OBJECT-ORIENTED T DEPT
PROGRAMMING | TIU
|T 3 | | 3RD GRADE

CONTENTS

Key facts

Trending Programming Languages 202 |
OOQOP languages

OORP Features

UML Diagram

OOP Dart examples

Key facts about your topic

Object-oriented programming is a programming paradigm based on the concept of "objects”,
which can contain data, in the form of fields, and code, in the form of procedures.

A feature of objects is an object's procedures that can access and often modify the data fields
of the object with which they are associated.

In OOP, computer programs are designed by making them out of objects that interact with
one another.

OOP languages are diverse, but the most popular ones are class-based, meaning that objects
are instances of classes, which also determine their types. Dart, Java, C++, and C# are OOP

languages.

N
IEEE Spectrum Top Programming Languages

Rank Language Type Score

TRENDS n Javav ®@ 0 O 92.4
n co DO & 916
E C++v O QO @ 87.3
Rankings are created by n SWifts oo [
weighting and combining
metrics from eight sources: H Dart ® 0 LS
CareerBuilder, GitHub, n GRY ® 0 O & 69.7
Google, Hacker News, the
|EEE, Reddit, Stack Overflow, Kotlin- ® [59.2
and Twitter.
n Scalav ® 0 O 49.6
n D- 0 O & 446
n Objective-C- 0 2.

https://www.careerbuilder.com/
https://github.com/
https://www.google.com/
https://news.ycombinator.com/news
https://www.ieee.org/
https://www.reddit.com/
https://stackoverflow.com/
https://twitter.com/

Object-oriented programming

OOP
LANGUAGES

JAVA, C++, C#,PYTHON, R, PHRVISUAL
BASIC.NET, JAVASCRIPT, RUBY, PERL,

SIMSCRIPT, OBJECT PASCAL, OBJECTIVE-C, Email Ver i1CY
DART, SWIFT, SCALA, KOTLIN, COMMON
LISP, MATLAB,AND SMALLTALK.

Address

Send mail

A SKILLBNB

Various OOP features can be
implemented in Dart they are :

e Classes

Objects FEATURES
Data Encapsulation

Inheritance
Polymorphism

|.CLASSES

class class_name

. . . {
Class is a user defined data type and it T
contains it's own data <functions>
<fields>

members(Constructors , getters and
setters) and member functions.

. Example for a Class
A class encapsulates data for the object. g

A class in Dart can be decalred by using

the keyword class followed by the class class example
name and the body of the class should be t ooenconve Found
. . string myname = "OpenGenus Foundation" ;

enclosed with a pair of curly braces {} NP S

. . . {
OrTe important thing to note is th.e rules TR 3
of identifers must be followed while }
declaring a class name. ¥
A class contain constructors , fields , Here
functions , setters and getters. example is the class name

string is the field of class

Syntax for class declaration void disp() is the function of the class

2. OBJECTS

Object is an entity. Objects are declared to access functions and data declared in a class.

Synatx for declaring an object :

var object_name = new class_name(Carguments);

Example for Object declaration

var name = new example(Carguments);

Here ,

object name is name

new creates a new object
example is the class name

For accessing the class properties and methods, we use . operator.

3. DATA ENCAPSULATION

Data Encapsulation is binding data and functions that use data into one unit. It is also referred to as data hiding

and information hiding.
Unlike C++ and Java , Dart does not have keywords for restricting access like private , public and protected.

Encapsulation in Dart happens at the library level and not at the class level.
Any identifer that starts with an underscore _ is private to its library.

Syntax

Example

library loggerlibrary;
void _log(message)

{

print("Log method called in the loggerlibrary message: $message");

I

In the above example we have defined a library with a private function.

Inheritance means the ability to create new classes from an existing one.

The new created classes are called sub classes or child classes.

The class from which sub classes are derived is called the super class or a parent class. | - ¢assB

A class is inherited from another class by using the extend keyword.

Dart supports the following types of Inheritance : Base Class

Y

Single (one child class is inherited by one parent class only) ~classC

Multi level (child class can inherit from another child class) _
class B Derived Class

Dart does not support Multiple Inheritance.
Single Inhetitance

Base Class 1

Base Class 2

Derived Class 2

Multilevel Inheritance

The super keyword is used to refer to immediate parent of a class.The keyword can be used to

refer to the super class version of a method or a variable.

10

4. INHERITANCE (CONT))

Example for Inheritance (Single Level)

void main()
i
var obj = new model();
obj.price();
Iy
class car
it
void price()
i
print(" price of car model in the car class");

¥

ke

class model extends card{}

Price of car model in the car class

Do note that a child class inherits all the methods from the parent class except the constructors.

5.POLYMORPHISM

Polymorphism is achieved through inheritance and it represents the ability of an object to copy the
behavior of another object.

It means that one object can have multiple forms.

subclasses or child classes usually override instance methods, getters and setters. We can use
@override to indicate that we are overriding a member.

Dart doesn't allow overloading. To overcome this we can use argument definitions like optional and
positional.

class Car extends Vehicle

{
Car()

5.POLYMORPHISM {

this.topspeed = 240;
this.name = "Car";

}

void EngineStart()

d
print('Engine Started');

}
}

main()

{
car model ;
model = new Lights(73);
model . turnOn();
model .goForward();
model . turn0ff();

model = new Car();
model . turnOn();
model.goForward();
model . turn0ff();

here the object - "model" has multiple forms

With this article at OpenGenus, you must have a general idea of OOP concepts in Dart. Enjoy.

UML DIAGRAM

UML stands

for Unified Modeling Language. It’s a
rich language to model software
solutions, application structures,
system behavior and business
processes. There are 14 UML
diagram types to help you model
these behaviors.

List of UML Diagram Types

So what are the different UML
diagram types?! There are two main
categories; structure

diagrams and behavioral
diagrams.

UML Diagram Types

Structural Diagrams

Composite Struture Deployment
Diagrams Diagrams

Package Profile Class
Diagrams Diagrams Diagrams

Component

Object Diagrams Diagrams

Behavioral Diagrams

State Machine Communication
Diagrams Diagrams

Usecase Activity Sequence
Diagrams Diagrams Diagrams

Interaction

Timing Diagrams ; .
overview Diagrams

CLASS DIAGRAM

= Class diagram is the backbone of object-oriented modeling - it shows how different entities (people, things, and
data) relate to each other. In other words, it shows the static structures of the system.

" A class diagram describes the attributes and operations of a class and also the constraints imposed on the system.

= Class diagrams are widely used in the modeling of object-oriented systems because they are the only UML
diagrams that can be mapped directly to object-oriented languages.

The purpose of the class diagram can be summarized as:

= Analysis and design of the static view of an application;

" To describe the responsibilities of a system;

= To provide a base for component and deployment diagrams; and,

= Forward and reverse engineering.

CLASS DIAGRAM
(CONT))

A class is depicted in the class
diagram as a rectangle with three
horizontal sections, as shown in
the figure below.

The upper section shows the
class’s name (Flight),

the middle section contains the
properties of the class,

and the lower section contains
the class’s operations (or
“methods”).

Class name
vf
Flight
flightNumber: string <(\
\
departureAirport: Airport <& Class properties
L
arrivalAirport: Airport <& | /
durationinMinutes: int ~ 4— |
cancelFlight(): bool <

Class methods

addFlightSchedule(): bool <&

getinstances(): list<Flightinstance>

P

CLASS DIAGRAM (CONT)

" These are the different types of relationships between classes:

Association: If two classes in a model need to communicate with each other, there must be a link between them.This link
can be represented by an association. Associations can be represented in a class diagram by a line between these classes
with an arrow indicating the navigation direction.

= By default, associations are always assumed to be bi-directional; this means that both classes are aware of each other and
their relationship. In the diagram below, the association between Pilot and Flightlnstance is bi-directional, as both classes

know each other.

= By contrast, in a uni-directional association, two classes are related - but only one class knows that the relationship
exists. In the below example, only Flight class knows about Aircraft; hence it is a uni-directional association

Multiplicity Multiplicity indicates how many instances of a class participate in the relationship. It is a constraint that
specifies the range of permitted cardinalities between two classes. For example, in the diagram below, one FlightInstance will
have two Pilots, while a Pilot can have many Flightlnstances. A ranged multiplicity can be expressed as “0...*”’ which means
“zero to many" or as “2...4” which means “two to four”.

" We can indicate the multiplicity of an association by adding multiplicity adornments to the line denoting the association.
The below diagram, demonstrates that a Flightlnstance has exactly two Pilots but a Pilot can have many Flightlnstances. '

CLASS DIAGRAM (CONT)

= Aggregation: Aggregation is a special type of association used to model a “whole to its parts” relationship. In a
basic aggregation relationship, the lifecycle of a PART class is independent of the WHOLE class’s lifecycle. In other
words, aggregation implies a relationship where the child can exist independently of the parent. In the above
diagram, Aircraft can exist without Airline.

= Composition: The composition aggregation relationship is just another form of the aggregation relationship, but
the child class’s instance lifecycle is dependent on the parent class’s instance lifecycle. In other words,
Composition implies a relationship where the child cannot exist independent of the parent. In the above example,
WeeklySchedule is composed in Flight which means when Flight lifecycle ends, WeeklySchedule automatically gets
destroyed.

= Generalization: Generalization is the mechanism for combining similar classes of objects into a single, more
general class. Generalization identifies commonalities among a set of entities. In the above diagram, Crew, Pilot,
and Admin, all are Person.

= Dependency: A dependency relationship is a relationship in which one class, the client, uses or depends on
another class, the supplier. In the above diagram, FlightReservation depends on Payment.

= Abstract class: An abstract class is identified by specifying its name in italics. In the above diagram, both Person *

and Account classes are abstract classes.

CLASS
DIAGRAM
(CONT)

<<interface>>
Name
method1()

ClassName

property_name: type

method(): type

A B
A B
A » B
A <> B
A @ B

UML conventions

Interface: Classes implement interfaces, denoted by Generalization.

Class: Every class can have properties and methods.
Abstract classes are identified by their /talic names.

Generalization: A implements B.

Inheritance: A inherits from B. A "is-a" B.

Use Interface: A uses interface B.

Association: A and B call each other.

Uni-directional Association: A can call B, but not vice versa.
Aggregation: A "has-an" instance of B. B can exist without A.

Composition: A "has-an" instance of B. B cannot exist without A’

WeeklySchedule Flight Airport

dayOfWeek: int \1‘ flightNumber: string name: string Abstract class (italic)
* *
departureTime : Time departureAirport: Airport —Ilands on/departs from-)» address: Address w

T CLASS DIAGRAM
1| gurationinMinutes: int Account

customDate: date getFlights(): list<Flight> & g
departureTime : Time cancelFlight(): bool) (: N I
* password: string °
addFlightSchedule(): bool . 5 i
Airline 9 0 Uni-directional association status: AccountStatus
name: string getinstances(): list<Flightinstance>
resetPassword(): bool

code: string 1 4.\
. e * Bi-directional association
getFlights(): list<Flight> assigned to Generalization SA M P L E C LAS S

p——— :‘_’&signedm..’— getFlights(): list<Flightinstance>
epartureTime : Time

Aircraft

e — RESERVATION SYSTEM

name: siing getFlights(): list<Flightinstance> +——Extends— >

status: FlightStatus

| *‘/ —— S [ge— DIAGRAM FOR FLIGHT

email: string

modal: string l
manufacturingYear : int cancel(): bool) b o
addAircraft(): bool Extends
]) updateStatus(): void
getFlights(): list<Flight> addFlight(): bool
blockUser(): bool
Multiplicity against
Dependency
reservationNumber: string paymentID: int
flight: Flightinstance PommTeeeeeesss o3 amount: double

seatMap: map<Passenger, FlightSeat> status: PaymentStatus

status: ReservationStatus

makeTransaction(): bool
getPassengers(): list<Passenger>

Patient

Hospital Doctor Prescription Cashier
-Name : string -Name : string -Serial Number : int -Name : string
-Address : string -Specialization : -Current patient's data : Patient's data -NIC Number : int
-Phone Number : int strin; -Employee ID : strin,
8 . +Enter prescription(); p. vee g
-Employee ID : string e -b: Bill
+Enter data(); . +View prescription();
. -Rank : string " . ;
+View data(); 4 +Edit prescription(); +Enter info();
-Salary : int .
N +View info();
+Enter doctor's +Generate bill(Bill b
info();):
+View doctor's info();
+give prescription();
G Medical Report
Receptionist Receipt - Report Number: int
N) N - Current patient: Patient's
-Employee ID : string -Reciept Number : int data
-Name : string -Aount Of Payment : int
+ Enter medical report (
—_—

+Enter receptionist info();
+Viewreceptionist info();

+Enter receipt info();
+View receipt info();

Patient's data Current patient

+ View medical report (

Patient's data Current patient
)i
Patient Data

-Patient's Name :

string

-NIC Number : int
-Sickness : string
-Phone Number : dint

+Enter patient's data();

+View patient's();
+Edit patient's data();

—

Outpatient

Inpatient

Test

-Blood group : string
-Current patient : Patient's data

+Enter test result(Patient's data Current patient);
+View test result(Patient's data Current patient);

Bill

-Amount : int
+Enter total
amount();

+Enter paid
amount();

CLASS
DIAGRAM
EXAMPLE:

HOSPITAL
MANAGEMENT
SYSTEM

CLASSES AND
OBJECTS

= |- CLASSES AND OBJECTS

=2- ABSTRACTION IN ACTION
=3- ENCAPSULATION IN ACTION
=4- INHERITANCE IN ACTION
=5- POLYMORPHISM IN ACTION

22

Creating the Class
class Car {

int number0fDoors = 5:

void drive() {
print(‘wheels start turning');

CLASSES AND OBJECTS

class Car {
int numberOfSeats = 5:
void drive() {
print('wheels start turning’);
}
}

} Creating an Object rom the Class

Properties

color;

number0OfSeats;

void main() {
Human jenny = Human(startingHeight: 15);

print(jenny.height);

CLASSES AND
OBJECTS

jenny.talk('Why is the sky blue');

class Human {

double height;
int age = 0;

Human({double startingHeight}) {
height = startingHeight;
3

void talk(String whatToSay) {
print(whatToSay);
3

ABSTRACTION INACTION

= Abstraction is the first principle of OOP and like many other
programming languages, it's a way to reduce code complexity by dividing
functionality into different "chunks" and exposing only essential
functionality to the outside world.

= Abstraction allows you to focus on what a class does instead of how it
does it

" |n other words, when you instantiate a class you only have to worry

about the methodes it provides, parameters these methods receive,
and the outputs it returns.

= All the actual implementation parts must not be known externally so if

you want to change them, all the code dependent on that class would
not be affected by the change.

= Let's make an example with a simple Square class:

ABSTRACTION INACTION

COPY [

Square {
int side;

int getPerineter(){

Square({ .side});

sidexd:

int getPerimeter(){
side+side+side+side;
k
}

defined a Square class and | said that it has a property named side and a method
hat returns its perimeter. So if | create a Square object with a side of 10, by calling

AT TS EETEEE Now if | want to instantiate another Square object and prints its perimeter | don't

ST RS O SRR have to change anything because | have "abstracted" the perimeter calculation

print(mySquare.getPerimeter());

functionality, | hid the detals on how | calculated perimeter focusing only on giving

Dbviously, the code prints 40. Let's suppose that now | found a super optimized the perimeter Ca|CU|ati0n funCtiona“ty.

ay to calculate the perimeter with this new function:

class Human {

ENCAPSULATION //With the underscore, I can define a variable private

// so from the outside this variable cannot be changed directly

IN ACTION int? _superSecretVariableForTheAge;

Human() ;
This is the second principle of OOP and it _
refers to the ability of an object to hide its //1I create two methods called getter and setter to modify

data or its state and allow access to its . . .
properties only through particular // properties inside my class

methods. void setAge(int newAge)({

In other languages, this is done by defining this._superSecretVariableForTheAge = newAge;
the property private and the }

So if someone instantiates a class of a
certain type he cannot access directly to
properties but he must use methods to }
change property values.A simple example }
to show this concept is:
void main() {

If managed correctIK, it allows you to see

the object as a black-box, with which the

interaction takes place only and only Human mySelf = Human() :
through the methods defined by the class.
mySelf.setAge(33);

Encapsulation and Abstraction are very : :
connected to each other because they print(mySelf.getAge());

allow you to expose functionality outside
DGR el sl S G //I cannot acces directly the property with this line of code

mySelf._superSecretVariableForTheAge = 44, o

INHERITANCE INACTION

S =
P
= This principle leads us to an important concept in object-oriented programming that G N e o
allows a class to inherit properties and methods from another class and to extend a8 ’
them. So let's define: |
= sub-class: the class that inherits properties and methods from another class, to fix N E S I %
ideas this is often called a child class; ’*‘w W
| | | ull
= super-class: a class that is extended and that provides the basis for other classes to = “ =, W
I 1 I 1 I 1 I 1
which it provides basic properties and methods, is often also called the parent class. i &S . 9 A i
= Based on these concepts we define the concept of an animal with classes and then we $ " n 3 5 "

create a dog:

28

INHERITANCE IN ACTION

ElectricCar myTesla = ElectricCar();
myTesla.drive(); void main() {

myTesla.recharge(); Car myNormalCar = Car();

print(myNormalCar.numberOfSeat);

myNormalCar.drive();

class Car {

int numberOfSeat = 5; ElectricCar myTesla = ElectricCar();

void drive() { myTesla.drive();

print('wheels turn.');
}
}

class Car {

class ElectricCar extends Car { St HumberOfSeat =ib

int batteryLevel = 100;

void drive() {
print('wheels turn.');

}

void recharge() {
batteryLevel = 100;

3
i
}

"|n the example, you can see
that | create ElectricCar with
a class type Car that inherits
from the Car class. By doing
that | can make it recharge and
give it a batteryLevel .Also we
make it drive using the method
defined in its parent class
because all cars have the ability
to drive and have
numberOfSeats.

=|nheritance can be of the
following three types: Single,
Multiple and Multi-level. I§art
supports Single Inheritance and
Multi-level, so a class must
extend from only one parent
class and you can create multi-
level relationships like

this: grandparent class -> parent
class -> child class. 2"

class SelfDrivingCar extends Car {
String destination;

SelfDrivingCar(String userSetDestination) {
destination = userSetDestination;

}

@Qoverride
void drive() {
super.drive();

print('sterring towards $destination');

}

void main() {
SelfDrivingCar myWaymo = SelfDrivingCar('1 Hacker Way');

myWaymo. drive(); I

Dart based on the type of the variables
ElectricCar and LelivatingCar correctly
run functions defined relatively in the
ElectricCar and LelivatingCar classes.

DART

class Car {
int numberOfSeat = 5;

void drive() {
print('wheels turn.');
}
}

class ElectricCar extends Car {
int batteryLevel = 100;

void recharge() {
batterylLevel = 100;
}
}

class LevitatingCar extends Car {

@override

void drive() {
print('glide forwards');

}

POLYMORPHISM IN
ACTION

=Polymorphism refers to the
language's ability to use the
correct method of a class based
on the type of the variable at
runtime and not at compile time.

= This way if you have a method
defined in a super class and two
child classes that override it, the
language at runtime will execute
the correct function code based
on the type of the variable. Let's
take an example to better
understand:

30

SUMMARY

In this lecture notes we learned about many important aspects:

= Key facts about OOP

® Trending Programming Languages 2021 and situation of our Dart !
= OOP languages and how popular they are !

= OOP Features in general

= UML Diagram

Finally, OOP features in Dart with some examples

Please note that you if you needed to remember anything about Dart, you can go back to your Programming 2 lecture notes or use the
s for more details.

