
Chapter 3

Internet Applications
&

Network Programming

1

Topics Covered

• 3.1 Introduction

• 3.2 Two Basic Internet Communication Paradigms

• 3.3 Connection-Oriented Communication

• 3.4 The Client-Server Model of Interaction

• 3.5 Characteristics of Clients and Servers

• 3.6 Server Programs and Server-Class Computers

• 3.7 Requests, Responses, and Direction of Data Flow

• 3.8 Multiple Clients and Multiple Servers

• 3.9 Server Identification and Demultiplexing

• 3.10 Concurrent Servers

• 3.11 Circular Dependencies Among Servers

• 3.12 Peer-to-Peer Interactions

• 3.13 Network Programming and the Socket API

• 3.14 Sockets, Descriptors, and Network I/O

• 3.15 Parameters and the Socket API

• 3.16 Socket Calls in a Client and Server

2

3

3.1 Introduction

• The Internet offers users a rich diversity of services

• Services are not part of the underlying communication

infrastructure

• Internet provides a general purpose mechanism on which all

services are built

• It is possible to create Internet applications without knowing

how networks operate

• network-core devices do not run user applications

– Such as socket Application Programming Interface (socket API)

• However, understanding network protocols and

technologies allows them to write efficient and reliable code

4

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

5

3.2 Two Basic Internet Communication
Paradigms

• The Internet supports two basic communication paradigms:
– 3.2.1 Stream Transport in the Internet

– 3.2.2 Message Transport in the Internet

• Figure 3.1 summarizes the differences

3.2.1 Stream Transport in the Internet
• Stream denotes flow of a sequence of bytes

• The network accepts an input stream from either
application, and delivers the data to another application

• The stream mechanism transfers a sequence of bytes
without attaching meaning to the bytes and without inserting
boundaries

• A sending application can choose to generate one byte at a
time, or can generate blocks of bytes

• The network chooses the number of bytes to deliver at any
time

6

3.2.2 Message Transport in the Internet
• In a message paradigm, the network accepts and delivers

message blocks

• The message paradigm allows delivery in different forms:
– Unicast

• a message can be sent from an application on one computer directly to an
application on another, 1-to-1

– Multicast
• a message can be multicast to some of the computers on a network, 1-to-

many

– Broadcast
• a message can be broadcast to all computers on a given network, 1-to-all

7

3.2.2 Message Transport in the Internet

8

Message service does not
make any guarantees. So
messages may be

Lost (i.e., never delivered)

Duplicated (more than one
copy arrives)

Delivered out-of-order

A programmer who uses the message paradigm must
insure that the application operates correctly even if packets
are lost or reordered

Most applications require delivery guarantees

Programmers tend to use the
stream service except in
special situations

such as video, where multicast is
needed and the application provides
support to handle packet reordering
and loss

connection oriented and connectionless

9

11

3.3 Connection-Oriented Communication

• The Internet stream service is connection-oriented

• It operates analogous to a telephone call:
– two applications must request that a connection be created

– applications can send /receive data in either direction

– when they finish communicating, the applications request that the
connection be terminated

• Algorithm 3.1 summarizes the interaction

12

3.4 The Client-Server Model of Interaction

• How can a pair of applications that run on two independent

computers coordinate to guarantee that they request a

connection at the same time?

• The answer lies in a form of interaction known as the client-

server model

– A server starts first and awaits contact

– A client starts second and initiates the connection

• Figure 3.2 summarizes the interaction

• Subsequent sections describe how specific services use the

client-server model

• Application programs known as clients and servers handle

all services in the Internet

13

3.4 The Client-Server Model of Interaction

14

client/server

15

3.5 Characteristics of Clients and

Servers
• Most instances of client-server interaction have the same

general characteristics

• A client software:

– Is an arbitrary application program that becomes a client temporarily

when remote access is needed, but also performs other computation

– Is invoked directly by a user, and executes only for one session

– Runs locally on a user's personal computer

– Actively initiates contact with a server

– Can access multiple services as needed, but usually contacts one

remote server at a time

– Does not require especially powerful computer hardware

16

3.5 Characteristics of Clients and

Servers
• A server software:

– Is a special-purpose, privileged program

– Is dedicated to providing one service that can handle multiple remote

clients at the same time

– Is invoked automatically when a system boots, and continues to

execute through many sessions

– Runs on a large, powerful computer

– Waits passively for contact from arbitrary remote clients

– Accepts contact from arbitrary clients, but offers a single service

– Requires powerful hardware and a sophisticated operating system

(OS)

17

3.6 Server Programs and Server-Class
Computers

• Term server refers to a program that waits passively for

communication

– Not to the computer on which it executes

• However, when a computer is dedicated to running one or

more server programs,

– the computer itself is sometimes called a server

• Hardware vendors contribute to the confusion

– because they classify computers that have fast CPUs, large

memories, and powerful operating systems as server machines

• Figure 3.3 illustrates the definitions

18

3.6 Server Programs and Server-Class
Computers

19

3.7 Requests, Responses, and Direction

of Data Flow
• Which side initiates contact? Client and server?

• Once contact is established, two-way communication is

possible

• In some cases, a client sends a series of requests and the

server issues a series of responses

20

3.8 Multiple Clients and Multiple Servers

• Allowing a given computer to operate multiple servers is

useful because

– the hardware can be shared

– a single computer has lower system administration overhead than

multiple computer systems

– experience has shown that the demand for a server is often sporadic

• a server can remain idle for long periods of time

• an idle server does not use the CPU while waiting for a request to arrive

• If demand for services is low, consolidating servers on a

single computer can dramatically reduce cost

– without significantly reducing performance

21

3.8 Multiple Clients and Multiple Servers

• A computer can run:

– A single client

– A single server

– Multiple copies of a client that contact a given server

– Multiple clients that each contact a particular server

– Multiple servers, each for a particular service

• Allowing a computer to operate multiple clients is useful

– because services can be accessed simultaneously

22

3.9 Server Identification and Demultiplexing

• How does a client identify a server?

• The Internet protocols divide identification into two pieces:

– An identifier for the computer on which a server runs

– An identifier for a service on the computer

• Identifying a computer?

– Each computer in the Internet is assigned a unique 32-bit identifier

known as an Internet Protocol address (IP address)

– To make server identification easy for humans, each computer is

also assigned a name, and the Domain Name System (DNS)

• Identifying a service?

– Each service available in the Internet is assigned a unique 16-bit

identifier known as a protocol port number (or port number)

– Figure 3.4 summarizes the basic steps in identifying an application

23

24

25

26

27

28

3.9 Server Identification and Demultiplexing

29

30

31

32

33

34

35

3.10 Concurrent Servers

• Most servers are concurrent

• Concurrent execution depends on the OS being used

• Concurrent server code is divided into two pieces

– a main program (thread)

– a handler

• The main thread accepts contact from a client and creates a

thread of control for the client

• Each thread of control interacts with a single client and runs

the handler code

• After handling one client the thread terminates, but the main

thread keeps the server alive

– the main thread waits for another request to arrive

36

3.11 Circular Dependencies Among Servers

• A server for one service can act as a client for another

– For example, before it can fill in a web page, a web server may need to

become a client of a database

– A server may also become the client of a security service (e.g., to verify that

a client is allowed to access the service).

• Programmers must be careful to avoid circular dependencies among

servers

– since chain of requests can continue indefinitely until all three servers

exhaust resources

Dependency

37

38

3.12 Peer-to-Peer Interactions

• If a single server provides a given service

– the network connection between the server and the Internet can

become a bottleneck

• Figure 3.5 illustrates the architecture

39

40

41

3.12 Peer-to-Peer Interactions

• Can Internet services be provided without creating a central

bottleneck?

– One way to avoid a bottleneck forms the basis of file sharing known

as a peer-to-peer (P2P) architecture

• The scheme avoids placing data on a central server

– data is distributed equally among a set of N servers

• Figure 3.6 illustrates the architecture

42

3.12 Peer-to-Peer Interactions

43

3.13 Network Programming

and the Socket API
• Applications uses a communication interface is known as an

Application Program Interface (API)

• Details of an API depend on the OS

• One particular API has emerged as the de facto standard for

software that communicates over the Internet

– known as the socket API, and commonly abbreviated sockets

• The socket API is available for many OS

– such as Microsoft's Windows systems

– as well as various UNIX/Linux systems

44

3.14 Sockets, Descriptors, and Network I/O

• The socket API was originally developed as part of the UNIX

OS, so the socket API is integrated with I/O

• When an application creates a socket to use for Internet ,

the OS returns a small integer descriptor identifying a socket

• The application then passes the descriptor as an argument

– when it calls functions to perform an operation on the socket (e.g., to

transfer data across the network or to receive data)

• In many OS, socket descriptors are integrated with other I/O

descriptors

45

3.15 Parameters and the Socket API

• Socket programming differs from conventional I/O

• An application must specify many details, such as

– the address of a remote computer

– the protocol port number

– and whether the application will act as a client or as a server

• To avoid having a single socket function with many parameters,

designers of the socket API chose to define many functions

– an application creates a socket, and then invokes functions for details

• The advantage of the socket approach is that most functions have three

or fewer parameters

• The disadvantage is that a programmer must remember to call multiple

functions when using sockets

• Figure 3.7 summarizes key functions in the socket API

46

3.16 Socket

Calls in a

Client and

Server

• Figure 3.8 illustrates the sequence of socket calls made

by a typical client and server that use a stream

connection

– The client sends data first and the server waits to

receive data

• In practice, some applications arrange for the server to

send first (i.e., send and recv are called in the reverse

order)

47

48

