Flutter Apprentice 2021 Second Edition Book _

OBJECT-ORIENTED T DEPT
PROGRAMMING | TIU
|T 3 | | 3RD GRADE

GET FREEACCESSTO
FLUTTER APPRENTICE

FREE access to Flutter

Apprentice from October 6,
2021 through January 6,2022.

Flutter

Apprentice

SECOND EDITION
Learn to Build Cross-Platform Apps

By the raywenderlich Tutorial Team
Mike Katz, Kevin D. Moore, Vincent Ngo & Vincenzo Guzzi

___§ __|
COURSE CONTENT

Week Hour Date Topic
1 2 4-7/10/2021 Introduction to OOP , Class diagram

C O U RS E C O N T E N T 2 2 10-14/10/2021 Introduction to OOP , Class diagram and Dart Packages

Section 1: Build Your First Flutter App, structure of Flutter projects, create the Ul of
a Flutter app by Widgets

Section 2: Everything’s a Widget, start to build a full-featured recipe app named
Fooderlich

3 2 17-21/10/2021

4 2 24-28/10/2021

5 2 31/10-4/11/2021 Section 2: Everything’s a Widget, layout widgets, scrollable widgets and interactive

widgets
6 2 7-11/11/2021 Section lll: Navigating Between Screens, routes and navigation
7 2 14-18/11/2021 Midterm Exam
8 2 21-25/11/2021 Midterm Exam

Flutter and OOP

9 2 28/11-2/12/2021 Section lll: Navigating Between Screens : deep links and URLs

10 2 5-9/12/2021 Section IV: Networking, Persistence & State: Share Preference

1" 2 12-16/12/2021 Section IV: Networking, Persistence & State: Serialization with JSON
12 2 19-23/12/2021 Section IV: Networking, Persistence & State: Networking in Flutter
13 2 26-30/12/2021 Section IV: Networking, Persistence & State: Chopper Library

14 2 2-5/1/2022 Section IV: Networking, Persistence & State: State Management

15 2 9-13/1/2022 Final Exam

16 2 16-20/1/2022 Final Exam 3

®* WhatYou Need

CO NTENTS " [Introduction

= Section |: Build Your First Flutter App

To follow along with this book, you’ll need the following:

= Xcode 12.5.1 or later. Xcode is iOS’s main development tool, so you need it to build
your Flutter app for iOS. You can download the latest version of Xcode from Apple’s
developer site here: apple.co/2asi58y or from the Mac App Store. Xcode 12.5.1

What You requires a Mac running macOS Big Sur (11) or later.

Note: You also have the option of using Linux or Windows, but you won’'t be able to
N eed install Xcode or build apps for iOS on those platforms.

= Cocoapods 1.10.2 or later. Cocoapods is a dependency manager Flutter uses to run
code on iOS.

= Flutter SDK 2.5.1 or later. You can download the Flutter SDK from the official Flutter
site at https://flutter.dev/docs/get-started/install/macos. Installing the Flutter SDK will

also install the Dart SDK, which you need to compile the Dart code in your Flutter
apps.

= Android Studio 2020.3.1 or later, available at https://developer.android.com/studio.
This is the IDE in which you’'ll develop the sample code in this book. It also includes
the Android SDK and the build system for running Flutter apps on Android.

= Flutter Plugin for Android Studio 60.1.2 or later, installed by going to Android
Studio Preferences on macOS (or Settings on Windows/Linux) and choosing
Plugins, then searching for “Flutter”.

You have the option of using Visual Studio Code for your Flutter development
environment instead of Android Studio. You'll still need to install Android Studio to have
access to the Android SDK and an Android emulator. If you choose to use Visual Studio
Code, follow the instructions on the official Flutter site at https://flutter.dev/docs/get-
started/editor?tab=vscode to get set up.

Chapter 1, “"Getting Started” explains more about Flutter history and architecture. You'll
learn how to start using the Flutter SDK, then you’ll see how to use Android Studio and
Xcode to build and run Flutter apps. 5

= Flutter is an incredible user interface (Ul) toolkit that lets
you build apps for iOS and Android — and even the web
and desktop platforms like macOS,Windows and Linux
— all from a single codebase.

= Flutter has all the benefits of other cross-platform tools,
especially because you’re targeting multiple platforms
from one codebase. Furthermore, it improves upon most

INTRODUCTION cross-platform tools thanks to a super-fast rendering

engine that makes your Flutter apps perform as native
apps.

= |f you're coming from a platform like iOS or Android,
yoU'll find the Flutter development experience refreshing!
Thanks to a feature called “hot reload”, you rarely need
to rebuild your apps as you develop them.A running app
in a simulator or emulator will refresh with code changes
automatically as you save your source files!

The chapters in this section introduce you to Flutter,
get you up and running with a Flutter development
environment and walk you through building your
first Flutter app.

SECTION I You'll learn about where Flutter came from and why
BUILD YOUR it exists, understand the structure of Flutter projects
FIRST FLUTTER and see how to create the Ul of a Flutter app.

APP

You'll also get your first introduction to the key
component found in Flutter user interfaces: widgets!

WHAT IS
FLUTTER?

Multiplatform

In the simplest terms, Flutter is
a software development toolkit
from Google for building cross-
platform apps. Flutter apps
consist of a series of packages,
plugins and widgets — but
that’s not all.

Hot Open Dart .

One thing Flutter is not is a language. Flutter uses Dart as its programming
language. If you know Kotlin, Swift, Java or Typescript, you’ll find Dart
familiar, since it’s an object-oriented C-style language.

Flutter is a process, a

philosophy and a community as
well. For years, programmers have been promised the ability to write once and

run anywhere; Flutter may well be the best attempt yet at achieving that
goal.

FLUTTER SHOWCASE

Popular apps from some of the world’s
biggest companies are built with Flutter.
These include:

= Very Good Ventures
= Tencent

= Realtor.com

= Google Assistant

= New York Times

= Policygenius

" Google Stadia

= Take a look at some recent examples:

7:339 v F.

1
@
e

2020MF]50Rm ZOZQCMWMEV_

Jul " 19

Land Yachts #Hamilfilm Now Lin-Manuel
Available on Miranda's M
Disney+ Revolutionar

2020 Chevrolet Bolt EV ...

._. :Omﬁ'loyonRAV‘Nn_

T

Q & |t 2 & i
eBay Motors Hamilton

How to connect to your lights

Book Detail

Orange & Yellow Fruits

@ o
o 0 <

This is a Book authored by booktraps.app.

Preview

- i .)
o
Writer's Other Books
ﬁ Red Count
'_ ™t
Green 4‘ e
(L

BookTraps ?

WHEN NOT TO USE FLUTTER

= Games and audio

While you can create simple 2D games using Flutter, for complex 2D and 3D games, you'd probably prefer to base your app on a cross-
platform game engine technology like Unity or Unreal. They have more domain-specific features like physics, sprite and asset management,
game state management, multiplayer support and so on.Flutter doesn’t have a sophisticated audio engine yet, so audio editing or mixing apps
are at a disadvantage over those that are purpose-built for a specific platform.

= Apps with specific native SDK needs

Flutter supports many, but not all, native features. Flutter might not be a practical choice if you are only interested in a single platform app
and you have deep knowledge of that platform’s tools and languages. For example, if you're working with a highly-customized iOS app based on
CloudK:it that uses all the native hardware, MLKit, StoreKit, extensions and so on, maintaining and taking advantage of those features will be easier
using SwiftUI. Of course, the same goes for a heavily-biased Android app using Jetpback Compose.

= Certain platforms

Flutter doesn’t run everywhere. It doesn’t support Apple Bitcode yet, which means that it doesn’t support watchOS, tvOS or certain iOS
app extensions. Its support for the web is still in its early days, which means that Flutter has many features and performance improvements
ahead of it — but they’re coming.

FLUTTER’S HISTORY

" Flutter comes from a tradition of trying to improve web performance. It’s built on top of several open-source
technologies developed at Google to bring native performance and modern programming to the web through
Chrome.

= Flutter is an open source software development kit (SDK) created by Google in 2015 with the name “Sky”. Its
alpha version was on May 2017 and it came to light on December 11,2019 with its release version Flutter [.12.

® The Flutter team chose the Dart language, which Google also developed, for its productivity enhancements. Its
object-oriented type system and support for reactive and asynchronous programming give it clear advantages
over Javascript. Most importantly, Google built the DartVM into the Chrome browser, allowing web apps
written in Dart to run at native speeds.

= Another piece of the puzzle is the inclusion of Skia as the graphics rendering layer. Skia is another Google-based
open source project that powers the graphics on Android, Chrome browsers, Chrome OS and Firefox. It runs
directly on the GPU using Vulcan on Android and Metal on iOS, making the graphics layer fast on mobile
devices. Its API allows Flutter widgets to render quickly and consistently, regardless of the host platform. 1

THE FLUTTER ARCHITECTURE

4 D 4 2
(FLUTTER FRAMEWORK)
Dart - reactive framework with platform, High-level
= Flutter has a modular, 4 layered architecture. e E R features
& P € J
= This allows you to write your application logic B
once and have consistent behavior across -
e
platforms, even though the underlying engine
code differs dePending on the Platform- C++ - library to support primitives, rasterization, i/o,
Dart runtime, plugin architecture
= The layered architecture also exposes different >
points for customization and overriding, as - 2
necessary.
Platform Specific - turns code into app or library

THE FLUTTER ARCHITECTURE CONSISTS OF FOUR MAIN

LAYERS:

|. The Framework layer is written in Dart and contains the high-level libraries that you’ll use directly to build
apps. This includes the Ul theme, widgets, layout and animations, gestures and foundational building blocks.

2. Alongside the main Flutter framework are plugins: high-level features like JSON serialization, geolocation,
camera access, in-app payments and so on.This plugin-based architecture lets you include only the features
your app heeds.

3. The Engine layer contains the core C++ libraries that make up the primitives that support Flutter
apps. The engine implements the low-level primitives of the Flutter API, such as 1/O, graphics, text layout,
accessibility, the plugin architecture and the Dart runtime.The engine is also responsible for rasterizing
Flutter scenes for fast rendering onscreen.

4. The Embedder is different for each target platform and handles packaging the code as a stand-alone app or
embedded module.

MAKEUP OF
THE

FRAMEWORK
LAYER:

The Flutter framework layer consists of 4 sublayers:

=At the top is the Ul theme, which uses either the Material
(Android) or Cupertino (iOS) design language.This affects how
the controls appear, allowing you to make your app look just
like a native one.

"The widget layer is where you’ll spend the bulk of your Ul
programming time. This is where you compose design and
interactive elements to make up the app.

=Beneath the widgets layer is the rendering layer, which is
the abstraction for building a layout.

"The foundation layer provides basic building blocks, like
animations and gestures, that build up the higher layers.

GETTINGTHE FLUTTER SDK

* The first step is to download the SDK.You can follow the steps on flutter.dev or jump right in
here: https:/flutter.dev/docs/development/tools/sdk/releases

* One thing to note is that Flutter organizes its SDK around channels, which are different development branches. New

features or platform support will be available first on a beta channel for developers to try out. This is a great way
to get early access to certain features like new platforms or native SDK support.

* For this book and development in general, use the stable channel. That branch has been vetted and tested and has
little chance of breaking.

https://flutter.dev/docs/development/tools/sdk/releases

That checks for all the necessary components and provides the links or ir

GETTING to download ones you're missing.
EVERYTHING ELSE Here's an example:

Doctor summary (to see all details, run flutter doctor —v):
[v] Flutter (Channel stable, 2.5.1, on macOS 11.5 20G71 darwin—x64,
locale en—US)
[x] Android toolchain — develop for Android devices
x Flutter requires Android SDK 30 and the Android BuildTools

To update using sdkmanager, run:
""/Users/michael/Library/Android/sdk/tools/bin/sdkmanager"
. P “"platforms;android—30" "build—t s30T 20
in addition to the Flutter SDKs, you'll i s s e e pon selbiie

oF VvisitIhEtps:s w dev/do w

need Java,theAndr‘oid SDK,the iOS for detailed instructions.
SDKS and an |DE Wlth Flutter' [!'] Xcode — develop for iOS and macOS (Xcode 12.5.1)

X CocoaPods not installed.

extensions.To make thiS process CocoaPods is used to retrieve the i0S platform side's plugin
easier, Flutter includes the Flutter code that responds to your plugin usage on the Dart side.

Without CocoaPods, plugins will not work on iOS or macOS.

DOCtor, WhiCh gUideS YOU Fehimere FanhoTaseclhitEtEps = ‘ i
through installing all the missing To install:

1

sudo gem install cocoapods
[x] Chrome — develop for the web (Cannot find Chrome executable at
/Applications/Google Chrome.app/Contents/Mac0S/Google Chrome)
Run : flutter doctor I Cannot find Chrome. Try setting CHROME_EXECUTABLE to a Chrome
execlEabtes
[!] Android Studio (not installed)

tools.

[2] Connected device (the doctor check crashed)
x Due to an error, the doctor check did not complete. If the
error message below is not helpful, please let us know
about this issue at https: github.com/ f lut I f 1t
X Exception: Unable to run "adb', check your Android SDK
installation and ANDROID_HOME environment variable:
/Users/michael/Library/Android/sdk/platform—tools/adb

! Doctor found issues in 4 categories.

KEY POINTS

= Flutter is a software development toolkit from Google for building cross-platform apps using
the Dart programming language.

= With Flutter, you can build a high-quality app that’s performant and looks great, very quickly.

= Flutter is for both new and experienced developers who want to start a mobile app with minimal
overhead.

= [nstall the Flutter SDK and associated tools using instructions found at https://flutter.dev.

= The flutter doctor command helps you install and update your Flutter tools.

= This book will mostly use Android Studio as the IDE for Flutter development.

https://flutter.dev/

SETTING UP AN
IDE

The Flutter team officially
supports three editors:

Android Studio,Visual Studio
Code and Emacs.

However, there are many other
editors that support the Dart
language, work with the Flutter
command line or have third-party
Flutter plugins.

N Android Studio
Arctic Fox | 2020.3.1 Pa...
Projects
Customize
Plugins

Learn Android Studio

Welcome to Android Studio

Welcome to Android Studio

Create a new project to start from scratch.
Open existing project from disk or version control.

=

-+

~

New Project Create New Flutter Project Open

More Actions v

TRYING IT OUT

= Downloading all the components is the hardest part of getting a Flutter app up and running. Next, you’ll try actually

building an app.

" There are two recommended ways to create a new project: with the IDE or through the flutter command-
line tool in a terminal. In this chapter, you'll use the IDE shortcut and in the next chapter, you’ll use the command

line.
000

4 Flutter App Flutter SDK path: /Applications/flutter E

£ Flutter Module

New Project

< Flutter Plugin Help: Getting started with your first Flutter app.

< Flutter Package Project type: Select an "Application” when building for end users.

. Select a "Module" when creating a Flutter component to add to an Android or iOS app.
= Empty Project , _
Select a "Plugin" when exposing an Android or i0S API for developers.

Select a "Package" when creating a pure Dart component, like a new Widget.

Previous

72 Cancel

[JOX)

Project name:
Project location:
Description:
Organization:

Android language:
i0S language:

Platforms:

» More Settings

? Cancel

New Project
flutter_app
~/Desktop/flutter_app
A new Flutter app.
com.raywenderlich

Java O Kotlin
O swift
Android [i0S | | Linux

Objective-C
MacOS [| Web || Windows

Platform availability might depend on your Flutter SDK channel,
and which desktop platforms have been enabled.

Additional desktop platforms can be enabled by, for example, running
"flutter config --enable-linux-desktop" on the command line.

When created, the new project will run on the selected platforms (others can be added later).

Create project offline

Previous

THE TEMPLATE PROJECT

1.Getting Started Q &

The template project

The default new project is the same in either editor. It's a simple Flutter demo. The demo
app counts the number of times you tap a button.

To give it a try, select a connected device, an iOS simulator or an Android emulator.

flutter_app [~/flutter_app/flutter_app] - .../lib/main-d

[J <no devices> ~ % main.dart ¥ |

Open iOS Simulator

Open Android Emulator: Nexus 5 APl 22 x86

'» Main.dart

import ‘package:flutter/material.dart’;
° void main() {
BonUSo Try 4 rjnApp(MyApp());
3 ¥
hot reload
Launch the app by clicking the Run icon:

) Devices ¥ ». % #" . ‘f.main.dart - No Devices @ 4

Runﬁ
Hot Reload

t might take a while to compile and launch the first time. When you're done, you'll see the
following:

All the code for this app is in lib\main.dart in the default project.

Carrier 10:11 PM

Flutter Demo Home Page

You have pushed the button this many times:

0

20

Feel free to take a look at it. Throughout the rest of this book, you’ll dive into Flutter apps, widgets, state,

themes and many other concepts that will help you build beautiful apps.

SECTIONII:
CHAPTER 2

HELLO FLUTTER

Your first task is to build a basic app from scratch, giving you the
chance to get the hang of the tools and the basic Flutter app
structure.You'll customize the app and find out how to use a few
popular widgets like ListView and Slider to update its Ul in
response to changes.

Creating a simple app will let you see just how quick and easy it is
to build cross-platform apps with Flutter — and it will give you a
quick win.

By the end of the chapter, you'll have built a lightweight recipe
app. Since you're just starting to learn Flutter, your app will offer
a hard-coded list of recipes and let you use a Slider to
recalculate quantities based on the number of servings.

Here’s what your finished app will look like:

21

Spaghetti and Meatballs

r

Taco Salad

Taco Salad

16.0 oz nachos

12.0 oz taco meat

2.0 cup cheese

1.0 cup chopped tomatoes

LIGHTWEIGHT RECIPE

APP

Creating a new project is straightforward, by click on new Flutter Project then name it as recipes

[NON) recipes — main.dart [recipes]
recipes | lib) {4 main.dart [J sdk gphone x86 (mobile) v % maindart v || [LPixel2API30 v | » #¥ 0 @ B &m = DL Q
@ [=] Project v D = ® — famaindart 4
g v [recipes ~/Desktop/recipes 1 import 'package:flutter/material.dart'; vz C REATI N G A N Ew
4-’{ » [0 dart_tool 2 3
N) % .idea 3 » void main() { 2 9:33 = ey,
f » [iLandroid [recipes_android] 4 runApp (MyApp()); ‘?‘; AP P N
& » Fsbuild 5 } g Flutter Demo Home Page
] E : ¢
9 lib 7 class MyApp extends StatelessWidget { &
3 “amain.dart 8 // This widget is the root of your application. %
3 " Fitest 9 @override &
h| > BEwed 10 e Widget build(BuildContext context) { z
‘f“"g't'gnore 11 return MaterialApp(3
Aé'metadata 12 title: 'Flutter Demo',|
£ .packages 4
fl pubspaclock 13 theme: ThemeData(o z
P oubspae.yami 14 // This is the theme of your application. g
5 README.md o z 3
5 W% recipes.iml 16 // Try running your application with "flutter run". You'll see the §“
2 |» 1l External Libraries 17 // application has a blue toolbar. Then, without quitting the app, try 3
f P Scratches and Consoles 18 // changing the primarySwatch below to Colors.green and then invoke 8 fouihaveipushedithelbutionitniSimanvimes:
E 19 // "hot reload" (press "r" in the console where you ran "flutter run", 0
= 20 // or simply save your changes to "hot reload" in a Flutter IDE). o
21 // Notice that the counter didn't reset back to zero; the application ST
< 22 // is not restarted. £
3 23 primarySwatch: Colors.blue, g
% 24), // ThemeData
'_\=' 25 ' home: MyHomePage(title: 'Flutter Demo Home Page'), E
26); // MaterialApp g
27 }
8 28 } :
P 29 3
:' 30 class MyHomePage extends StatefulWidget { %
31
= 6: Logcat £ Database Inspector (2 Profiler i= TODO Terminal « Dart Analysis Q) Event Log I Layout Inspector
[C1 * daemon started successfully 12:29 LF UTF-8 2spaces W &

Build and run and you’ll see the same demo app as in Chapter 1, “Getting Started”.

The ready-made app is a good place to start because the flutter create command
puts all the boilerplate together for you to get up and running. But this is not your app. It's
literally MyApp, as you can see near the top of main.dart:

MAKING THE
APP YOURS

class MyApp extends StatelessWidget {

This defines a new Dart class named MyApp which extends — or inherits from —

StatelessWidget . In Flutter, almost everything that makes up the user interface is a
Widget. A StatelessWidget doesn't change after you build it. You'll learn a lot more
about widgets and state in the next section. For now, just think of MyApp as the container
for the app.

Since you're building a recipe app, you don't want your main class to be named MyApp
— you want it to be RecipeApp .

While you could change it manually in multiple places, you'll reduce the chance of a copy-
and-paste error or typo by using the IDE's rename action instead. This lets you rename a
symbol at its definition and all its callers at the same time.

24

STYLING YOUR APP

Widget build(BuildContext context) {

final ThemeData theme = ThemeData();

return MaterialApp(

title: 'Recipe Calculator',

theme: theme.copyWith(
colorScheme: theme.colorScheme.copyWith(
primary: Colors.grey,
secondary: Colors.black,

home: const MyHomePage(title: 'Recipe Calculator'),
);

1
J

This code changes the appearance of the app:

=A widget’s build() method is the entry point for composing together
other widgets to make a new widget.

=A theme determines visual aspects like color.The
default ThemeData will show the standard Material defaults.

="Material App uses Material Design and is the widget that will be
included in RecipeApp.

= The title of the app is a description that the device uses to identify
the app. The Ul won’t display this.

=By copying the theme and replacing the color scheme with an
updated copy lets you change the app’s colors. Here, the primary
color is Colors.grey and the secondary color is Colors.black.

=This still uses the same MyHomePage widget as before, but now,
you’ve updated the title and displayed it on the device.

CLEAR'NG THE class _MyHomePageState extends State<MyHomePage>

APP Widget build(BuildContext context) {

Recipe Calculator

A quick look at what this shows: retu m Scaffold(

A Scaffold provides the high-level ~
structure for a screen. In this case, you're appBar: AppBa r(

using two properties. title: Text(widget.title),

AppBar gets a title property by using),
a Text widget that has a title passed in
from home: MyHomePage(title: 'Recipe

Calculator") in the previous step. body: SafeAreal

body has SafeArea, which keeps the app / 1UDU;
from getting too close to the operating ‘
system interfaces such as the notch or N _
interactive areas like the Home Indicator at child: Container(),

the bottom of some iOS screens.)
’

SafeArea has a child widget, which is an
empty Container widget.

One hot reload later, and you're left with a
clean app:

BUILDING A RECIPE LIST

class Recipe {
String label;

J

= An empty recipe app isn’t very useful. The app should have a nice String imageUrl;
list of recipes for the user to scroll through. Before you can display T

these, however, you need the data to fill out the UL.

Adding a data model Recipe(

this. label,
= You’ll use Recipe as the main data structure for recipes in this app.

this.imageUrl,
" Create a new Dart file in the lib folder, named recipe.dart.)} :

= Add the following class to the file:

27

BUILDING A RECIPE LIST

This is the start of a Recipe model with a label and an
image.

= You'll also need to supply some data for the app to
display. In a full-featured app, you’d load this data
either from a local database or a [SON-based API.

For the sake of simplicity as you get started with Flutter,
however, you'll use hard-coded data in this chapter.

= Add the following method to Recipe by replacing
[/ TODO: Add List<Recipe> here with :

= This is a hard-coded list of recipes.You’ll add more detail
later, but right now, it’s just a list of names and
images.

28

static List<Recipe> samples = [
Recipe
'Spaghetti and Meatballs',
‘assets/2126711929_ef763de2b3_w.jpg’,
) »
Recipe(
'‘Tomato Soup',
‘assets/27729023535_a57606c¢clbe.jpg’,
X
Recipe
'Grilled Cheese',
‘assets/3187380632_5056654al19_b.jpqg’,
J

Recipe
‘Chocolate Chip Cookies',
‘assets/15992102771_b92f4cch@a_b.jpg’,

) »
Recipe
'‘Taco Salad',
‘assets/8533381643_a31a99e8a6_c.jpg’,
) »
Recipe
'Hawaiian Pizza',
'assets/15452035777_294cefced5_c.jpg’,

BUILDING A
RECIPE LIST

You’ve created a List with images,
but you don’t have any images in
your project yet.To add them, go
to Finder and copy

the assets folder from the top
level of 02-hello-flutter in the
book materials of your project’s
folder structure.When you're
done, it should live at the same
level as the lib folder.That way, the
app will be able to find the images
when you run it.

You'll notice that by copy-pasting in
Finder, the folder and images
automatically display in the Android
Studio project list.

3 Project « Q= & -
I .

& _ recipes -/

;' i I android [recipes_android]
% > M jos

g lib

«Q .

= a Main.dart

S

L

But just adding assets to the project doesn’t display them in the app. To tell the app
to include those assets, open pubspec.yaml in the recipes project root folder.

Under # To add assets to your application... add the following lines:

assets:

— assets/

These lines specify that assets/ is an assets folder and must be included with the
app. Make sure that the first line here is aligned with the uses-material-design:
true line above it.

29

DISPLAYING THE LIST

= With the data ready to go, your next step is to create a place
for the data to go to.

= Back in main.dart, you need to import the data file so the
code in main.dart can find it. Add the following to the top
of the file, under the other import lines:

child: ListView.builder(

import 'recipe.dart’; itemCount: Recipe.samples.length,

" Next, in _MyHomePageState SafeArea’s child, find and
replace // TODO: Replace child: Container() and the two
lines beneath it with:

itemBuilder: (BuildContext context, int index) {

This code does the following: DO: Upe return Recipe cari
= Builds a list using ListView. return Text(Recipe.samples[index].label);
= jtemCount determines the number of rows the list has. In

this case, length is the number of objects in
the Recipe.samples list.

= itemBuilder builds the widget tree for each row. .

= A Text widget displays the name of the recipe.

DISPLAYING THE LIST

Perform a hot reload now and
yoU'll see the following list:

31

It’s great that you’re displaying real data now, but this is barely an app.To spice
things up a notch, you need to add images to go along with the titles.

PUTTING THE LIST To do this, you'll use a Card. In Material Design, Cards define an area of
the Ul where you’ve laid out related information about a specific entity.
INTO A CARD For example, a Card in a music app might have labels for an album’s title, artist and

release date along with an image for the album cover and maybe a control for rating it
with stars.

Your recipe Card will show the recipe’s label and image. Its widget tree
will have the following structure:

In main.dart, at the bottom of _MyHomePageState create a custom widget by

~ ~ replacing // TODO: Add buildRecipeCard() here with:
Card
(R : : : : :
Column Widget buildRecipeCard(Recipe recipe) {
£l
Image b return Card(

Recipe Image

J child: Column(

- N children: <Widget>[
Text // 4

Recipe Label
.

Image(image: AssetImage(recipe.imageUrl)),

Text(recipe. label),

LOOKING AT THEWIDGET TREE

Now’s a good time to think about the widget tree of the overall app.

()
Do you remember that it started with RecipeApp from main()? RecipeApp
4)
MaterialApp
Flutter Inspector [J iPhone 12 Pro Max (mobile) o — 7 N
% c G o AL & M MyHomePage
a4)
v I [root] Scaffold
To see your App v @ RecipeApp
.) v (M Material App (ListView)
Wldget Tree, N v @ MyHomePage
. . v £ Scaffold (™
Android StUle, open —v.csaafe(:)Area RecipeCard
v B ListView \. J
the Flutter Loyopds ; =
Inspector from v B Column RecipeCard
. — M Image \. Y,
the View » Tool L [@ Text: "Spaghetti and Meatballs" a N
. - v & Card RecipeCard
Windows > Flutter v B Column \. v
H — M Image . »)
Inspector menu while L @ Text: "Tomato Soup - N
1 H - v &= Card AppB
yoyr app isrunning. « B Column L ppBar)
This opens a powerful — M image y 33
. = Text: "Grilled Cheese" L \)
Ul debugging tool. - @ AppBar 7 g)
Text: "Recipe Calculator \)

Widget buildRecipeCard(Recipe recipe) A
return Card(

MAKING IT LOOK NICE

shape: RoundedRectangleBorder(
borderRadius: BorderRadius.circular(10.0)),

child: Padding(
= The default cards look okay, but they’re not as padding: const EdgeInsets.all(16.0),

nice as they could be. child: Column(

. . children: <Widget>[
= With a few added extras, you can SP'ff)’ the Image(image: AssetImage(recipe.imageUrl)),

card up. :
const SizedBox (

= These include wrapping widgets in layout | height: 14.0,
widgets like Padding or specifying additional ;

Text (

styling parameters. T e
style: const TextStyle(
" Get started b)’ fontSize: 20.0,
replacing buildRecipeCard() with: fontWeight: FontWeight.w700,

fontFamily: 'Palatino’,

Recipe Calculator

MAKING IT LOOK NICE

This last slide has a few updates to look at:

= A card’s elevation determines how high off the screen the card is, affecting its
S h ad OW. Spaghetti and Meatballs

r

= shape handles the shape of the card.This code defines a rounded rectangle with
a 10.0 corner radius.

= Padding insets its child’s contents by the specified padding value.
= The padding child is still the same vertical Column with the image and text.
= Between the image and text is a SizedBox.This is a blank view with a fixed size.

= You can customize Text widgets with a style object. In this case, you've specified
a Palatino font with a size of 20.0 and a bold weight of w700.

Hot reload and you’ll see a more styled list. 35

ADDING A RECIPE DETAIL PAGE

return GestureDetector(

" You now have a pretty list, but the app
isn’t interactive yet.What would make it

. : onTap: () {
great is to show the user details about a /] 9
recipe when they tap the card.You’ll start Navigator.push(
implementing this by making the card context,

react to a tap. MaterialPageRoute(
builder: (context) {

Making a tap response TODO: Replace return w
return Text('Detail page');
" Inside _MyHomePageState, locate //
TODO:Add GestureDetector and
replace the return statement beneath it

with the following:

child: buildRecipeCard(Recipe.samples[index]),

Ly

ADDING A RECIPE DETAIL PAGE

Last Slide Note introduces a few new widgets and concepts. Looking at the lines one at a time:
" Introduces a GestureDetector widget, which, as the name implies, detects gestures.
" Implements an onTap function, which is the callback called when the widget is tapped.

" The Navigator widget manages a stack of pages. Calling push() with a MaterialPageRoute will
push a new Material page onto the stack.

= Section lll,Navigating Between Screens”, will cover navigation in a lot more detail.
" builder creates the destination page widget.
= GestureDetector’s child widget defines the area where the gesture is active.

Hot reload the app and now each card is tappable. Tap a recipe and you’ll see a black Detail page:

37

CREATING AN ACTUALTARGET PAGE

import 'package:flutter/material.dart’;
import 'recipe.dart';

= The resulting page is obviously just a placeholder. class RecipeDetail extends StatefulWidget {
Not only is it ugly, but because it doesn’t have all finaloBes RERcc P,
the normal page trappings, the user is now stuck const RecipeDetail({
here, at least on iOS devices without a back Key? key,

button. But don’t worry, you can fix that! Lequitechil s =

super(key: key);

= |n lib, create a new Dart

file named reC|pe_detall.dart. _RecipeDetailState createState() {

. o return _RecipeDetailState();
" Now, add this code to the file, ignore the red v .

squiggles:

38

CREATING AN ACTUALTARGET PAGE

class _RecipeDetailState extends State<RecipeDetail> {
T : :

wWidget build(BuildContext context) {

This creates a new StatefulWidget which G S

appBar: AppBar(

has an initializer that takes the Recipe details itie: Text (uadget. recipe. tabel),
to display. This is L e
a StatefulWidget because you’ll add some chitd: cotumn(
interactive state to this page later. L
S e
= You need _RecipeDetailState to build the

widget, replace),

const SizedBox(

[/ TODO:Add _RecipeDetailState here with: N

Text (
widget. recipe. label,
style: const TextStyle(fontSize: 18),

39

CREATING AN ACTUALTARGET PAGE

The body of the widget is the same as you’ve already seen. Here are a few things to notice:

l.
2.
3.

Scaffold defines the page’s general structure.
In the body, there’s a SafeArea, a Column with a Container, a SizedBox and Text children.

SafeArea keeps the app from getting too close to the operating system interfaces, such as the notch or the interactive
area of most iPhones.

One new thing is the SizedBox around the Image, which defines resizable bounds for the image. Here, the height is
fixed at 300 but the width will adjust to fit the aspect ratio. The unit of measurement in Flutter is logical pixels.

There is a spacer SizedBox.

The Text for the label has a style that’s a little different than the main Card, to show you how much customizability is
available.

Next, go back to main.dart and add the following line to the top of the file:

import 'recipe_detail.dart’;

40

CREATING AN ACTUALTARGET PAGE

Thenfind // TODO: Replace return with return RecipeDetail() replace it
and the existing return statement with:

Spaghetti and Meatballs

return RecipeDetail(recipe: Recipe.samples[index]);

Perform a hot restart by choosing Run » Flutter Hot Restart from the
menu to set the app state back to the original list. Tapping a recipe card
will now show the RecipeDetail page.

Note: You need to use hot restart here because hot reload won’t update
the Ul after you update the state.

Because you now have a Scaffold with an appBar, Flutter will automatically
include a back button to return the user to the main list.

41

ADDING INGREDIENTS

= To complete the detail page, you’ll need to add additional

class Ingredient {
details to the Recipe class. Before you can do that, you have

to add an ingredient list to the recipes. double quantity;
: . String measure;
= Open recipe.dart and replace // TODO:Add Ingredient() s !
C+rinc ,
here with the following class: ->LIr1ng name,

= This is a simple data container for an ingredient. It has a
name, a unit of measure — like “cup” or “tablespoon” — Ingredient(

and a quantity. this.quantity,
= At the top of the Recipe class, replace this.measure,

/I TODO:Add servings and ingredients here with the following: this.name,

)

int servings;

List<Ingredient> ingredients;

ADDING INGREDIENTS

Recipe
this. label,

= This adds properties to specify this.imageurl,
that serving is how many people the);
specified quantity feeds and ingredients is
a simple list.

to:

= To use these new properties, go to
I I. t . -d th R ° I .label,
your samples list inside the Recipe class T
and change the Recipe constructor from: .servings,

.ingredients,

43

ADDING INGREDIENTS

You'll see red squiggles under part of your code because the values for servings
and ingredients have not been set. You'll fix that next.

Recipe(
this.label,
this.imageUr1,

this,servings,
this,ingredients,
)i

static List<Recipe> samples = [

Recipe(
'Spaghetti and Meatballs',
'assets/2126711929 ef763de2b3 w.jpg’,

oot

Recipe(
'Tomato Soup',
'assets/27729023535 a57606¢1be.jpg’,

Toinclude the new servings and ingredients properties, replace the existing
samples definition with the following:

static List<Recipe> samples = [

Recipe
'Spaghetti and Meatballs',
‘assets/2126711929_ef763de2b3_w.jpg’,
4,
[
Ingredient(1, 'box', 'Spaghetti',),
Ingredient(4, '', 'Frozen Meatballs',),
Ingredient(0.5, 'jar', 'sauce',),
i
i
Recipe(
'‘Tomato Soup',
‘assets/27729023535_a57606¢clbe. jpg’,

’

Ingredient(1, 'can', 'Tomato Soup',),

1, 44

))

ADDING INGREDIENTS

That fills out an ingredient list for these items. Please don’t cook these at home,
these are just examples. :]

Hot reload the app now. No changes will be visible, but it should build successfully.

Spaghetti and Meatballs

Spaghetti and Meatballs

45

SHOWING THE INGREDIENTS

A recipe doesn't do much good without the ingredients. Now, you're ready to add a This code adds:

Widget to dISp|ay them. 7. An Expanded widget, which expands to fill the space ina Column . This way,
the ingredient list will take up the space not filled by the other widgets.

In recipe_detail.dart, replace // T0ODO: Add Expanded with: 8. A QSEEEIE=), With one row per ingredient.

9. A Text that uses string interpolation to populate a string with runtime values.
You use the ${expression} syntax inside the string literal to denote these.

E dedi & Hot restart by choosing Run » Flutter Hot Restart and navigate to a detail page to
Xpande . .
f see the ingredients.

child: ListView.builder(
padding: const EdgeInsets.all(7.0),
itemCount: widget.recipe.ingredients.length,
itemBuilder: (BuildContext context, int index) {
final ingredient = widget.recipe.ingredients[index];

‘Spaghetti and Meatballs

return Text(
b1 redi 4 d i r 9) r lie Mmeasures
'${ingredient.quantity} ${ingredient.measure}
${ingredient.name}"');

46

Nice job, the screen now shows the recipe name and the ingredients. Next, you’ll add a feature to make it interactive.

ADDING A SERVING SLIDER

_ _ . _ . Now find // TODO: Add Slider() here replace it with the following:
You're currently showing the ingredients for a suggested serving. Wouldn't it be

great if you could change the desired quantity and have the amount of ingredients Slider(
update automatically? min: 1,
max: 10,

divisions: 10,

You'll do this by adding a Slider widget to allow the user to adjust the number of |

label: '${_sliderVal *x widget.recipe.servings} servings',

Sen”ngs' value: _sliderVal.toDouble(),
onChanged: (newValue) {

First, create an instance variable to store the slider value at the top of e
_RecipeDetailState by replacing // TODO: Add _sliderVal here :

_sliderVal = newValue.round();

activeColor: Colors.green,
inactiveColor: Colors.black,

int _sliderVal = 1;

47

ADDING A SERVING SLIDER

Slider presents around thumb that can be dragged along a track to change a
value. Here's how it works:

0. Youuse min , max and divisions to define how the slider moves. In this
case, it moves between the values of 1 and 10, with 10 discreet stops. That is, it
can only have values of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.

1. label updates asthe _sliderVal changes and displays a scaled number of
servings.

2. The slider works in double values, so this converts the int variable.

| 3. Conversely, when the slider changes, this uses round() to convert the
double slider value to an int , thensavesitin _sliderVval .

4. This sets the slider’s colors to something more “on brand”. The activeColor is
the section between the minimum value and the thumb, and the
inactiveColor represents the rest.

Hot reload the app, adjust the slider and see the value reflected in the indicator.

Spaghetti and Meatballs

1.0 box Spaghetti
4.0 Frozen Meatballs
0.5 jar sauce

48

UPDATING THE RECIPE

It's great to see the changed value reflected in the slider, but right now, it doesn’t

Hawaiian Pizza

affect the recipe itself.

To do that, you just have to change the Expanded ingredients itemBuilder
return statement to include the current value of _sliderVal as a factor for each
ingredient.

Replace // TODO: Add ingredient.quantity andthe whole return statement
beneath it with: Hawaiian Pizza

4.0 item pizza
4.0 cup pineapple
32.0 oz ham

${ingredient.quantity * _sliderVal} '

return Text(

'${ingredient.measure}

${ingredient.name}");

After a hot reload, you'll see that the recipe’s ingredients change when you move

the slider.
That's it! You've now built a cool, interactive Flutter app that works just the same on m
iOS and Android. © 4

In the next few sections, you'll continue to explore how widgets and state work.
You'll also learn about important functionality like networking.

SUMMARY

= Build a new app with flutter create.

= Use widgets to compose a screen with controls and layout.

= Use widget parameters for styling.

= A Material App widget specifies the app, and Scaffold specifies the high-level structure of a given screen.
= State allows for interactive widgets.

" When state changes, you usually need to hot restart the app instead of hot reload. In some case, you may also
need to rebuild and restart the app entirely.

WHERE TO GO FROM HERE?

= Congratulations, you’ve written your first app!

= To get a sense of all the widget options available, the documentation at https://api.flutter.dev/ should be your
starting point. In particular, the Material library https://api.flutter.dev/flutter/material/material-library.html and
Widgets library https://api.flutter.dev/flutter/widgets/widgets-library.html will cover most of what you can put
onscreen. Those pages list all the parameters, and often have in-browser interactive sections where you can
experiment.

= Chapter 3,“Basic Widgets”, is all about using widgets and
= Chapter 4,“Understanding Widgets”, goes into more detail on the theory behind widgets.

= Future chapters will go into more depth about other concepts briefly introduced in this chapter.

51

https://api.flutter.dev/
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html

