dashes (e.g., 123-45-
6789 or 123456789).

Class CommissionEmployee’s earnings Method
Method earnings (lines 87–90) calculates a CommissionEmployee’s earnings. Line 89
multiplies the commissionRate by the grossSales and returns the result.

Class CommissionEmployee’s toString Method and the @Override Annotation
Method toString (lines 93–101) is special—it’s one of the methods that every class inher-
its directly or indirectly from class Object (summarized in Section 9.6). Method toString
returns a String representing an object. It’s called implicitly whenever an object must be
converted to a String representation, such as when an object is output by printf or out-
put by String method format via the %s format specifier. Class Object’s toString meth-
od returns a String that includes the name of the object’s class. It’s primarily a placeholder
that can be overridden by a subclass to specify an appropriate String representation of the
data in a subclass object. Method toString of class CommissionEmployee overrides (rede-
fines) class Object’s toString method. When invoked, CommissionEmployee’s toString

99
100
101
102 } // end class CommissionEmployee

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 3 of 3.)

"gross sales", grossSales,
"commission rate", commissionRate);

}

9.4 Relationship Between Superclasses and Subclasses 361

method uses String method format to return a String containing information about the
CommissionEmployee. To override a superclass method, a subclass must declare a method
with the same signature (method name, number of parameters, parameter types and order
of parameter types) as the superclass method—Object’s toString method takes no pa-
rameters, so CommissionEmployee declares toString with no parameters.

Line 93 uses the optional @Override annotation to indicate that the following
method declaration (i.e., toString) should override an existing superclass method. This
annotation helps the compiler catch a few common errors. For example, in this case, you
intend to override superclass method toString, which is spelled with a lowercase “t” and
an uppercase “S.” If you inadvertently use a lowercase “s,” the compiler will flag this as an
error because the superclass does not contain a method named toString. If you didn’t use
the @Override annotation, toString would be an entirely different method that would
not be called if a CommissionEmployee were used where a String was needed.

Another common overriding error is declaring the wrong number or types of param-
eters in the parameter list. This creates an unintentional overload of the superclass method,
rather than overriding the existing method. If you then attempt to call the method (with
the correct number and types of parameters) on a subclass object, the superclass’s version
is invoked—potentially leading to subtle logic errors. When the compiler encounters a
method declared with @Override, it compares the method’s signature with the superclass’s
method signatures. If there isn’t an exact match, the compiler issues an error message, such
as “method does not override or implement a method from a supertype.” You would then
correct your method’s signature so that it matches one in the superclass.

Class CommissionEmployeeTest
Figure 9.5 tests class CommissionEmployee. Lines 9–10 instantiate a CommissionEmployee
object and invoke CommissionEmployee’s constructor (lines 13–34 of Fig. 9.4) to initialize
it with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the social secu-
rity number, 10000 as the gross sales amount ($10,000) and .06 as the commission rate (i.e.,
6%). Lines 15–24 use CommissionEmployee’s get methods to retrieve the object’s instance-
variable values for output. Lines 26–27 invoke the object’s setGrossSales and setCommis-
sionRate methods to change the values of instance variables grossSales and commission-

Error-Prevention Tip 9.1
Though the @Override annotation is optional, declare overridden methods with it to en-
sure at compilation time that you defined their signatures correctly. It’s always better to
find errors at compile time rather than at runtime. For this reason, the toStringmethods
in Fig. 7.11 and in Chapter 8’s examples should have been declared with @Override.

Common Programming Error 9.1
It’s a compilation error to override a method with a more restricted access modifier—a
public superclass method cannot become a protected or private subclass method; a pro-
tected superclass method cannot become a private subclass method. Doing so would
break the is-a relationship, which requires that all subclass objects be able to respond to
method calls made to public methods declared in the superclass. If a publicmethod, could
be overridden as a protected or private method, the subclass objects would not be able
to respond to the same method calls as superclass objects. Once a method is declared public
in a superclass, the method remains public for all that class’s direct and indirect subclasses.

362 Chapter 9 Object-Oriented Programming: Inheritance

Rate. Lines 29–30 output the String representation of the updated CommissionEmployee.
When an object is output using the %s format specifier, the object’s toString method is in-
voked implicitly to obtain the object’s String representation. [Note: In this chapter, we do
not use the earnings method in each class, but it’s used extensively in Chapter 10.]

1 // Fig. 9.5: CommissionEmployeeTest.java
2 // CommissionEmployee class test program.
3
4 public class CommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate CommissionEmployee object
9

10
11
12 // get commission employee data
13 System.out.println(
14 "Employee information obtained by get methods:");
15 System.out.printf("%n%s %s%n", "First name is",
16);
17 System.out.printf("%s %s%n", "Last name is",
18);
19 System.out.printf("%s %s%n", "Social security number is",
20);
21 System.out.printf("%s %.2f%n", "Gross sales is",
22);
23 System.out.printf("%s %.2f%n", "Commission rate is",
24);
25
26
27
28
29 System.out.printf("%n%s:%n%n %n",
30 "Updated employee information obtained by toString",);
31 } // end main
32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 5000.00
commission rate: 0.10

Fig. 9.5 | CommissionEmployee class test program.

CommissionEmployee employee = new CommissionEmployee(
"Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(5000);
employee.setCommissionRate(.1);

%s
employee

9.4 Relationship Between Superclasses and Subclasses 363

9.4.2 Creating and Using a BasePlusCommissionEmployee Class
We now discuss the second part of our introduction to inheritance by declaring and testing
(a completely new and independent) class BasePlusCommissionEmployee (Fig. 9.6),
which contains a first name, last name, social security number, gross sales amount, com-
mission rate and base salary. Class BasePlusCommissionEmployee’s public services in-
clude a BasePlusCommissionEmployee constructor (lines 15–42) and methods earnings
(lines 111–114) and toString (lines 117–126). Lines 45–108 declare public get and set
methods for the class’s private instance variables (declared in lines 7–12) firstName,
lastName, socialSecurityNumber, grossSales, commissionRate and baseSalary. These
variables and methods encapsulate all the necessary features of a base-salaried commission
employee. Note the similarity between this class and class CommissionEmployee
(Fig. 9.4)—in this example, we’ll not yet exploit that similarity.

1 // Fig. 9.6: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class represents an employee who receives
3 // a base salary in addition to commission.
4
5 public class BasePlusCommissionEmployee
6 {
7 private final String firstName;
8 private final String lastName;
9 private final String socialSecurityNumber;

10 private double grossSales; // gross weekly sales
11 private double commissionRate; // commission percentage
12
13
14 // six-argument constructor
15 public BasePlusCommissionEmployee(String firstName, String lastName,
16 String socialSecurityNumber, double grossSales,
17 double commissionRate,)
18 {
19 // implicit call to Object's default constructor occurs here
20
21 // if grossSales is invalid throw exception
22 if (grossSales < 0.0)
23 throw new IllegalArgumentException(
24 "Gross sales must be >= 0.0");
25
26 // if commissionRate is invalid throw exception
27 if (commissionRate <= 0.0 || commissionRate >= 1.0)
28 throw new IllegalArgumentException(
29 "Commission rate must be > 0.0 and < 1.0");
30
31
32
33
34
35

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 3.)

private double baseSalary; // base salary per week

double baseSalary

// if baseSalary is invalid throw exception
if (baseSalary < 0.0)

throw new IllegalArgumentException(
"Base salary must be >= 0.0");

364 Chapter 9 Object-Oriented Programming: Inheritance

36 this.firstName = firstName;
37 this.lastName = lastName;
38 this.socialSecurityNumber = socialSecurityNumber;
39 this.grossSales = grossSales;
40 this.commissionRate = commissionRate;
41
42 } // end constructor
43
44 // return first name
45 public String getFirstName()
46 {
47 return firstName;
48 }
49
50 // return last name
51 public String getLastName()
52 {
53 return lastName;
54 }
55
56 // return social security number
57 public String getSocialSecurityNumber()
58 {
59 return socialSecurityNumber;
60 }
61
62 // set gross sales amount
63 public void setGrossSales(double grossSales)
64 {
65 if (grossSales < 0.0)
66 throw new IllegalArgumentException(
67 "Gross sales must be >= 0.0");
68
69 this.grossSales = grossSales;
70 }
71
72 // return gross sales amount
73 public double getGrossSales()
74 {
75 return grossSales;
76 }
77
78 // set commission rate
79 public void setCommissionRate(double commissionRate)
80 {
81 if (commissionRate <= 0.0 || commissionRate >= 1.0)
82 throw new IllegalArgumentException(
83 "Commission rate must be > 0.0 and < 1.0");
84
85 this.commissionRate = commissionRate;
86 }
87

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 3.)

this.baseSalary = baseSalary;

9.4 Relationship Between Superclasses and Subclasses 365

Class BasePlusCommissionEmployee does not specify “extends Object” in line 5, so
the class implicitly extends Object. Also, like class CommissionEmployee’s constructor
(lines 13–34 of Fig. 9.4), class BasePlusCommissionEmployee’s constructor invokes class
Object’s default constructor implicitly, as noted in the comment in line 19.

Class BasePlusCommissionEmployee’s earnings method (lines 111–114) returns the
result of adding the BasePlusCommissionEmployee’s base salary to the product of the
commission rate and the employee’s gross sales.

Class BasePlusCommissionEmployee overrides Object method toString to return a
String containing the BasePlusCommissionEmployee’s information. Once again, we use

88 // return commission rate
89 public double getCommissionRate()
90 {
91 return commissionRate;
92 }
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110 // calculate earnings
111 public double earnings()
112 {
113
114 }
115
116 // return String representation of BasePlusCommissionEmployee
117 @Override
118 public String toString()
119 {
120 return String.format(
121 "%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f%n%s: %.2f",
122 , firstName, lastName,
123 "social security number", socialSecurityNumber,
124 "gross sales", grossSales, "commission rate", commissionRate,
125);
126 }
127 } // end class BasePlusCommissionEmployee

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 3.)

// set base salary
public void setBaseSalary(double baseSalary)
{

if (baseSalary < 0.0)
throw new IllegalArgumentException(

"Base salary must be >= 0.0");

this.baseSalary = baseSalary;
}

// return base salary
public double getBaseSalary()
{

return baseSalary;
}

return baseSalary + (commissionRate * grossSales);

"base-salaried commission employee"

"base salary", baseSalary

366 Chapter 9 Object-Oriented Programming: Inheritance

format specifier %.2f to format the gross sales, commission rate and base salary with two
digits of precision to the right of the decimal point (line 121).

Testing Class BasePlusCommissionEmployee
Figure 9.7 tests class BasePlusCommissionEmployee. Lines 9–11 create a BasePlusCom-
missionEmployee object and pass "Bob", "Lewis", "333-33-3333", 5000, .04 and 300 to
the constructor as the first name, last name, social security number, gross sales, commis-
sion rate and base salary, respectively. Lines 16–27 use BasePlusCommissionEmployee’s
get methods to retrieve the values of the object’s instance variables for output. Line 29 in-
vokes the object’s setBaseSalary method to change the base salary. Method setBaseSal-
ary (Fig. 9.6, lines 95–102) ensures that instance variable baseSalary is not assigned a
negative value. Line 33 of Fig. 9.7 invokes method toString explicitly to get the object’s
String representation.

1 // Fig. 9.7: BasePlusCommissionEmployeeTest.java
2 // BasePlusCommissionEmployee test program.
3
4 public class BasePlusCommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate BasePlusCommissionEmployee object
9

10
11
12
13 // get base-salaried commission employee data
14 System.out.println(
15 "Employee information obtained by get methods:%n");
16 System.out.printf("%s %s%n", "First name is",
17);
18 System.out.printf("%s %s%n", "Last name is",
19);
20 System.out.printf("%s %s%n", "Social security number is",
21);
22 System.out.printf("%s %.2f%n", "Gross sales is",
23);
24 System.out.printf("%s %.2f%n", "Commission rate is",
25);
26 System.out.printf("%s %.2f%n", "Base salary is",
27);
28
29
30
31 System.out.printf("%n%s:%n%n%s%n",
32 "Updated employee information obtained by toString",
33);
34 } // end main
35 } // end class BasePlusCommissionEmployeeTest

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 1 of 2.)

BasePlusCommissionEmployee employee =
new BasePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.getBaseSalary()

employee.setBaseSalary(1000);

employee.toString()

9.4 Relationship Between Superclasses and Subclasses 367

Notes on Class BasePlusCommissionEmployee
Much of class BasePlusCommissionEmployee’s code (Fig. 9.6) is similar, or identical, to
that of class CommissionEmployee (Fig. 9.4). For example, private instance variables
firstName and lastName and methods setFirstName, getFirstName, setLastName and
getLastName are identical to those of class CommissionEmployee. The classes also both
contain private instance variables socialSecurityNumber, commissionRate and gross-
Sales, and corresponding get and set methods. In addition, the BasePlusCommissionEm-
ployee constructor is almost identical to that of class CommissionEmployee, except that
BasePlusCommissionEmployee’s constructor also sets the baseSalary. The other addi-
tions to class BasePlusCommissionEmployee are private instance variable baseSalary
and methods setBaseSalary and getBaseSalary. Class BasePlusCommissionEmployee’s
toString method is almost identical to that of class CommissionEmployee except that it
also outputs instance variable baseSalary with two digits of precision to the right of the
decimal point.

We literally copied code from class CommissionEmployee and pasted it into class Base-
PlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include
a base salary and methods that manipulate the base salary. This “copy-and-paste” approach
is often error prone and time consuming. Worse yet, it spreads copies of the same code
throughout a system, creating code-maintenance problems—changes to the code would
need to be made in multiple classes. Is there a way to “acquire” the instance variables and
methods of one class in a way that makes them part of other classes without duplicating
code? Next we answer this question, using a more elegant approach to building classes that
emphasizes the benefits of inheritance.

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Software Engineering Observation 9.3
With inheritance, the instance variables and methods that are the same for all the classes
in the hierarchy are declared in a superclass. Changes made to these common features in
the superclass are inherited by the subclass. Without inheritance, changes would need to
be made to all the source-code files that contain a copy of the code in question.

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 2 of 2.)

368 Chapter 9 Object-Oriented Programming: Inheritance

9.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we declare class BasePlusCommissionEmployee (Fig. 9.8) to extend class Commis-
sionEmployee (Fig. 9.4). A BasePlusCommissionEmployee object is a CommissionEm-
ployee, because inheritance passes on class CommissionEmployee’s capabilities. Class
BasePlusCommissionEmployee also has instance variable baseSalary (Fig. 9.8, line 6).
Keyword extends (line 4) indicates inheritance. BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and methods.

Only CommissionEmployee’s public and protected members are directly accessible
in the subclass. The CommissionEmployee constructor is not inherited. So, the public
BasePlusCommissionEmployee services include its constructor (lines 9–23), public
methods inherited from CommissionEmployee, and methods setBaseSalary (lines 26–
33), getBaseSalary (lines 36–39), earnings (lines 42–47) and toString (lines 50–60).
Methods earnings and toString override the corresponding methods in class Commis-
sionEmployee because their superclass versions do not properly calculate a BasePlusCom-
missionEmployee’s earnings or return an appropriate String representation, respectively.

Software Engineering Observation 9.4
At the design stage in an object-oriented system, you’ll often find that certain classes are
closely related. You should “factor out” common instance variables and methods and place
them in a superclass. Then use inheritance to develop subclasses, specializing them with
capabilities beyond those inherited from the superclass.

Software Engineering Observation 9.5
Declaring a subclass does not affect its superclass’s source code. Inheritance preserves the
integrity of the superclass.

1 // Fig. 9.8: BasePlusCommissionEmployee.java
2 // private superclass members cannot be accessed in a subclass.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String firstName, String lastName,

10 String socialSecurityNumber, double grossSales,
11 double commissionRate, double baseSalary)
12 {
13
14
15
16
17 // if baseSalary is invalid throw exception
18 if (baseSalary < 0.0)
19 throw new IllegalArgumentException(
20 "Base salary must be >= 0.0");
21

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 1 of 3.)

public class BasePlusCommissionEmployee extends CommissionEmployee

// explicit call to superclass CommissionEmployee constructor
super(firstName, lastName, socialSecurityNumber,

grossSales, commissionRate);

9.4 Relationship Between Superclasses and Subclasses 369

22 this.baseSalary = baseSalary;
23 }
24
25 // set base salary
26 public void setBaseSalary(double baseSalary)
27 {
28 if (baseSalary < 0.0)
29 throw new IllegalArgumentException(
30 "Base salary must be >= 0.0");
31
32 this.baseSalary = baseSalary;
33 }
34
35 // return base salary
36 public double getBaseSalary()
37 {
38 return baseSalary;
39 }
40
41 // calculate earnings
42
43 public double earnings()
44 {
45
46
47 }
48
49 // return String representation of BasePlusCommissionEmployee
50
51 public String toString()
52 {
53
54
55
56
57
58
59
60 }
61 } // end class BasePlusCommissionEmployee

BasePlusCommissionEmployee.java:46: error: commissionRate has private access
in CommissionEmployee

return baseSalary + (commissionRate * grossSales);
^

BasePlusCommissionEmployee.java:46: error: grossSales has private access in
CommissionEmployee

return baseSalary + (commissionRate * grossSales);
^

BasePlusCommissionEmployee.java:56: error: firstName has private access in
CommissionEmployee

"base-salaried commission employee", firstName, lastName,
^

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 2 of 3.)

@Override

// not allowed: commissionRate and grossSales private in superclass
return baseSalary + (commissionRate * grossSales);

@Override

// not allowed: attempts to access private superclass members
return String.format(

"%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f%n%s: %.2f",
"base-salaried commission employee", firstName, lastName,
"social security number", socialSecurityNumber,
"gross sales", grossSales, "commission rate", commissionRate,
"base salary", baseSalary);

370 Chapter 9 Object-Oriented Programming: Inheritance

A Subclass’s Constructor Must Call Its Superclass’s Constructor
Each subclass constructor must implicitly or explicitly call one of its superclass’s construc-
tors to initialize the instance variables inherited from the superclass. Lines 14–15 in Base-
PlusCommissionEmployee’s six-argument constructor (lines 9–23) explicitly call class
CommissionEmployee’s five-argument constructor (declared at lines 13–34 of Fig. 9.4) to
initialize the superclass portion of a BasePlusCommissionEmployee object (i.e., variables
firstName, lastName, socialSecurityNumber, grossSales and commissionRate). We
do this by using the superclass constructor call syntax—keyword super, followed by a set
of parentheses containing the superclass constructor arguments, which are used to initial-
ize the superclass instance variables firstName, lastName, socialSecurityNumber,
grossSales and commissionRate, respectively. If BasePlusCommissionEmployee’s con-
structor did not invoke the superclass’s constructor explicitly, the compiler would attempt
to insert a call to the superclass’s default or no-argument constructor. Class Commission-
Employee does not have such a constructor, so the compiler would issue an error. The ex-
plicit superclass constructor call in lines 14–15 of Fig. 9.8 must be the first statement in
the constructor’s body. When a superclass contains a no-argument constructor, you can
use super() to call that constructor explicitly, but this is rarely done.

BasePlusCommissionEmployee Methods Earnings and toString

The compiler generates errors for line 46 (Fig. 9.8) because CommissionEmployee’s in-
stance variables commissionRate and grossSales are private—subclass BasePlusCom-
missionEmployee’s methods are not allowed to access superclass CommissionEmployee’s
private instance variables. The compiler issues additional errors at lines 56–58 of
BasePlusCommissionEmployee’s toString method for the same reason. The errors in
BasePlusCommissionEmployee could have been prevented by using the get methods inher-
ited from class CommissionEmployee. For example, line 46 could have called getCommis-

BasePlusCommissionEmployee.java:56: error: lastName has private access in Com-
missionEmployee

"base-salaried commission employee", firstName, lastName,
^

BasePlusCommissionEmployee.java:57: error: socialSecurityNumber has private
access in CommissionEmployee

"social security number", socialSecurityNumber,
^

BasePlusCommissionEmployee.java:58: error: grossSales has private access in
CommissionEmployee

"gross sales", grossSales, "commission rate", commissionRate,
^

BasePlusCommissionEmployee.java:58: error: commissionRate has private access
inCommissionEmployee

"gross sales", grossSales, "commission rate", commissionRate,
^

Software Engineering Observation 9.6
You learned previously that you should not call a class’s instance methods from its
constructors and that we’ll say why in Chapter 10. Calling a superclass constructor from
a subclass constructor does not contradict this advice.

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 3 of 3.)

9.4 Relationship Between Superclasses and Subclasses 371

sionRate and getGrossSales to access CommissionEmployee’s private instance variables
commissionRate and grossSales, respectively. Lines 56–58 also could have used appro-
priate get methods to retrieve the values of the superclass’s instance variables.

9.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Instance Variables
To enable class BasePlusCommissionEmployee to directly access superclass instance vari-
ables firstName, lastName, socialSecurityNumber, grossSales and commissionRate,
we can declare those members as protected in the superclass. As we discussed in
Section 9.3, a superclass’s protected members are accessible by all subclasses of that su-
perclass. In the new CommissionEmployee class, we modified only lines 6–10 of Fig. 9.4
to declare the instance variables with the protected access modifier as follows:

The rest of the class declaration (which is not shown here) is identical to that of Fig. 9.4.
We could have declared CommissionEmployee’s instance variables public to enable sub-

class BasePlusCommissionEmployee to access them. However, declaring public instance
variables is poor software engineering because it allows unrestricted access to the these vari-
ables from any class, greatly increasing the chance of errors. With protected instance vari-
ables, the subclass gets access to the instance variables, but classes that are not subclasses and
classes that are not in the same package cannot access these variables directly—recall that
protected class members are also visible to other classes in the same package.

Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 9.9) extends the new version of class Commis-
sionEmployee with protected instance variables. BasePlusCommissionEmployee objects
inherit CommissionEmployee’s protected instance variables firstName, lastName, so-
cialSecurityNumber, grossSales and commissionRate—all these variables are now pro-
tected members of BasePlusCommissionEmployee. As a result, the compiler does not
generate errors when compiling line 45 of method earnings and lines 54–56 of method
toString. If another class extends this version of class BasePlusCommissionEmployee, the
new subclass also can access the protected members.

protected final String firstName;
protected final String lastName;
protected final String socialSecurityNumber;
protected double grossSales; // gross weekly sales
protected double commissionRate; // commission percentage

1 // Fig. 9.9: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee inherits protected instance
3 // variables from CommissionEmployee.
4
5
6 {
7 private double baseSalary; // base salary per week

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

372 Chapter 9 Object-Oriented Programming: Inheritance

8
9 // six-argument constructor

10 public BasePlusCommissionEmployee(String firstName, String lastName,
11 String socialSecurityNumber, double grossSales,
12 double commissionRate, double baseSalary)
13 {
14
15
16
17 // if baseSalary is invalid throw exception
18 if (baseSalary < 0.0)
19 throw new IllegalArgumentException(
20 "Base salary must be >= 0.0");
21
22 this.baseSalary = baseSalary;
23 }
24
25 // set base salary
26 public void setBaseSalary(double baseSalary)
27 {
28 if (baseSalary < 0.0)
29 throw new IllegalArgumentException(
30 "Base salary must be >= 0.0");
31
32 this.baseSalary = baseSalary;
33 }
34
35 // return base salary
36 public double getBaseSalary()
37 {
38 return baseSalary;
39 }
40
41 // calculate earnings
42 @Override // indicates that this method overrides a superclass method
43 public double earnings()
44 {
45
46 }
47
48 // return String representation of BasePlusCommissionEmployee
49 @Override
50 public String toString()
51 {
52
53
54
55
56
57
58 }
59 } // end class BasePlusCommissionEmployee

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 2 of 2.)

super(firstName, lastName, socialSecurityNumber,
grossSales, commissionRate);

return baseSalary + (commissionRate * grossSales);

return String.format(
"%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f%n%s: %.2f",
"base-salaried commission employee", firstName, lastName,
"social security number", socialSecurityNumber,
"gross sales", grossSales, "commission rate", commissionRate,
"base salary", baseSalary);

9.4 Relationship Between Superclasses and Subclasses 373

A Subclass Object Contains the Instance Variables of All of Its Superclasses
When you create a BasePlusCommissionEmployee object, it contains all instance variables
declared in the class hierarchy to that point—that is, those from classes Object (which
does not have instance variables), CommissionEmployee and BasePlusCommissionEmploy-
ee. Class BasePlusCommissionEmployee does not inherit CommissionEmployee’s five-ar-
gument constructor, but explicitly invokes it (lines 14–15) to initialize the instance variables
that BasePlusCommissionEmployee inherited from CommissionEmployee. Similarly, Com-
missionEmployee’s constructor implicitly calls class Object’s constructor. BasePlusCom-
missionEmployee’s constructor must explicitly call CommissionEmployee’s constructor
because CommissionEmployee does not have a no-argument constructor that could be in-
voked implicitly.

Testing Class BasePlusCommissionEmployee
The BasePlusCommissionEmployeeTest class for this example is identical to that of
Fig. 9.7 and produces the same output, so we do not show it here. Although the version of
class BasePlusCommissionEmployee in Fig. 9.6 does not use inheritance and the version in
Fig. 9.9 does, both classes provide the same functionality. The source code in Fig. 9.9 (59
lines) is considerably shorter than that in Fig. 9.6 (127 lines), because most of the class’s
functionality is now inherited from CommissionEmployee—there’s now only one copy of
the CommissionEmployee functionality. This makes the code easier to maintain, modify
and debug, because the code related to a CommissionEmployee exists only in that class.

Notes on Using protected Instance Variables
In this example, we declared superclass instance variables as protected so that subclasses
could access them. Inheriting protected instance variables enables direct access to the
variables by subclasses. In most cases, however, it’s better to use private instance variables
to encourage proper software engineering. Your code will be easier to maintain, modify
and debug.

Using protected instance variables creates several potential problems. First, the sub-
class object can set an inherited variable’s value directly without using a set method. There-
fore, a subclass object can assign an invalid value to the variable, possibly leaving the object
in an inconsistent state. For example, if we were to declare CommissionEmployee’s instance
variable grossSales as protected, a subclass object (e.g., BasePlusCommissionEmployee)
could then assign a negative value to grossSales. Another problem with using protected
instance variables is that subclass methods are more likely to be written so that they depend
on the superclass’s data implementation. In practice, subclasses should depend only on the
superclass services (i.e., non-private methods) and not on the superclass data implemen-
tation. With protected instance variables in the superclass, we may need to modify all the
subclasses of the superclass if the superclass implementation changes. For example, if for
some reason we were to change the names of instance variables firstName and lastName
to first and last, then we would have to do so for all occurrences in which a subclass
directly references superclass instance variables firstName and lastName. Such a class is
said to be fragile or brittle, because a small change in the superclass can “break” subclass
implementation. You should be able to change the superclass implementation while still
providing the same services to the subclasses. Of course, if the superclass services change,
we must reimplement our subclasses. A third problem is that a class’s protected members

374 Chapter 9 Object-Oriented Programming: Inheritance

are visible to all classes in the same package as the class containing the protected mem-
bers—this is not always desirable.

9.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Instance Variables
Let’s reexamine our hierarchy once more, this time using good software engineering prac-
tices.

Class CommissionEmployee
Class CommissionEmployee (Fig. 9.10) declares instance variables firstName, lastName,
socialSecurityNumber, grossSales and commissionRate as private (lines 6–10) and
provides public methods getFirstName, getLastName, getSocialSecurityNumber, set-
GrossSales, getGrossSales, setCommissionRate, getCommissionRate, earnings and
toString for manipulating these values. Methods earnings (lines 87–90) and toString
(lines 93–101) use the class’s get methods to obtain the values of its instance variables. If
we decide to change the names of the instance variables, the earnings and toString dec-
larations will not require modification—only the bodies of the get and set methods that di-
rectly manipulate the instance variables will need to change. These changes occur solely
within the superclass—no changes to the subclass are needed. Localizing the effects of chang-
es like this is a good software engineering practice.

Software Engineering Observation 9.7
Use the protected access modifier when a superclass should provide a method only to its
subclasses and other classes in the same package, but not to other clients.

Software Engineering Observation 9.8
Declaring superclass instance variables private (as opposed to protected) enables the
superclass implementation of these instance variables to change without affecting subclass
implementations.

Error-Prevention Tip 9.2
When possible, do not include protected instance variables in a superclass. Instead, in-
clude non-private methods that access private instance variables. This will help ensure
that objects of the class maintain consistent states.

1 // Fig. 9.10: CommissionEmployee.java
2 // CommissionEmployee class uses methods to manipulate its
3 // private instance variables.
4 public class CommissionEmployee
5 {
6
7
8
9

10

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 1 of 3.)

private final String firstName;
private final String lastName;
private final String socialSecurityNumber;
private double grossSales; // gross weekly sales
private double commissionRate; // commission percentage

9.4 Relationship Between Superclasses and Subclasses 375

11
12 // five-argument constructor
13 public CommissionEmployee(String firstName, String lastName,
14 String socialSecurityNumber, double grossSales,
15 double commissionRate)
16 {
17 // implicit call to Object constructor occurs here
18
19 // if grossSales is invalid throw exception
20 if (grossSales < 0.0)
21 throw new IllegalArgumentException(
22 "Gross sales must be >= 0.0");
23
24 // if commissionRate is invalid throw exception
25 if (commissionRate <= 0.0 || commissionRate >= 1.0)
26 throw new IllegalArgumentException(
27 "Commission rate must be > 0.0 and < 1.0");
28
29 this.firstName = firstName;
30 this.lastName = lastName;
31 this.socialSecurityNumber = socialSecurityNumber;
32 this.grossSales = grossSales;
33 this.commissionRate = commissionRate;
34 } // end constructor
35
36 // return first name
37 public String getFirstName()
38 {
39 return firstName;
40 }
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 }
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 }
53
54 // set gross sales amount
55 public void setGrossSales(double grossSales)
56 {
57 if (grossSales < 0.0)
58 throw new IllegalArgumentException(
59 "Gross sales must be >= 0.0");
60
61 this.grossSales = grossSales;
62 }

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 2 of 3.)

376 Chapter 9 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee
Subclass BasePlusCommissionEmployee (Fig. 9.11) inherits CommissionEmployee’s non-
private methods and can access (in a controlled way) the private superclass members via
those methods. Class BasePlusCommissionEmployee has several changes that distinguish
it from Fig. 9.9. Methods earnings (lines 43–47) and toString (lines 50–55) each invoke
method getBaseSalary to obtain the base salary value, rather than accessing baseSalary
directly. If we decide to rename instance variable baseSalary, only the bodies of method
setBaseSalary and getBaseSalary will need to change.

63
64 // return gross sales amount
65 public double getGrossSales()
66 {
67 return grossSales;
68 }
69
70 // set commission rate
71 public void setCommissionRate(double commissionRate)
72 {
73 if (commissionRate <= 0.0 || commissionRate >= 1.0)
74 throw new IllegalArgumentException(
75 "Commission rate must be > 0.0 and < 1.0");
76
77 this.commissionRate = commissionRate;
78 }
79
80 // return commission rate
81 public double getCommissionRate()
82 {
83 return commissionRate;
84 }
85
86 // calculate earnings
87 public double earnings()
88 {
89 return * ;
90 }
91
92 // return String representation of CommissionEmployee object
93 @Override
94 public String toString()
95 {
96 return String.format("%s: %s %s%n%s: %s%n%s: %.2f%n%s: %.2f",
97 "commission employee", , ,
98 "social security number", ,
99 "gross sales", ,
100 "commission rate",);
101 }
102 } // end class CommissionEmployee

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 3 of 3.)

getCommissionRate() getGrossSales()

getFirstName() getLastName()
getSocialSecurityNumber()

getGrossSales()
getCommissionRate()

9.4 Relationship Between Superclasses and Subclasses 377

1 // Fig. 9.11: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited
4 // public methods.
5
6 public class BasePlusCommissionEmployee extends CommissionEmployee
7 {
8 private double baseSalary; // base salary per week
9

10 // six-argument constructor
11 public BasePlusCommissionEmployee(String firstName, String lastName,
12 String socialSecurityNumber, double grossSales,
13 double commissionRate, double baseSalary)
14 {
15 super(firstName, lastName, socialSecurityNumber,
16 grossSales, commissionRate);
17
18 // if baseSalary is invalid throw exception
19 if (baseSalary < 0.0)
20 throw new IllegalArgumentException(
21 "Base salary must be >= 0.0");
22
23 this.baseSalary = baseSalary;
24 }
25
26 // set base salary
27 public void setBaseSalary(double baseSalary)
28 {
29 if (baseSalary < 0.0)
30 throw new IllegalArgumentException(
31 "Base salary must be >= 0.0");
32
33 this.baseSalary = baseSalary;
34 }
35
36 // return base salary
37 public double getBaseSalary()
38 {
39 return baseSalary;
40 }
41
42 // calculate earnings
43 @Override
44 public double earnings()
45 {
46
47 }
48
49 // return String representation of BasePlusCommissionEmployee
50 @Override
51 public String toString()
52 {

Fig. 9.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 1 of 2.)

return getBaseSalary() + super.earnings();

378 Chapter 9 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee’s earnings Method
Method earnings (lines 43–47) overrides class CommissionEmployee’s earnings method
(Fig. 9.10, lines 87–90) to calculate a base-salaried commission employee’s earnings. The
new version obtains the portion of the earnings based on commission alone by calling Com-
missionEmployee’s earnings method with super.earnings() (line 46), then adds the
base salary to this value to calculate the total earnings. Note the syntax used to invoke an
overridden superclass method from a subclass—place the keyword super and a dot (.) sep-
arator before the superclass method name. This method invocation is a good software en-
gineering practice—if a method performs all or some of the actions needed by another
method, call that method rather than duplicate its code. By having BasePlusCommission-
Employee’s earnings method invoke CommissionEmployee’s earnings method to calcu-
late part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the
code and reduce code-maintenance problems.

Class BasePlusCommissionEmployee’s toString Method
Similarly, BasePlusCommissionEmployee’s toString method (Fig. 9.11, lines 50–55)
overrides CommissionEmployee’s toString method (Fig. 9.10, lines 93–101) to return a
String representation that’s appropriate for a base-salaried commission employee. The new
version creates part of a BasePlusCommissionEmployee object’s String representation (i.e.,
the String "commission employee" and the values of class CommissionEmployee’s private
instance variables) by calling CommissionEmployee’s toString method with the expression
super.toString() (Fig. 9.11, line 54). BasePlusCommissionEmployee’s toString meth-
od then completes the remainder of a BasePlusCommissionEmployee object’s String rep-
resentation (i.e., the value of class BasePlusCommissionEmployee’s base salary).

Testing Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployeeTest performs the same manipulations on a Base-
PlusCommissionEmployee object as in Fig. 9.7 and produces the same output, so we do
not show it here. Although each BasePlusCommissionEmployee class you’ve seen behaves
identically, the version in Fig. 9.11 is the best engineered. By using inheritance and by call-
ing methods that hide the data and ensure consistency, we’ve efficiently and effectively
constructed a well-engineered class.

53
54
55 }
56 } // end class BasePlusCommissionEmployee

Common Programming Error 9.2
When a superclass method is overridden in a subclass, the subclass version often calls the
superclass version to do a portion of the work. Failure to prefix the superclass method name
with the keyword super and the dot (.) separator when calling the superclass’s method
causes the subclass method to call itself, potentially creating an error called infinite recur-
sion, which would eventually cause the method-call stack to overflow—a fatal runtime
error. Recursion, used correctly, is a powerful capability discussed in Chapter 18.

Fig. 9.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 2 of 2.)

return String.format("%s %s%n%s: %.2f", "base-salaried",
super.toString(), "base salary", getBaseSalary());

9.5 Constructors in Subclasses 379

9.5 Constructors in Subclasses
As we explained, instantiating a subclass object begins a chain of constructor calls in which
the subclass constructor, before performing its own tasks, explicitly uses super to call one of
the constructors in its direct superclass or implicitly calls the superclass's default or no-argu-
ment constructor. Similarly, if the superclass is derived from another class—true of every
class except Object—the superclass constructor invokes the constructor of the next class up
the hierarchy, and so on. The last constructor called in the chain is always Object’s construc-
tor. The original subclass constructor’s body finishes executing last. Each superclass’s con-
structor manipulates the superclass instance variables that the subclass object inherits. For
example, consider again the CommissionEmployee–BasePlusCommissionEmployee hierar-
chy from Figs. 9.10–9.11. When an app creates a BasePlusCommissionEmployee object, its
constructor is called. That constructor calls CommissionEmployee’s constructor, which in
turn calls Object’s constructor. Class Object’s constructor has an empty body, so it immedi-
ately returns control to CommissionEmployee’s constructor, which then initializes the
CommissionEmployee instance variables that are part of the BasePlusCommissionEmployee
object. When CommissionEmployee’s constructor completes execution, it returns control to
BasePlusCommissionEmployee’s constructor, which initializes the baseSalary.

9.6 Class Object
As we discussed earlier in this chapter, all classes in Java inherit directly or indirectly from
class Object (package java.lang), so its 11 methods (some are overloaded) are inherited
by all other classes. Figure 9.12 summarizes Object’s methods. We discuss several Object
methods throughout this book (as indicated in Fig. 9.12).

Software Engineering Observation 9.9
Java ensures that even if a constructor does not assign a value to an instance variable, the
variable is still initialized to its default value (e.g., 0 for primitive numeric types, false
for booleans, null for references).

Method Description

equals This method compares two objects for equality and returns true if they’re equal
and false otherwise. The method takes any Object as an argument. When objects
of a particular class must be compared for equality, the class should override
method equals to compare the contents of the two objects. For the requirements of
implementing this method (which include also overriding method hashCode), refer
to the method’s documentation at docs.oracle.com/javase/7/docs/api/java/
lang/Object.html#equals(java.lang.Object). The default equals implementa-
tion uses operator == to determine whether two references refer to the same object in
memory. Section 14.3.3 demonstrates class String’s equals method and differenti-
ates between comparing String objects with == and with equals.

hashCode Hashcodes are int values used for high-speed storage and retrieval of information
stored in a data structure that’s known as a hashtable (see Section 16.11). This
method is also called as part of Object’s default toString method implementation.

Fig. 9.12 | Object methods. (Part 1 of 2.)

Musa
Highlight

Musa
Highlight

380 Chapter 9 Object-Oriented Programming: Inheritance

9.7 (Optional) GUI and Graphics Case Study:
Displaying Text and Images Using Labels
Programs often use labels when they need to display information or instructions to the
user in a graphical user interface. Labels are a convenient way of identifying GUI compo-
nents on the screen and keeping the user informed about the current state of the program.
In Java, an object of class JLabel (from package javax.swing) can display text, an image
or both. The example in Fig. 9.13 demonstrates several JLabel features, including a plain
text label, an image label and a label with both text and an image.

toString This method (introduced in Section 9.4.1) returns a String representation of an
object. The default implementation of this method returns the package name and
class name of the object’s class typically followed by a hexadecimal representation of
the value returned by the object’s hashCode method.

wait, notify,
notifyAll

Methods notify, notifyAll and the three overloaded versions of wait are related to
multithreading, which is discussed in Chapter 23.

getClass Every object in Java knows its own type at execution time. Method getClass (used
in Sections 10.5– and 12.5) returns an object of class Class (package java.lang)
that contains information about the object’s type, such as its class name (returned
by Class method getName).

finalize This protected method is called by the garbage collector to perform termination
housekeeping on an object just before the garbage collector reclaims the object’s
memory. Recall from Section 8.10 that it’s unclear whether, or when, finalize will
be called. For this reason, most programmers should avoid method finalize.

clone This protected method, which takes no arguments and returns an Object refer-
ence, makes a copy of the object on which it’s called. The default implementation
performs a so-called shallow copy—instance-variable values in one object are cop-
ied into another object of the same type. For reference types, only the references are
copied. A typical overridden clone method’s implementation would perform a
deep copy that creates a new object for each reference-type instance variable. Imple-
menting clone correctly is difficult. For this reason, its use is discouraged. Some indus-
try experts suggest that object serialization should be used instead. We discuss
object serialization in Chapter 15. Recall from Chapter 7 that arrays are objects. As
a result, like all other objects, arrays inherit the members of class Object. Every
array has an overridden clone method that copies the array. However, if the array
stores references to objects, the objects are not copied—a shallow copy is per-
formed.

1 // Fig 9.13: LabelDemo.java
2 // Demonstrates the use of labels.
3 import java.awt.BorderLayout;
4 import javax.swing.ImageIcon;

Fig. 9.13 | JLabel with text and with images. (Part 1 of 2.)

Method Description

Fig. 9.12 | Object methods. (Part 2 of 2.)

9.7 Displaying Text and Images Using Labels 381

Lines 3–6 import the classes we need to display JLabels. BorderLayout from package
java.awt contains constants that specify where we can place GUI components in the

5 import javax.swing.JLabel;
6 import javax.swing.JFrame;
7
8 public class LabelDemo
9 {

10 public static void main(String[] args)
11 {
12 // Create a label with plain text
13 JLabel northLabel = new JLabel("North");
14
15 // create an icon from an image so we can put it on a JLabel
16 ImageIcon labelIcon = new ImageIcon("GUItip.gif");
17
18 // create a label with an Icon instead of text
19 JLabel centerLabel = new JLabel(labelIcon);
20
21 // create another label with an Icon
22 JLabel southLabel = new JLabel(labelIcon);
23
24 // set the label to display text (as well as an icon)
25 southLabel.setText("South");
26
27 // create a frame to hold the labels
28 JFrame application = new JFrame();
29
30 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
31
32 // add the labels to the frame; the second argument specifies
33 // where on the frame to add the label
34 application.add(northLabel, BorderLayout.NORTH);
35 application.add(centerLabel, BorderLayout.CENTER);
36 application.add(southLabel, BorderLayout.SOUTH);
37
38 application.setSize(300, 300);
39 application.setVisible(true);
40 } // end main
41 } // end class LabelDemo

Fig. 9.13 | JLabel with text and with images. (Part 2 of 2.)

382 Chapter 9 Object-Oriented Programming: Inheritance

JFrame. Class ImageIcon represents an image that can be displayed on a JLabel, and class
JFrame represents the window that will contain all the labels.

Line 13 creates a JLabel that displays its constructor argument—the string "North".
Line 16 declares local variable labelIcon and assigns it a new ImageIcon. The constructor
for ImageIcon receives a String that specifies the path to the image. Since we specify only
a filename, Java assumes that it’s in the same directory as class LabelDemo. ImageIcon can
load images in GIF, JPEG and PNG image formats. Line 19 declares and initializes local
variable centerLabel with a JLabel that displays the labelIcon. Line 22 declares and ini-
tializes local variable southLabel with a JLabel similar to the one in line 19. However,
line 25 calls method setText to change the text the label displays. Method setText can
be called on any JLabel to change its text. This JLabel displays both the icon and the text.

Line 28 creates the JFrame that displays the JLabels, and line 30 indicates that the pro-
gram should terminate when the JFrame is closed. We attach the labels to the JFrame in
lines 34–36 by calling an overloaded version of method add that takes two parameters. The
first parameter is the component we want to attach, and the second is the region in which
it should be placed. Each JFrame has an associated layout that helps the JFrame position
the GUI components that are attached to it. The default layout for a JFrame is known as a
BorderLayout and has five regions—NORTH (top), SOUTH (bottom), EAST (right side), WEST
(left side) and CENTER. Each of these is declared as a constant in class BorderLayout. When
calling method add with one argument, the JFrame places the component in the CENTER
automatically. If a position already contains a component, then the new component takes
its place. Lines 38 and 39 set the size of the JFrame and make it visible on screen.

GUI and Graphics Case Study Exercise
9.1 Modify GUI and Graphics Case Study Exercise 8.1 to include a JLabel as a status bar that
displays counts representing the number of each shape displayed. Class DrawPanel should declare a
method that returns a String containing the status text. In main, first create the DrawPanel, then
create the JLabel with the status text as an argument to the JLabel’s constructor. Attach the JLabel
to the SOUTH region of the JFrame, as shown in Fig. 9.14.

Fig. 9.14 | JLabel displaying shape statistics.

9.8 Wrap-Up 383

9.8 Wrap-Up
This chapter introduced inheritance—the ability to create classes by acquiring an existing
class’s members (without copying and pasting the code) and having the ability to embellish
them with new capabilities. You learned the notions of superclasses and subclasses and
used keyword extends to create a subclass that inherits members from a superclass. We
showed how to use the @Override annotation to prevent unintended overloading by indi-
cating that a method overrides a superclass method. We introduced the access modifier
protected; subclass methods can directly access protected superclass members. You
learned how to use super to access overridden superclass members. You also saw how con-
structors are used in inheritance hierarchies. Finally, you learned about the methods of
class Object, the direct or indirect superclass of all Java classes.

In Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces, we
build on our discussion of inheritance by introducing polymorphism—an object-oriented
concept that enables us to write programs that conveniently handle, in a more general and
convenient manner, objects of a wide variety of classes related by inheritance. After
studying Chapter 10, you’ll be familiar with classes, objects, encapsulation, inheritance
and polymorphism—the key technologies of object-oriented programming.

Summary
Section 9.1 Introduction
• Inheritance (p. 353) reduces program-development time.

• The direct superclass (p. 353) of a subclass is the one from which the subclass inherits. An indirect
superclass (p. 353) of a subclass is two or more levels up the class hierarchy from that subclass.

• In single inheritance (p. 353), a class is derived from one superclass. In multiple inheritance, a
class is derived from more than one direct superclass. Java does not support multiple inheritance.

• A subclass is more specific than its superclass and represents a smaller group of objects (p. 353).

• Every object of a subclass is also an object of that class’s superclass. However, a superclass object
is not an object of its class’s subclasses.

• An is-a relationship (p. 354) represents inheritance. In an is-a relationship, an object of a subclass
also can be treated as an object of its superclass.

• A has-a relationship (p. 354) represents composition. In a has-a relationship, a class object con-
tains references to objects of other classes.

Section 9.2 Superclasses and Subclasses
• Single-inheritance relationships form treelike hierarchical structures—a superclass exists in a hi-

erarchical relationship with its subclasses.

Section 9.3 protected Members
• A superclass’s public members are accessible wherever the program has a reference to an object

of that superclass or one of its subclasses.

• A superclass’s private members can be accessed directly only within the superclass’s declaration.

• A superclass’s protected members (p. 356) have an intermediate level of protection between
public and private access. They can be accessed by members of the superclass, by members of
its subclasses and by members of other classes in the same package.

384 Chapter 9 Object-Oriented Programming: Inheritance

• A superclass’s private members are hidden in its subclasses and can be accessed only through
the public or protected methods inherited from the superclass.

• An overridden superclass method can be accessed from a subclass if the superclass method name
is preceded by super (p. 356) and a dot (.) separator.

Section 9.4 Relationship Between Superclasses and Subclasses
• A subclass cannot access the private members of its superclass, but it can access the non-private

members.

• A subclass can invoke a constructor of its superclass by using the keyword super, followed by a
set of parentheses containing the superclass constructor arguments. This must appear as the first
statement in the subclass constructor’s body.

• A superclass method can be overridden in a subclass to declare an appropriate implementation
for the subclass.

• The @Override annotation (p. 361) indicates that a method should override a superclass method.
When the compiler encounters a method declared with @Override, it compares the method’s sig-
nature with the superclass’s method signatures. If there isn’t an exact match, the compiler issues
an error message, such as “method does not override or implement a method from a supertype.”

• Method toString takes no arguments and returns a String. The Object class’s toString method
is normally overridden by a subclass.

• When an object is output using the %s format specifier, the object’s toString method is called
implicitly to obtain its String representation.

Section 9.5 Constructors in Subclasses
• The first task of a subclass constructor is to call its direct superclass’s constructor (p. 370) to en-

sure that the instance variables inherited from the superclass are initialized.

Section 9.6 Class Object
• See the table of class Object’s methods in Fig. 9.12.

Self-Review Exercises
9.1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes acquire the members of
existing classes and embellish those classes with new capabilities.

b) A superclass’s members can be accessed in the superclass declaration and in
subclass declarations.

c) In a(n) relationship, an object of a subclass can also be treated as an object of
its superclass.

d) In a(n) relationship, a class object has references to objects of other classes as
members.

e) In single inheritance, a class exists in a(n) relationship with its subclasses.
f) A superclass’s members are accessible anywhere that the program has a refer-

ence to an object of that superclass or to an object of one of its subclasses.
g) When an object of a subclass is instantiated, a superclass is called implicitly or

explicitly.
h) Subclass constructors can call superclass constructors via the keyword.

9.2 State whether each of the following is true or false. If a statement is false, explain why.
a) Superclass constructors are not inherited by subclasses.
b) A has-a relationship is implemented via inheritance.

Answers to Self-Review Exercises 385

c) A Car class has an is-a relationship with the SteeringWheel and Brakes classes.
d) When a subclass redefines a superclass method by using the same signature, the subclass

is said to overload that superclass method.

Answers to Self-Review Exercises
9.1 a) Inheritance. b) public and protected. c) is-a or inheritance. d) has-a or composition.
e) hierarchical. f) public. g) constructor. h) super.

9.2 a) True. b) False. A has-a relationship is implemented via composition. An is-a relationship
is implemented via inheritance. c) False. This is an example of a has-a relationship. Class Car has an
is-a relationship with class Vehicle. d) False. This is known as overriding, not overloading—an
overloaded method has the same name, but a different signature.

Exercises
9.3 (Using Composition Rather Than Inheritance) Many programs written with inheritance
could be written with composition instead, and vice versa. Rewrite class BasePlusCommissionEm-
ployee (Fig. 9.11) of the CommissionEmployee–BasePlusCommissionEmployee hierarchy to use
composition rather than inheritance.

9.4 (Software Reuse) Discuss the ways in which inheritance promotes software reuse, saves time
during program development and helps prevent errors.

9.5 (Student Inheritance Hierarchy) Draw an inheritance hierarchy for students at a university
similar to the hierarchy shown in Fig. 9.2. Use Student as the superclass of the hierarchy, then ex-
tend Student with classes UndergraduateStudent and GraduateStudent. Continue to extend the hi-
erarchy as deep (i.e., as many levels) as possible. For example, Freshman, Sophomore, Junior and
Senior might extend UndergraduateStudent, and DoctoralStudent and MastersStudent might be
subclasses of GraduateStudent. After drawing the hierarchy, discuss the relationships that exist be-
tween the classes. [Note: You do not need to write any code for this exercise.]

9.6 (Shape Inheritance Hierarchy) The world of shapes is much richer than the shapes included
in the inheritance hierarchy of Fig. 9.3. Write down all the shapes you can think of—both two-di-
mensional and three-dimensional—and form them into a more complete Shape hierarchy with as
many levels as possible. Your hierarchy should have class Shape at the top. Classes TwoDimension-
alShape and ThreeDimensionalShape should extend Shape. Add additional subclasses, such as Quad-
rilateral and Sphere, at their correct locations in the hierarchy as necessary.

9.7 (protected vs. private) Some programmers prefer not to use protected access, because
they believe it breaks the encapsulation of the superclass. Discuss the relative merits of using pro-
tected access vs. using private access in superclasses.

9.8 (Quadrilateral Inheritance Hierarchy) Write an inheritance hierarchy for classes Quadri-
lateral, Trapezoid, Parallelogram, Rectangle and Square. Use Quadrilateral as the superclass of
the hierarchy. Create and use a Point class to represent the points in each shape. Make the hierarchy
as deep (i.e., as many levels) as possible. Specify the instance variables and methods for each class.
The private instance variables of Quadrilateral should be the x-y coordinate pairs for the four
endpoints of the Quadrilateral. Write a program that instantiates objects of your classes and out-
puts each object’s area (except Quadrilateral).

9.9 (What Does Each Code Snippet Do?)
a) Assume that the following method call is located in an overridden earnings method in

a subclass:

super.earnings()

386 Chapter 9 Object-Oriented Programming: Inheritance

b) Assume that the following line of code appears before a method declaration:

@Override

c) Assume that the following line of code appears as the first statement in a constructor’s
body:

super(firstArgument, secondArgument);

9.10 (Write a Line of Code) Write a line of code that performs each of the following tasks:
a) Specify that class PieceWorker inherits from class Employee.
b) Call superclass Employee’s toString method from subclass PieceWorker’s toString

method.
c) Call superclass Employee’s constructor from subclass PieceWorker’s constructor—as-

sume that the superclass constructor receives three Strings representing the first name,
last name and social security number.

9.11 (Using super in a Constructor’s Body) Explain why you would use super in the first state-
ment of a subclass constructor’s body.

9.12 (Using super in an Instance Method’s Body) Explain why you would use super in the body
of a subclass’s instance method.

9.13 (Calling get Methods in a Class’s Body) In Figs. 9.10–9.11 methods earnings and to-
String each call various get methods within the same class. Explain the benefits of calling these get
methods within the classes.

9.14 (Employee Hierarchy) In this chapter, you studied an inheritance hierarchy in which class
BasePlusCommissionEmployee inherited from class CommissionEmployee. However, not all types of
employees are CommissionEmployees. In this exercise, you’ll create a more general Employee superclass
that factors out the attributes and behaviors in class CommissionEmployee that are common to all Em-
ployees. The common attributes and behaviors for all Employees are firstName, lastName, socialSe-
curityNumber, getFirstName, getLastName, getSocialSecurityNumber and a portion of method
toString. Create a new superclass Employee that contains these instance variables and methods and a
constructor. Next, rewrite class CommissionEmployee from Section 9.4.5 as a subclass of Employee.
Class CommissionEmployee should contain only the instance variables and methods that are not de-
clared in superclass Employee. Class CommissionEmployee’s constructor should invoke class Employee’s
constructor and CommissionEmployee’s toString method should invoke Employee’s toString method.
Once you’ve completed these modifications, run the CommissionEmployeeTest and BasePlusCommis-
sionEmployeeTest apps using these new classes to ensure that the apps still display the same results for
a CommissionEmployee object and BasePlusCommissionEmployee object, respectively.

9.15 (Creating a New Subclass of Employee) Other types of Employees might include Salaried-
Employees who get paid a fixed weekly salary, PieceWorkers who get paid by the number of pieces
they produce or HourlyEmployees who get paid an hourly wage with time-and-a-half—1.5 times the
hourly wage—for hours worked over 40 hours.

Create class HourlyEmployee that inherits from class Employee (Exercise 9.14) and has
instance variable hours (a double) that represents the hours worked, instance variable wage (a dou-
ble) that represents the wages per hour, a constructor that takes as arguments a first name, a last
name, a social security number, an hourly wage and the number of hours worked, set and get meth-
ods for manipulating the hours and wage, an earnings method to calculate an HourlyEmployee’s
earnings based on the hours worked and a toString method that returns the HourlyEmployee’s
String representation. Method setWage should ensure that wage is nonnegative, and setHours
should ensure that the value of hours is between 0 and 168 (the total number of hours in a week).
Use class HourlyEmployee in a test program that’s similar to the one in Fig. 9.5.

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	Contents
	Foreword
	Preface
	Before You Begin
	1 Introduction to Computers, the Internet and Java
	1.1 Introduction
	1.2 Hardware and Software
	1.2.1 Moore’s Law
	1.2.2 Computer Organization

	1.3 Data Hierarchy
	1.4 Machine Languages, Assembly Languages and High-Level Languages
	1.5 Introduction to Object Technology
	1.5.1 The Automobile as an Object
	1.5.2 Methods and Classes
	1.5.3 Instantiation
	1.5.4 Reuse
	1.5.5 Messages and Method Calls
	1.5.6 Attributes and Instance Variables
	1.5.7 Encapsulation and Information Hiding
	1.5.8 Inheritance
	1.5.9 Interfaces
	1.5.10 Object-Oriented Analysis and Design (OOAD)
	1.5.11 The UML (Unified Modeling Language)

	1.6 Operating Systems
	1.6.1 Windows—A Proprietary Operating System
	1.6.2 Linux—An Open-Source Operating System
	1.6.3 Android

	1.7 Programming Languages
	1.8 Java
	1.9 A Typical Java Development Environment
	1.10 Test-Driving a Java Application
	1.11 Internet and World Wide Web
	1.11.1 The Internet: A Network of Networks
	1.11.2 The World Wide Web: Making the Internet User-Friendly
	1.11.3 Web Services and Mashups
	1.11.4 Ajax
	1.11.5 The Internet of Things

	1.12 Software Technologies
	1.13 Keeping Up-to-Date with Information Technologies

	2 Introduction to Java Applications; Input/Output and Operators
	2.1 Introduction
	2.2 Your First Program in Java: Printing a Line of Text
	2.3 Modifying Your First Java Program
	2.4 Displaying Text with printf
	2.5 Another Application: Adding Integers
	2.5.1 import Declarations
	2.5.2 Declaring Class Addition
	2.5.3 Declaring and Creating a Scanner to Obtain User Input from the Keyboard
	2.5.4 Declaring Variables to Store Integers
	2.5.5 Prompting the User for Input
	2.5.6 Obtaining an int as Input from the User
	2.5.7 Prompting for and Inputting a Second int
	2.5.8 Using Variables in a Calculation
	2.5.9 Displaying the Result of the Calculation
	2.5.10 Java API Documentation

	2.6 Memory Concepts
	2.7 Arithmetic
	2.8 Decision Making: Equality and Relational Operators
	2.9 (Optional) GUI and Graphics Case Study: Using Dialog Boxes
	2.10 Wrap-Up

	3 Control Statements: Part 1; Assignment, ++ and -- Operators
	3.1 Introduction
	3.2 Algorithms
	3.3 Pseudocode
	3.4 Control Structures
	3.5 if Single-Selection Statement
	3.6 if…else Double-Selection Statement
	3.7 while Repetition Statement
	3.8 Formulating Algorithms: Counter-Controlled Repetition
	3.9 Formulating Algorithms: Sentinel-Controlled Repetition
	3.10 Formulating Algorithms: Nested Control Statements
	3.11 Compound Assignment Operators
	3.12 Increment and Decrement Operators
	3.13 Primitive Types
	3.14 (Optional) GUI and Graphics Case Study: Creating Simple Drawings
	3.15 Wrap-Up

	4 Control Statements: Part 2; Logical Operators
	4.1 Introduction
	4.2 Essentials of Counter-Controlled Repetition
	4.3 for Repetition Statement
	4.4 Examples Using the for Statement
	4.5 do…while Repetition Statement
	4.6 switch Multiple-Selection Statement
	4.7 break and continue Statements
	4.8 Logical Operators
	4.9 Structured Programming Summary
	4.10 (Optional) GUI and Graphics Case Study: Drawing Rectangles and Ovals
	4.11 Wrap-Up

	5 Methods
	5.1 Introduction
	5.2 Program Modules in Java
	5.3 static Methods, static Variables and Class Math
	5.4 Declaring Methods
	5.5 Notes on Declaring and Using Methods
	5.6 Method-Call Stack and Stack Frames
	5.7 Argument Promotion and Casting
	5.8 Java API Packages
	5.9 Case Study: Secure Random-Number Generation
	5.10 Case Study: A Game of Chance; Introducing enum Types
	5.11 Scope of Declarations
	5.12 Method Overloading
	5.13 (Optional) GUI and Graphics Case Study: Colors and Filled Shapes
	5.14 Wrap-Up

	6 Arrays and ArrayLists
	6.1 Introduction
	6.2 Primitive Types vs. Reference Types
	6.3 Arrays
	6.4 Declaring and Creating Arrays
	6.5 Examples Using Arrays
	6.5.1 Creating and Initializing an Array
	6.5.2 Using an Array Initializer
	6.5.3 Calculating the Values to Store in an Array
	6.5.4 Summing the Elements of an Array
	6.5.5 Using Bar Charts to Display Array Data Graphically
	6.5.6 Using the Elements of an Array as Counters
	6.5.7 Using Arrays to Analyze Survey Results

	6.6 Exception Handling: Processing the Incorrect Response
	6.6.1 The try Statement
	6.6.2 Executing the catch Block
	6.6.3 toString Method of the Exception Parameter

	6.7 Enhanced for Statement
	6.8 Passing Arrays to Methods
	6.9 Pass-By-Value vs. Pass-By-Reference
	6.10 Multidimensional Arrays
	6.11 Variable-Length Argument Lists
	6.12 Using Command-Line Arguments
	6.13 Class Arrays
	6.14 Introduction to Collections and Class ArrayList
	6.15 (Optional) GUI and Graphics Case Study: Drawing Arcs
	6.16 Wrap-Up

	7 Introduction to Classes and Objects
	7.1 Introduction
	7.2 Instance Variables, set Methods and get Methods
	7.2.1 Account Class with an Instance Variable, a set Method and a get Method
	7.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	7.2.3 Compiling and Executing an App with Multiple Classes
	7.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	7.2.5 Additional Notes on This Example
	7.2.6 Software Engineering with private Instance Variables and public set and get Methods

	7.3 Default and Explicit Initialization for Instance Variables
	7.4 Account Class: Initializing Objects with Constructors
	7.4.1 Declaring an Account Constructor for Custom Object Initialization
	7.4.2 Class AccountTest: Initializing Account Objects When They’re Created

	7.5 Account Class with a Balance; Floating-Point Numbers
	7.5.1 Account Class with a balance Instance Variable of Type double
	7.5.2 AccountTest Class to Use Class Account

	7.6 Case Study: Card Shuffling and Dealing Simulation
	7.7 Case Study: Class GradeBook Using an Array to Store Grades
	7.8 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.9 Wrap-Up

	8 Classes and Objects: A Deeper Look
	8.1 Introduction
	8.2 Time Class Case Study
	8.3 Controlling Access to Members
	8.4 Referring to the Current Object’s Members with the this Reference
	8.5 Time Class Case Study: Overloaded Constructors
	8.6 Default and No-Argument Constructors
	8.7 Notes on Set and Get Methods
	8.8 Composition
	8.9 enum Types
	8.10 Garbage Collection
	8.11 static Class Members
	8.12 static Import
	8.13 final Instance Variables
	8.14 Package Access
	8.15 Using BigDecimal for Precise Monetary Calculations
	8.16 (Optional) GUI and Graphics Case Study: Using Objects with Graphics
	8.17 Wrap-Up

	9 Object-Oriented Programming: Inheritance
	9.1 Introduction
	9.2 Superclasses and Subclasses
	9.3 protected Members
	9.4 Relationship Between Superclasses and Subclasses
	9.4.1 Creating and Using a CommissionEmployee Class
	9.4.2 Creating and Using a BasePlusCommissionEmployee Class
	9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	9.5 Constructors in Subclasses
	9.6 Class Object
	9.7 (Optional) GUI and Graphics Case Study: Displaying Text and Images Using Labels
	9.8 Wrap-Up

	10 Object-Oriented Programming: Polymorphism and Interfaces
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting

	10.6 Allowed Assignments Between Superclass and Subclass Variables
	10.7 final Methods and Classes
	10.8 A Deeper Explanation of Issues with Calling Methods from Constructors
	10.9 Creating and Using Interfaces
	10.9.1 Developing a Payable Hierarchy
	10.9.2 Interface Payable
	10.9.3 Class Invoice
	10.9.4 Modifying Class Employee to Implement Interface Payable
	10.9.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.9.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.9.7 Some Common Interfaces of the Java API

	10.10 Java SE 8 Interface Enhancements
	10.10.1 default Interface Methods
	10.10.2 static Interface Methods
	10.10.3 Functional Interfaces

	10.11 (Optional) GUI and Graphics Case Study: Drawing with Polymorphism
	10.12 Wrap-Up

	11 Exception Handling: A Deeper Look
	11.1 Introduction
	11.2 Example: Divide by Zero without Exception Handling
	11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	11.4 When to Use Exception Handling
	11.5 Java Exception Hierarchy
	11.6 finally Block
	11.7 Stack Unwinding and Obtaining Information from an Exception Object
	11.8 Chained Exceptions
	11.9 Declaring New Exception Types
	11.10 Preconditions and Postconditions
	11.11 Assertions
	11.12 try-with-Resources: Automatic Resource Deallocation
	11.13 Wrap-Up

	12 GUI Components: Part 1
	12.1 Introduction
	12.2 Java’s Nimbus Look-and-Feel
	12.3 Simple GUI-Based Input/Output with JOptionPane
	12.4 Overview of Swing Components
	12.5 Displaying Text and Images in a Window
	12.6 Text Fields and an Introduction to Event Handling with Nested Classes
	12.7 Common GUI Event Types and Listener Interfaces
	12.8 How Event Handling Works
	12.9 JButton
	12.10 Buttons That Maintain State
	12.10.1 JCheckBox
	12.10.2 JRadioButton

	12.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	12.12 JList
	12.13 Multiple-Selection Lists
	12.14 Mouse Event Handling
	12.15 Adapter Classes
	12.16 JPanel Subclass for Drawing with the Mouse
	12.17 Key Event Handling
	12.18 Introduction to Layout Managers
	12.18.1 FlowLayout
	12.18.2 BorderLayout
	12.18.3 GridLayout

	12.19 Using Panels to Manage More Complex Layouts
	12.20 JTextArea
	12.21 Wrap-Up

	13 Graphics and Java 2D
	13.1 Introduction
	13.2 Graphics Contexts and Graphics Objects
	13.3 Color Control
	13.4 Manipulating Fonts
	13.5 Drawing Lines, Rectangles and Ovals
	13.6 Drawing Arcs
	13.7 Drawing Polygons and Polylines
	13.8 Java 2D API
	13.9 Wrap-Up

	14 Strings, Characters and Regular Expressions
	14.1 Introduction
	14.2 Fundamentals of Characters and Strings
	14.3 Class String
	14.3.1 String Constructors
	14.3.2 String Methods length, charAt and getChars
	14.3.3 Comparing Strings
	14.3.4 Locating Characters and Substrings in Strings
	14.3.5 Extracting Substrings from Strings
	14.3.6 Concatenating Strings
	14.3.7 Miscellaneous String Methods
	14.3.8 String Method valueOf

	14.4 Class StringBuilder
	14.4.1 StringBuilder Constructors
	14.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	14.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	14.4.4 StringBuilder append Methods
	14.4.5 StringBuilder Insertion and Deletion Methods

	14.5 Class Character
	14.6 Tokenizing Strings
	14.7 Regular Expressions, Class Pattern and Class Matcher
	14.8 Wrap-Up

	15 Files, Streams and Object Serialization
	15.1 Introduction
	15.2 Files and Streams
	15.3 Using NIO Classes and Interfaces to Get File and Directory Information
	15.4 Sequential-Access Text Files
	15.4.1 Creating a Sequential-Access Text File
	15.4.2 Reading Data from a Sequential-Access Text File
	15.4.3 Case Study: A Credit-Inquiry Program
	15.4.4 Updating Sequential-Access Files

	15.5 Object Serialization
	15.5.1 Creating a Sequential-Access File Using Object Serialization
	15.5.2 Reading and Deserializing Data from a Sequential-Access File

	15.6 Opening Files with JFileChooser
	15.7 (Optional) Additional java.io Classes
	15.7.1 Interfaces and Classes for Byte-Based Input and Output
	15.7.2 Interfaces and Classes for Character-Based Input and Output

	15.8 Wrap-Up

	16 Generic Collections
	16.1 Introduction
	16.2 Collections Overview
	16.3 Type-Wrapper Classes
	16.4 Autoboxing and Auto-Unboxing
	16.5 Interface Collection and Class Collections
	16.6 Lists
	16.6.1 ArrayList and Iterator
	16.6.2 LinkedList

	16.7 Collections Methods
	16.7.1 Method sort
	16.7.2 Method shuffle
	16.7.3 Methods reverse, fill, copy, max and min
	16.7.4 Method binarySearch
	16.7.5 Methods addAll, frequency and disjoint

	16.8 Stack Class of Package java.util
	16.9 Class PriorityQueue and Interface Queue
	16.10 Sets
	16.11 Maps
	16.12 Properties Class
	16.13 Synchronized Collections
	16.14 Unmodifiable Collections
	16.15 Abstract Implementations
	16.16 Wrap-Up

	17 Java SE 8 Lambdas and Streams
	17.1 Introduction
	17.2 Functional Programming Technologies Overview
	17.2.1 Functional Interfaces
	17.2.2 Lambda Expressions
	17.2.3 Streams

	17.3 IntStream Operations
	17.3.1 Creating an IntStream and Displaying Its Values with the forEach Terminal Operation
	17.3.2 Terminal Operations count, min, max, sum and average
	17.3.3 Terminal Operation reduce
	17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values
	17.3.5 Intermediate Operation: Mapping
	17.3.6 Creating Streams of ints with IntStream Methods range and rangeClosed

	17.4 Stream<Integer> Manipulations
	17.4.1 Creating a Stream<Integer>
	17.4.2 Sorting a Stream and Collecting the Results
	17.4.3 Filtering a Stream and Storing the Results for Later Use
	17.4.4 Filtering and Sorting a Stream and Collecting the Results
	17.4.5 Sorting Previously Collected Results

	17.5 Stream<String> Manipulations
	17.5.1 Mapping Strings to Uppercase Using a Method Reference
	17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive Ascending Order
	17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive Descending Order

	17.6 Stream<Employee> Manipulations
	17.6.1 Creating and Displaying a List<Employee>
	17.6.2 Filtering Employees with Salaries in a Specified Range
	17.6.3 Sorting Employees By Multiple Fields
	17.6.4 Mapping Employees to Unique Last Name Strings
	17.6.5 Grouping Employees By Department
	17.6.6 Counting the Number of Employees in Each Department
	17.6.7 Summing and Averaging Employee Salaries

	17.7 Creating a Stream<String> from a File
	17.8 Generating Streams of Random Values
	17.9 Lambda Event Handlers
	17.10 Additional Notes on Java SE 8 Interfaces
	17.11 Java SE 8 and Functional Programming Resources
	17.12 Wrap-Up

	18 Recursion
	18.1 Introduction
	18.2 Recursion Concepts
	18.3 Example Using Recursion: Factorials
	18.4 Reimplementing Class FactorialCalculator Using Class BigInteger
	18.5 Example Using Recursion: Fibonacci Series
	18.6 Recursion and the Method-Call Stack
	18.7 Recursion vs. Iteration
	18.8 Towers of Hanoi
	18.9 Fractals
	18.9.1 Koch Curve Fractal
	18.9.2 (Optional) Case Study: Lo Feather Fractal
	18.10 Recursive Backtracking
	18.11 Wrap-Up

	19 Searching, Sorting and Big O
	19.1 Introduction
	19.2 Linear Search
	19.3 Big O Notation
	19.3.1 O(1) Algorithms
	19.3.2 O(n) Algorithms
	19.3.3 O(n[sup(2)]) Algorithms
	19.3.4 Big O of the Linear Search

	19.4 Binary Search
	19.4.1 Binary Search Implementation
	19.4.2 Efficiency of the Binary Search

	19.5 Sorting Algorithms
	19.6 Selection Sort
	19.6.1 Selection Sort Implementation
	19.6.2 Efficiency of the Selection Sort

	19.7 Insertion Sort
	19.7.1 Insertion Sort Implementation
	19.7.2 Efficiency of the Insertion Sort

	19.8 Merge Sort
	19.8.1 Merge Sort Implementation
	19.8.2 Efficiency of the Merge Sort

	19.9 Big O Summary for This Chapter’s Searching and Sorting Algorithms
	19.10 Wrap-Up

	20 Generic Classes and Methods
	20.1 Introduction
	20.2 Motivation for Generic Methods
	20.3 Generic Methods: Implementation and Compile-Time Translation
	20.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	20.5 Overloading Generic Methods
	20.6 Generic Classes
	20.7 Raw Types
	20.8 Wildcards in Methods That Accept Type Parameters
	20.9 Wrap-Up

	21 Custom Generic Data Structures
	21.1 Introduction
	21.2 Self-Referential Classes
	21.3 Dynamic Memory Allocation
	21.4 Linked Lists
	21.4.1 Singly Linked Lists
	21.4.2 Implementing a Generic List Class
	21.4.3 Generic Classes ListNode and List
	21.4.4 Class ListTest
	21.4.5 List Method insertAtFront
	21.4.6 List Method insertAtBack
	21.4.7 List Method removeFromFront
	21.4.8 List Method removeFromBack
	21.4.9 List Method print
	21.4.10 Creating Your Own Packages

	21.5 Stacks
	21.6 Queues
	21.7 Trees
	21.8 Wrap-Up

	22 GUI Components: Part 2
	22.1 Introduction
	22.2 JSlider
	22.3 Understanding Windows in Java
	22.4 Using Menus with Frames
	22.5 JPopupMenu
	22.6 Pluggable Look-and-Feel
	22.7 JDesktopPane and JInternalFrame
	22.8 JTabbedPane
	22.9 BoxLayout Layout Manager
	22.10 GridBagLayout Layout Manager
	22.11 Wrap-Up

	23 Concurrency
	23.1 Introduction
	23.2 Thread States and Life Cycle
	23.2.1 New and Runnable States
	23.2.2 Waiting State
	23.2.3 Timed Waiting State
	23.2.4 Blocked State
	23.2.5 Terminated State
	23.2.6 Operating-System View of the Runnable State
	23.2.7 Thread Priorities and Thread Scheduling
	23.2.8 Indefinite Postponement and Deadlock

	23.3 Creating and Executing Threads with the Executor Framework
	23.4 Thread Synchronization
	23.4.1 Immutable Data
	23.4.2 Monitors
	23.4.3 Unsynchronized Mutable Data Sharing
	23.4.4 Synchronized Mutable Data Sharing—Making Operations Atomic

	23.5 Producer/Consumer Relationship without Synchronization
	23.6 Producer/Consumer Relationship: ArrayBlockingQueue
	23.7 (Advanced) Producer/Consumer Relationship with synchronized, wait, notify and notifyAll
	23.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers
	23.9 (Advanced) Producer/Consumer Relationship: The Lock and Condition Interfaces
	23.10 Concurrent Collections
	23.11 Multithreading with GUI: SwingWorker
	23.11.1 Performing Computations in a Worker Thread: Fibonacci Numbers
	23.11.2 Processing Intermediate Results: Sieve of Eratosthenes

	23.12 sort/parallelSort Timings with the Java SE 8 Date/Time API
	23.13 Java SE 8: Sequential vs. Parallel Streams
	23.14 (Advanced) Interfaces Callable and Future
	23.15 (Advanced) Fork/Join Framework
	23.16 Wrap-Up

	24 Accessing Databases with JDBC
	24.1 Introduction
	24.2 Relational Databases
	24.3 A books Database
	24.4 SQL
	24.4.1 Basic SELECT Query
	24.4.2 WHERE Clause
	24.4.3 ORDER BY Clause
	24.4.4 Merging Data from Multiple Tables: INNER JOIN
	24.4.5 INSERT Statement
	24.4.6 UPDATE Statement
	24.4.7 DELETE Statement

	24.5 Setting up a Java DB Database
	24.5.1 Creating the Chapter’s Databases on Windows
	24.5.2 Creating the Chapter’s Databases on Mac OS X
	24.5.3 Creating the Chapter’s Databases on Linux

	24.6 Manipulating Databases with JDBC
	24.6.1 Connecting to and Querying a Database
	24.6.2 Querying the books Database

	24.7 RowSet Interface
	24.8 PreparedStatements
	24.9 Stored Procedures
	24.10 Transaction Processing
	24.11 Wrap-Up

	25 JavaFX GUI: Part 1
	25.1 Introduction
	25.2 JavaFX Scene Builder and the NetBeans IDE
	25.3 JavaFX App Window Structure
	25.4 Welcome App—Displaying Text and an Image
	25.4.1 Creating the App’s Project
	25.4.2 NetBeans Projects Window—Viewing the Project Contents
	25.4.3 Adding an Image to the Project
	25.4.4 Opening JavaFX Scene Builder from NetBeans
	25.4.5 Changing to a VBox Layout Container
	25.4.6 Configuring the VBox Layout Container
	25.4.7 Adding and Configuring a Label
	25.4.8 Adding and Configuring an ImageView
	25.4.9 Running the Welcome App

	25.5 Tip Calculator App—Introduction to Event Handling
	25.5.1 Test-Driving the Tip Calculator App
	25.5.2 Technologies Overview
	25.5.3 Building the App’s GUI
	25.5.4 TipCalculator Class
	25.5.5 TipCalculatorController Class

	25.6 Features Covered in the Online JavaFX Chapters
	25.7 Wrap-Up

	Chapters on the Web
	A: Operator Precedence Chart
	B: ASCII Character Set
	C: Keywords and ReservedWords
	D: Primitive Types
	E: Using the Debugger
	E.1 Introduction
	E.2 Breakpoints and the run, stop, cont and print Commands
	E.3 The print and set Commands
	E.4 Controlling Execution Using the step, step up and next Commands
	E.5 The watch Command
	E.6 The clear Command
	E.7 Wrap-Up

	Appendices on the Web
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

