
OBJECT-ORIENTED 
PROGRAMMING I

IT 311

IT DEPT. 

TIU

3RD GRADE

Lect. Mohammad Salim 1

Flutter Apprentice 2021 Second Edition Book 



GET FREE ACCESS TO 
FLUTTER APPRENTICE

¡ FREE access to Flutter 
Apprentice from October 6, 
2021 through January 6, 2022.

2



COURSE CONTENT

¡ Flutter and OOP 

3



CONTENTS
¡ What You Need

¡ Introduction

¡ Section I: Build Your First Flutter App

4



What You 
Need

5



INTRODUCTION

¡ Flutter is an incredible user interface (UI) toolkit that lets 
you build apps for iOS and Android — and even the web 
and desktop platforms like macOS, Windows and Linux 
— all from a single codebase.

¡ Flutter has all the benefits of other cross-platform tools, 
especially because you’re targeting multiple platforms 
from one codebase. Furthermore, it improves upon most 
cross-platform tools thanks to a super-fast rendering 
engine that makes your Flutter apps perform as native 
apps.

¡ If you’re coming from a platform like iOS or Android, 
you’ll find the Flutter development experience refreshing! 
Thanks to a feature called “hot reload”, you rarely need 
to rebuild your apps as you develop them. A running app 
in a simulator or emulator will refresh with code changes 
automatically as you save your source files!

6



SECTION I: 
BUILD YOUR 
FIRST FLUTTER 
APP

7

The chapters in this section introduce you to Flutter, 
get you up and running with a Flutter development 
environment and walk you through building your 
first Flutter app.

You’ll learn about where Flutter came from and why 
it exists, understand the structure of Flutter projects 
and see how to create the UI of a Flutter app.

You’ll also get your first introduction to the key 
component found in Flutter user interfaces: widgets!



WHAT IS 
FLUTTER?

¡ In the simplest terms, Flutter is 
a software development toolkit 
from Google for building cross-
platform apps. Flutter apps 
consist of a series of packages, 
plugins and widgets — but 
that’s not all. 

¡ Flutter is a process, a 
philosophy and a community as 
well.

8

One thing Flutter is not is a language. Flutter uses Dart as its programming 
language. If you know Kotlin, Swift, Java or Typescript, you’ll find Dart 
familiar, since it’s an object-oriented C-style language.

For years, programmers have been promised the ability to write once and 
run anywhere; Flutter may well be the best attempt yet at achieving that 
goal.



FLUTTER SHOWCASE

Popular apps from some of the world’s 
biggest companies are built with Flutter. 
These include:

¡ Very Good Ventures

¡ Tencent

¡ Realtor.com

¡ Google Assistant

¡ New York Times

¡ Policygenius

¡ Google Stadia

¡ Take a look at some recent examples:
9



WHEN NOT TO USE FLUTTER

10

¡ Games and audio

While you can create simple 2D games using Flutter, for complex 2D and 3D games, you’d probably prefer to base your app on a cross-
platform game engine technology like Unity or Unreal. They have more domain-specific features like physics, sprite and asset management, 
game state management, multiplayer support and so on.Flutter doesn’t have a sophisticated audio engine yet, so audio editing or mixing apps 
are at a disadvantage over those that are purpose-built for a specific platform.

¡ Apps with specific native SDK needs

Flutter supports many, but not all, native features. Flutter might not be a practical choice if you are only interested in a single platform app
and you have deep knowledge of that platform’s tools and languages. For example, if you’re working with a highly-customized iOS app based on 
CloudKit that uses all the native hardware, MLKit, StoreKit, extensions and so on, maintaining and taking advantage of those features will be easier 
using SwiftUI. Of course, the same goes for a heavily-biased Android app using Jetpack Compose.

¡ Certain platforms

Flutter doesn’t run everywhere. It doesn’t support Apple Bitcode yet, which means that it doesn’t support watchOS, tvOS or certain iOS 
app extensions. Its support for the web is still in its early days, which means that Flutter has many features and performance improvements 
ahead of it — but they’re coming.



FLUTTER’S HISTORY

¡ Flutter comes from a tradition of trying to improve web performance. It’s built on top of several open-source 
technologies developed at Google to bring native performance and modern programming to the web through 
Chrome.

¡ Flutter is an open source software development kit (SDK) created by Google in 2015 with the name “Sky”. Its 
alpha version was on May 2017 and it came to light on December 11, 2019 with its release version Flutter 1.12.

¡ The Flutter team chose the Dart language, which Google also developed, for its productivity enhancements. Its 
object-oriented type system and support for reactive and asynchronous programming give it clear advantages 
over Javascript. Most importantly, Google built the Dart VM into the Chrome browser, allowing web apps 
written in Dart to run at native speeds.

¡ Another piece of the puzzle is the inclusion of Skia as the graphics rendering layer. Skia is another Google-based 
open source project that powers the graphics on Android, Chrome browsers, Chrome OS and Firefox. It runs 
directly on the GPU using Vulcan on Android and Metal on iOS, making the graphics layer fast on mobile 
devices. Its API allows Flutter widgets to render quickly and consistently, regardless of the host platform. 11



THE FLUTTER ARCHITECTURE

¡ Flutter has a modular, 4 layered architecture.

¡ This allows you to write your application logic 
once and have consistent behavior across 
platforms, even though the underlying engine 
code differs depending on the platform. 

¡ The layered architecture also exposes different 
points for customization and overriding, as 
necessary.

12



THE FLUTTER ARCHITECTURE CONSISTS OF FOUR MAIN 
LAYERS:

13

1. The Framework layer is written in Dart and contains the high-level libraries that you’ll use directly to build 
apps. This includes the UI theme, widgets, layout and animations, gestures and foundational building blocks. 

2. Alongside the main Flutter framework are plugins: high-level features like JSON serialization, geolocation, 
camera access, in-app payments and so on. This plugin-based architecture lets you include only the features 
your app needs.

3. The Engine layer contains the core C++ libraries that make up the primitives that support Flutter 
apps. The engine implements the low-level primitives of the Flutter API, such as I/O, graphics, text layout, 
accessibility, the plugin architecture and the Dart runtime. The engine is also responsible for rasterizing 
Flutter scenes for fast rendering onscreen.

4. The Embedder is different for each target platform and handles packaging the code as a stand-alone app or 
embedded module.



MAKEUP OF 
THE 
FRAMEWORK 
LAYER:

The Flutter framework layer consists of 4 sublayers:

¡At the top is the UI theme, which uses either the Material 
(Android) or Cupertino (iOS) design language. This affects how 
the controls appear, allowing you to make your app look just 
like a native one.

¡The widget layer is where you’ll spend the bulk of your UI 
programming time. This is where you compose design and 
interactive elements to make up the app.

¡Beneath the widgets layer is the rendering layer, which is 
the abstraction for building a layout.

¡The foundation layer provides basic building blocks, like 
animations and gestures, that build up the higher layers.

14



GETTING THE FLUTTER SDK

15

• The first step is to download the SDK. You can follow the steps on flutter.dev or jump right in 
here: https://flutter.dev/docs/development/tools/sdk/releases

• One thing to note is that Flutter organizes its SDK around channels, which are different development branches. New 
features or platform support will be available first on a beta channel for developers to try out. This is a great way 
to get early access to certain features like new platforms or native SDK support.

• For this book and development in general, use the stable channel. That branch has been vetted and tested and has 
little chance of breaking.

https://flutter.dev/docs/development/tools/sdk/releases


GETTING 
EVERYTHING ELSE

¡ in addition to the Flutter SDKs, you’ll 
need Java, the Android SDK, the iOS 
SDKs and an IDE with Flutter 
extensions. To make this process 
easier, Flutter includes the Flutter 
Doctor, which guides you 
through installing all the missing 
tools. 

¡ Run : flutter doctor 

16



KEY POINTS

¡ Flutter is a software development toolkit from Google for building cross-platform apps using 
the Dart programming language.

¡ With Flutter, you can build a high-quality app that’s performant and looks great, very quickly.

¡ Flutter is for both new and experienced developers who want to start a mobile app with minimal 
overhead.

¡ Install the Flutter SDK and associated tools using instructions found at https://flutter.dev.

¡ The flutter doctor command helps you install and update your Flutter tools.

¡ This book will mostly use Android Studio as the IDE for Flutter development.

17

https://flutter.dev/


SETTING UP AN 
IDE

The Flutter team officially 
supports three editors:

Android Studio, Visual Studio 
Code and Emacs. 

However, there are many other 
editors that support the Dart 
language, work with the Flutter 
command line or have third-party 
Flutter plugins.

18



TRYING IT OUT

¡ Downloading all the components is the hardest part of getting a Flutter app up and running. Next, you’ll try actually 
building an app.

¡ There are two recommended ways to create a new project: with the IDE or through the flutter command-
line tool in a terminal. In this chapter, you’ll use the IDE shortcut and in the next chapter, you’ll use the command 
line.

19



THE TEMPLATE PROJECT

20All the code for this app is in lib\main.dart in the default project. 
Feel free to take a look at it. Throughout the rest of this book, you’ll dive into Flutter apps, widgets, state, 
themes and many other concepts that will help you build beautiful apps.

Bonus: Try 
hot reload



SECTION1: 
CHAPTER 2
HELLO FLUTTER

¡ Your first task is to build a basic app from scratch, giving you the 
chance to get the hang of the tools and the basic Flutter app 
structure. You’ll customize the app and find out how to use a few 
popular widgets like ListView and Slider to update its UI in 
response to changes.

¡ Creating a simple app will let you see just how quick and easy it is 
to build cross-platform apps with Flutter — and it will give you a 
quick win.

¡ By the end of the chapter, you’ll have built a lightweight recipe 
app. Since you’re just starting to learn Flutter, your app will offer 
a hard-coded list of recipes and let you use a Slider to 
recalculate quantities based on the number of servings.

¡ Here’s what your finished app will look like:

21



LIGHTWEIGHT RECIPE 
APP

22



CREATING A NEW 
APP

23

Creating a new project is straightforward, by click on new Flutter Project then name it as recipes

Build and run and you’ll see the same demo app as in Chapter 1, “Getting Started”.



MAKING THE 
APP YOURS

24



STYLING YOUR APP

This code changes the appearance of the app:

¡A widget’s build() method is the entry point for composing together 
other widgets to make a new widget.

¡A theme determines visual aspects like color. The 
default ThemeData will show the standard Material defaults.

¡MaterialApp uses Material Design and is the widget that will be 
included in RecipeApp.

¡The title of the app is a description that the device uses to identify 
the app. The UI won’t display this.

¡By copying the theme and replacing the color scheme with an 
updated copy lets you change the app’s colors. Here, the primary 
color is Colors.grey and the secondary color is Colors.black.

¡This still uses the same MyHomePage widget as before, but now, 
you’ve updated the title and displayed it on the device.

25



CLEARING THE 
APP

A quick look at what this shows:

¡ A Scaffold provides the high-level 
structure for a screen. In this case, you’re 
using two properties.

¡ AppBar gets a title property by using 
a Text widget that has a title passed in 
from home: MyHomePage(title: 'Recipe 
Calculator') in the previous step.

¡ body has SafeArea, which keeps the app 
from getting too close to the operating 
system interfaces such as the notch or 
interactive areas like the Home Indicator at 
the bottom of some iOS screens.

¡ SafeArea has a child widget, which is an 
empty Container widget.

¡ One hot reload later, and you’re left with a 
clean app:

26



BUILDING A RECIPE LIST

¡ An empty recipe app isn’t very useful. The app should have a nice 
list of recipes for the user to scroll through. Before you can display 
these, however, you need the data to fill out the UI.

Adding a data model

¡ You’ll use Recipe as the main data structure for recipes in this app.

¡ Create a new Dart file in the lib folder, named recipe.dart.

¡ Add the following class to the file:

27



BUILDING A RECIPE LIST

This is the start of a Recipe model with a label and an 
image.

¡ You’ll also need to supply some data for the app to 
display. In a full-featured app, you’d load this data 
either from a local database or a JSON-based API. 
For the sake of simplicity as you get started with Flutter, 
however, you’ll use hard-coded data in this chapter.

¡ Add the following method to Recipe by replacing

// TODO: Add List<Recipe> here with :

¡ This is a hard-coded list of recipes. You’ll add more detail 
later, but right now, it’s just a list of names and 
images.

28



BUILDING A 
RECIPE LIST

¡ You’ve created a List with images, 
but you don’t have any images in 
your project yet. To add them, go 
to Finder and copy 
the assets folder from the top 
level of 02-hello-flutter in the 
book materials of your project’s 
folder structure. When you’re 
done, it should live at the same 
level as the lib folder. That way, the 
app will be able to find the images 
when you run it.

¡ You’ll notice that by copy-pasting in 
Finder, the folder and images 
automatically display in the Android 
Studio project list.

29



DISPLAYING THE LIST

¡ With the data ready to go, your next step is to create a place 
for the data to go to.

¡ Back in main.dart, you need to import the data file so the 
code in main.dart can find it. Add the following to the top 
of the file, under the other import lines:

import 'recipe.dart’;
¡ Next, in _MyHomePageState SafeArea’s child, find and 

replace // TODO: Replace child: Container() and the two 
lines beneath it with:

This code does the following:

¡ Builds a list using ListView.

¡ itemCount determines the number of rows the list has. In 
this case, length is the number of objects in 
the Recipe.samples list.

¡ itemBuilder builds the widget tree for each row.

¡ A Text widget displays the name of the recipe.
30



DISPLAYING THE LIST

Perform a hot reload now and 
you’ll see the following list:

31



PUTTING THE LIST 
INTO A CARD

¡It’s great that you’re displaying real data now, but this is barely an app. To spice 
things up a notch, you need to add images to go along with the titles.

¡To do this, you’ll use a Card. In Material Design, Cards define an area of 
the UI where you’ve laid out related information about a specific entity. 
For example, a Card in a music app might have labels for an album’s title, artist and 
release date along with an image for the album cover and maybe a control for rating it 
with stars.

¡Your recipe Card will show the recipe’s label and image. Its widget tree 
will have the following structure:

32



LOOKING AT THE WIDGET TREE

33

Now’s a good time to think about the widget tree of the overall app. 
Do you remember that it started with RecipeApp from main()?

To see your App 
Widget Tree, in 
Android Studio, open 
the Flutter 
Inspector from 
the View ▸ Tool 
Windows ▸ Flutter 
Inspector menu while 
your app is running. 
This opens a powerful 
UI debugging tool.



MAKING IT LOOK NICE

¡ The default cards look okay, but they’re not as 
nice as they could be. 

¡ With a few added extras, you can spiffy the 
card up. 

¡ These include wrapping widgets in layout 
widgets like Padding or specifying additional 
styling parameters.

¡ Get started by 
replacing buildRecipeCard() with:

34



MAKING IT LOOK NICE

This last slide has a few updates to look at:

¡ A card’s elevation determines how high off the screen the card is, affecting its 
shadow.

¡ shape handles the shape of the card. This code defines a rounded rectangle with 
a 10.0 corner radius.

¡ Padding insets its child’s contents by the specified padding value.

¡ The padding child is still the same vertical Column with the image and text.

¡ Between the image and text is a SizedBox. This is a blank view with a fixed size.

¡ You can customize Text widgets with a style object. In this case, you’ve specified 
a Palatino font with a size of 20.0 and a bold weight of w700.

Hot reload and you’ll see a more styled list. 35



ADDING A RECIPE DETAIL PAGE

¡ You now have a pretty list, but the app 
isn’t interactive yet. What would make it 
great is to show the user details about a 
recipe when they tap the card. You’ll start 
implementing this by making the card 
react to a tap.

Making a tap response

¡ Inside _MyHomePageState, locate // 
TODO: Add GestureDetector and 
replace the return statement beneath it 
with the following:

36



ADDING A RECIPE DETAIL PAGE

Last Slide Note introduces a few new widgets and concepts. Looking at the lines one at a time:

¡ Introduces a GestureDetector widget, which, as the name implies, detects gestures.

¡ Implements an onTap function, which is the callback called when the widget is tapped.

¡ The Navigator widget manages a stack of pages. Calling push() with a MaterialPageRoute will 
push a new Material page onto the stack. 

¡ Section III, “Navigating Between Screens”, will cover navigation in a lot more detail.

¡ builder creates the destination page widget.

¡ GestureDetector’s child widget defines the area where the gesture is active.

Hot reload the app and now each card is tappable. Tap a recipe and you’ll see a black Detail page:

37



CREATING AN ACTUAL TARGET PAGE

¡ The resulting page is obviously just a placeholder. 
Not only is it ugly, but because it doesn’t have all 
the normal page trappings, the user is now stuck 
here, at least on iOS devices without a back 
button. But don’t worry, you can fix that!

¡ In lib, create a new Dart 
file named recipe_detail.dart.

¡ Now, add this code to the file, ignore the red 
squiggles:

38



CREATING AN ACTUAL TARGET PAGE

¡ This creates a new StatefulWidget which 
has an initializer that takes the Recipe details 
to display. This is 
a StatefulWidget because you’ll add some 
interactive state to this page later.

¡ You need _RecipeDetailState to build the 
widget, replace

// TODO: Add _RecipeDetailState here with:

39



CREATING AN ACTUAL TARGET PAGE

The body of the widget is the same as you’ve already seen. Here are a few things to notice:

1. Scaffold defines the page’s general structure.

2. In the body, there’s a SafeArea, a Column with a Container, a SizedBox and Text children.

3. SafeArea keeps the app from getting too close to the operating system interfaces, such as the notch or the interactive 
area of most iPhones.

4. One new thing is the SizedBox around the Image, which defines resizable bounds for the image. Here, the height is 
fixed at 300 but the width will adjust to fit the aspect ratio. The unit of measurement in Flutter is logical pixels.

5. There is a spacer SizedBox.

6. The Text for the label has a style that’s a little different than the main Card, to show you how much customizability is 
available.

Next, go back to main.dart and add the following line to the top of the file:

import 'recipe_detail.dart';
40



CREATING AN ACTUAL TARGET PAGE

41

Perform a hot restart by choosing Run ▸ Flutter Hot Restart from the 
menu to set the app state back to the original list. Tapping a recipe card 
will now show the RecipeDetail page.
Note: You need to use hot restart here because hot reload won’t update 
the UI after you update the state.

Because you now have a Scaffold with an appBar, Flutter will automatically 
include a back button to return the user to the main list.



ADDING INGREDIENTS

¡ To complete the detail page, you’ll need to add additional 
details to the Recipe class. Before you can do that, you have 
to add an ingredient list to the recipes.

¡ Open recipe.dart and replace // TODO: Add Ingredient() 
here with the following class:

¡ This is a simple data container for an ingredient. It has a 
name, a unit of measure — like “cup” or “tablespoon” —
and a quantity.

¡ At the top of the Recipe class, replace

// TODO: Add servings and ingredients here with the following:

42



ADDING INGREDIENTS

¡ This adds properties to specify 
that serving is how many people the 
specified quantity feeds and ingredients is 
a simple list.

¡ To use these new properties, go to 
your samples list inside the Recipe class 
and change the Recipe constructor from:

43



ADDING INGREDIENTS

44



ADDING INGREDIENTS

45



SHOWING THE INGREDIENTS

46

Nice job, the screen now shows the recipe name and the ingredients. Next, you’ll add a feature to make it interactive.



ADDING A SERVING SLIDER

47



ADDING A SERVING SLIDER

48



UPDATING THE RECIPE

49



SUMMARY

¡ Build a new app with flutter create.

¡ Use widgets to compose a screen with controls and layout.

¡ Use widget parameters for styling.

¡ A MaterialApp widget specifies the app, and Scaffold specifies the high-level structure of a given screen.

¡ State allows for interactive widgets.

¡ When state changes, you usually need to hot restart the app instead of hot reload. In some case, you may also 
need to rebuild and restart the app entirely.

50



WHERE TO GO FROM HERE?

¡ Congratulations, you’ve written your first app!

¡ To get a sense of all the widget options available, the documentation at https://api.flutter.dev/ should be your 
starting point. In particular, the Material library https://api.flutter.dev/flutter/material/material-library.html and 
Widgets library https://api.flutter.dev/flutter/widgets/widgets-library.html will cover most of what you can put 
onscreen. Those pages list all the parameters, and often have in-browser interactive sections where you can 
experiment.

¡ Chapter 3, “Basic Widgets”, is all about using widgets and 

¡ Chapter 4, “Understanding Widgets”, goes into more detail on the theory behind widgets.

¡ Future chapters will go into more depth about other concepts briefly introduced in this chapter.

51

https://api.flutter.dev/
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html

