
OBJECT-ORIENTED 
PROGRAMMING I

IT 311

IT DEPT. 

TIU

3RD GRADE

Lect. Mohammad Salim 1



CONTENTS

¡ Key facts

¡ Trending Programming Languages 2021

¡ OOP languages

¡ OOP Features

¡ UML Diagram

¡ OOP Dart examples

2



Key facts about your topic

Object-oriented programming is a programming paradigm based on the concept of "objects", 
which can contain data, in the form of fields, and code, in the form of procedures. 
A feature of objects is an object's procedures that can access and often modify the data fields 
of the object with which they are associated.
In OOP, computer programs are designed by making them out of objects that interact with 
one another. 
OOP languages are diverse, but the most popular ones are class-based, meaning that objects 
are instances of classes, which also determine their types. Dart, Java, C++, and C# are OOP 
languages.

3



TRENDS

¡ Rankings are created by 
weighting and combining 
metrics from eight sources:

¡ CareerBuilder, GitHub, 
Google, Hacker News, the 
IEEE, Reddit, Stack Overflow, 
and Twitter.

4

https://www.careerbuilder.com/
https://github.com/
https://www.google.com/
https://news.ycombinator.com/news
https://www.ieee.org/
https://www.reddit.com/
https://stackoverflow.com/
https://twitter.com/


OOP 
LANGUAGES

JAVA, C++, C#, PYTHON, R, PHP, VISUAL 
BASIC.NET, JAVASCRIPT, RUBY, PERL, 
SIMSCRIPT, OBJECT PASCAL, OBJECTIVE-C, 
DART, SWIFT, SCALA, KOTLIN, COMMON 
LISP, MATLAB, AND SMALLTALK.

5



FEATURES

Various OOP features can be 
implemented in Dart they are :
• Classes
• Objects
• Data Encapsulation
• Inheritance
• Polymorphism

6



1.CLASSES

¡ Class is a user defined data type and it 
contains it's own data 
members(Constructors , getters and 
setters) and member functions. 

¡ A class encapsulates data for the object.
A class in Dart can be decalred by using 
the keyword class followed by the class 
name and the body of the class should be 
enclosed with a pair of curly braces {}

¡ One important thing to note is the rules 
of identifers must be followed while 
declaring a class name.

¡ A class contain constructors , fields , 
functions , setters and getters.

¡ Syntax for class declaration
7



2. OBJECTS

8



3. DATA ENCAPSULATION

¡ Data Encapsulation is binding data and functions that use data into one unit. It is also referred to as data hiding 
and information hiding.
Unlike C++ and Java , Dart does not have keywords for restricting access like private , public and protected.

¡ Encapsulation in Dart happens at the library level and not at the class level.
Any identifer that starts with an underscore _ is private to its library.

9



4. INHERITANCE

¡ Inheritance means the ability to create new classes from an existing one. 

¡ The new created classes are called sub classes or child classes. 

¡ The class from which sub classes are derived is called the super class or a parent class.
A class is inherited from another class by using the extend keyword.

¡ Dart supports the following types of Inheritance :

¡ Single (one child class is inherited by one parent class only)

¡ Multi level (child class can inherit from another child class)

¡ Dart does not support Multiple Inheritance.

¡ The super keyword is used to refer to immediate parent of a class. The keyword can be used to 
refer to the super class version of a method or a variable. 10



4. INHERITANCE (CONT.)

11



5. POLYMORPHISM

12



5. POLYMORPHISM

13



UML DIAGRAM

¡ UML stands 
for Unified Modeling Language. It’s a 
rich language to model software 
solutions, application structures, 
system behavior and business 
processes. There are 14 UML 
diagram types to help you model 
these behaviors.

¡
List of UML Diagram Types

¡ So what are the different UML 
diagram types? There are two main 
categories; structure 
diagrams and behavioral 
diagrams.

14



CLASS DIAGRAM

¡ Class diagram is the backbone of object-oriented modeling - it shows how different entities (people, things, and 
data) relate to each other. In other words, it shows the static structures of the system.

¡ A class diagram describes the attributes and operations of a class and also the constraints imposed on the system.

¡ Class diagrams are widely used in the modeling of object-oriented systems because they are the only UML 
diagrams that can be mapped directly to object-oriented languages.

The purpose of the class diagram can be summarized as:

¡ Analysis and design of the static view of an application;

¡ To describe the responsibilities of a system;

¡ To provide a base for component and deployment diagrams; and,

¡ Forward and reverse engineering.
15



CLASS DIAGRAM 
(CONT.)

A class is depicted in the class 
diagram as a rectangle with three 
horizontal sections, as shown in 
the figure below. 

¡ The upper section shows the 
class’s name (Flight), 

¡ the middle section contains the 
properties of the class, 

¡ and the lower section contains 
the class’s operations (or 
“methods”).

16



CLASS DIAGRAM (CONT.)

¡ These are the different types of relationships between classes:

Association: If two classes in a model need to communicate with each other, there must be a link between them. This link 
can be represented by an association. Associations can be represented in a class diagram by a line between these classes 
with an arrow indicating the navigation direction.

¡ By default, associations are always assumed to be bi-directional; this means that both classes are aware of each other and 
their relationship. In the diagram below, the association between Pilot and FlightInstance is bi-directional, as both classes 
know each other.

¡ By contrast, in a uni-directional association, two classes are related - but only one class knows that the relationship 
exists. In the below example, only Flight class knows about Aircraft; hence it is a uni-directional association

Multiplicity Multiplicity indicates how many instances of a class participate in the relationship. It is a constraint that 
specifies the range of permitted cardinalities between two classes. For example, in the diagram below, one FlightInstance will 
have two Pilots, while a Pilot can have many FlightInstances. A ranged multiplicity can be expressed as “0…*” which means 
“zero to many" or as “2…4” which means “two to four”.

¡ We can indicate the multiplicity of an association by adding multiplicity adornments to the line denoting the association. 
The below diagram, demonstrates that a FlightInstance has exactly two Pilots but a Pilot can have many FlightInstances. 17



CLASS DIAGRAM (CONT.)

¡ Aggregation: Aggregation is a special type of association used to model a “whole to its parts” relationship. In a 
basic aggregation relationship, the lifecycle of a PART class is independent of the WHOLE class’s lifecycle. In other 
words, aggregation implies a relationship where the child can exist independently of the parent. In the above 
diagram, Aircraft can exist without Airline.

¡ Composition: The composition aggregation relationship is just another form of the aggregation relationship, but 
the child class’s instance lifecycle is dependent on the parent class’s instance lifecycle. In other words, 
Composition implies a relationship where the child cannot exist independent of the parent. In the above example, 
WeeklySchedule is composed in Flight which means when Flight lifecycle ends, WeeklySchedule automatically gets 
destroyed.

¡ Generalization: Generalization is the mechanism for combining similar classes of objects into a single, more 
general class. Generalization identifies commonalities among a set of entities. In the above diagram, Crew, Pilot, 
and Admin, all are Person.

¡ Dependency: A dependency relationship is a relationship in which one class, the client, uses or depends on 
another class, the supplier. In the above diagram, FlightReservation depends on Payment.

¡ Abstract class: An abstract class is identified by specifying its name in italics. In the above diagram, both Person 
and Account classes are abstract classes.

18



CLASS 
DIAGRAM 
(CONT.)

19



CLASS DIAGRAM 
(CONT.)

SAMPLE CLASS 
DIAGRAM FOR FLIGHT 
RESERVATION SYSTEM

20



CLASS 
DIAGRAM 
EXAMPLE: 
HOSPITAL 
MANAGEMENT 
SYSTEM

21



CLASSES AND 
OBJECTS

¡1- CLASSES AND OBJECTS

¡2- ABSTRACTION IN ACTION

¡3- ENCAPSULATION IN ACTION

¡4- INHERITANCE IN ACTION

¡5- POLYMORPHISM IN ACTION 

22



CLASSES AND OBJECTS
23



CLASSES AND 
OBJECTS

24



ABSTRACTION IN ACTION

¡ Abstraction is the first principle of OOP and like many other 
programming languages, it's a way to reduce code complexity by dividing 
functionality into different "chunks" and exposing only essential 
functionality to the outside world.

¡ Abstraction allows you to focus on what a class does instead of how it 
does it

¡ In other words, when you instantiate a class you only have to worry 
about the methods it provides, parameters these methods receive, 
and the outputs it returns. 

¡ All the actual implementation parts must not be known externally so if 
you want to change them, all the code dependent on that class would 
not be affected by the change. 

¡ Let's make an example with a simple Square class:
25



ABSTRACTION IN ACTION

26



ENCAPSULATION 
IN ACTION

¡ This is the second principle of OOP and it 
refers to the ability of an object to hide its 
data or its state and allow access to its 
properties only through particular
methods. 

¡ In other languages, this is done by defining 
the property private and the 
methods public. 

¡ So if someone instantiates a class of a 
certain type he cannot access directly to 
properties but he must use methods to 
change property values. A simple example 
to show this concept is:

¡ If managed correctly, it allows you to see 
the object as a black-box, with which the 
interaction takes place only and only 
through the methods defined by the class. 

¡ Encapsulation and Abstraction are very 
connected to each other because they 
allow you to expose functionality outside 
the class hiding the implementation details.

27



INHERITANCE IN ACTION

¡ This principle leads us to an important concept in object-oriented programming that 
allows a class to inherit properties and methods from another class and to extend 
them. So let's define:

¡ sub-class: the class that inherits properties and methods from another class, to fix 
ideas this is often called a child class;

¡ super-class: a class that is extended and that provides the basis for other classes to 
which it provides basic properties and methods, is often also called the parent class.

¡ Based on these concepts we define the concept of an animal with classes and then we 
create a dog:

28



INHERITANCE IN ACTION
¡In the example, you can see 
that I create ElectricCar with 
a class type Car that inherits 
from the Car class. By doing 
that I can make it recharge and 
give it a batteryLevel . Also we 
make it drive using the method 
defined in its parent class 
because all cars have the ability 
to drive and have 
numberOfSeats.
¡Inheritance can be of the 
following three types: Single, 
Multiple and Multi-level. Dart 
supports Single Inheritance and 
Multi-level, so a class must 
extend from only one parent 
class and you can create multi-
level relationships like 
this: grandparent class -> parent 
class -> child class. 29



POLYMORPHISM IN 
ACTION

¡Polymorphism refers to the 
language's ability to use the 
correct method of a class based 
on the type of the variable at 
runtime and not at compile time. 

¡This way if you have a method 
defined in a super class and two 
child classes that override it, the 
language at runtime will execute 
the correct function code based 
on the type of the variable. Let's 
take an example to better 
understand:Dart based on the type of the variables 

ElectricCar and LelivatingCar correctly 
run functions defined relatively in the 
ElectricCar and LelivatingCar classes. 30



SUMMARY

In this lecture notes we learned about many important aspects:

¡ Key facts about OOP

¡ Trending Programming Languages 2021 and situation of our Dart !

¡ OOP languages and how popular they are !

¡ OOP Features in general 

¡ UML Diagram

Finally, OOP features in Dart with some examples

Please note that you if you needed to remember anything about Dart, you can go back to your Programming 2 lecture notes or use the 
Internet search engines for more details.

31


