~ . W
4 \‘\ | NS % \

"R TS T T ISC

T3 | TEEEEE M |

Chapter 3

Internet Applications
&
Network Programming

B 5



3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

Topics Covered

Introduction

Two Basic Internet Communication Paradigms
Connection-Oriented Communication

The Client-Server Model of Interaction
Characteristics of Clients and Servers

Server Programs and Server-Class Computers
Requests, Responses, and Direction of Data Flow
Multiple Clients and Multiple Servers

Server Identification and Demultiplexing

Concurrent Servers

Circular Dependencies Among Servers
Peer-to-Peer Interactions

Network Programming and the Socket API
Sockets, Descriptors, and Network 1/O
Parameters and the Socket API

Socket Calls in a Client and Server



3.1 Introduction

The Internet offers users a rich diversity of services

Services are not part of the underlying communication
Infrastructure

Internet provides a general purpose mechanism on which all
services are built

It is possible to create Internet applications without knowing
how networks operate

network-core devices do not run user applications

— Such as socket Application Programming Interface (socket API)

However, understanding network protocols and
technologies allows them to write efficient and reliable code



application
transport
network

f<= i 557

CE P2

it

application
transport




3.2 Two Basic Internet Communication
Paradigms

« The Internet supports two basic communication paradigms:
— 3.2.1 Stream Transport in the Internet
— 3.2.2 Message Transport in the Internet

* Figure 3.1 summarizes the differences

Stream Paradigm Message Paradigm
| Connection-oriented | Connectionless
| 1-to-1 communication | Many-to-many communication

| Sequence of individual bytes | Sequence of individual messages

| Arbitrary length transfer | Each message limited to 64 Kbytes |
| Used by most applications | Used for multimedia applications
| Built on TCP protocol | Built on UDP protocol i

Figure 3.1 The two paradigms that Internet applications use.



3.2.1 Stream Transport in the Internet

Stream denotes flow of a sequence of bytes

The network accepts an input stream from either
application, and delivers the data to another application

The stream mechanism transfers a sequence of bytes
without attaching meaning to the bytes and without inserting
boundaries

A sending application can choose to generate one byte at a
time, or can generate blocks of bytes

The network chooses the number of bytes to deliver at any
time



3.2.2 Message Transport in the Internet

* In a message paradigm, the network accepts and delivers
message blocks

 The message paradigm allows delivery in different forms:

— Unicast

* a message can be sent from an application on one computer directly to an
application on another, 1-to-1

— Multicast

« a message can be multicast to some of the computers on a network, 1-to-
many

— Broadcast
* a message can be broadcast to all computers on a given network, 1-to-all



3.2.2 Message Transport in the Internet

_ Lost (i.e., never delivered)
Message service does not

make any guarantees. So
messages may be

Duplicated (more than one
copy arrives)

Delivered out-of-order

A programmer who uses the message paradigm must
Insure that the application operates correctly even if packets
are lost or reordered

Most applications require delivery guarantees

Programmers tend to use the such as video, where multicast is

- . needed and the application provides
stream service eXCEpt In support to handle packet reordering

special situations and loss



connection oriented and connectionless

Criteria Connection-Oriented Connection-Less

Connection Prior connection needs to be | Noprior connection is established.

established.

Resource Allocation | Resources need to be allocated. . : : : .
No prior allecation of resource is
required.

Reliability It ensures reliable transfer of data. L e s s

’ Reliability is not guaranteed as itis a
best effort service.

Congestion Congestion is not at all possible.

Congestion can occur likely.

Transfer mode

It can be implemented either using
Circuit Switching or VCs,

It is implemented using Packet

Switching.

Retransmission It is possible to retransmit the lost . .
o It is not possible.
data bits.
Suitabili It is suitable for long and stead . . . .
ty . B Y| 1t is suitable for bu rsty transmissions.
communication.
Signaling Connection is established through

process of signaling.

There is no concept of signaling.

Packet travel

In this packets travel to their
destination nede in a sequential
manner.

In this packets reach the destination

in a random manner.

Delay

There is more delay in transfer of
information. but once connection

. T o7 7 - . . =

There is no delay due absence of

FERRSRER L. yUnp— o (| U, (S —— E— i —_—




WEe'll learn the basic vocabulary
for talking about how networks
perform

‘N

10



3.3 Connection-Oriented Communication

* The Internet stream service Is connection-oriented

It operates analogous to a telephone call:
— two applications must request that a connection be created
— applications can send /receive data in either direction
— when they finish communicating, the applications request that the
connection be terminated

« Algorithm 3.1 summarizes the interaction

Algorithm 3.1
Furpose:
Interaction over a connection-oriented mechanism
Method:

A pair of applications requests a connection
The pair uses the connection to exchange data
The pair requests that the connection be terminated

Algorithm 3.1 Communication over a connection-oriented mechanism. 1



3.4 The Client-Server Model of Interaction

« How can a pair of applications that run on two independent
computers coordinate to guarantee that they request a
connection at the same time?

 The answer lies in a form of interaction known as the client-
server model
— A server starts first and awaits contact
— A client starts second and initiates the connection

« Figure 3.2 summarizes the interaction

« Subsequent sections describe how specific services use the
client-server model

« Application programs known as clients and servers handle
all services in the Internet

12



3.4 The Client-Server Model of Interaction

Server Application Client Application

Starts first Starts second

Does not need to know which client Must know which server to

will contact it . contact
Waits passively and arbitrarily long Initiates a contact whenever
| for contact from a client | communication is needed

' Communicates with a client by both | Communicates with a server by |

sending and receiving data sending and receiving data
Stays running after servicing one May terminate after interacting |
i client, and waits for another | with a server |

Figure 3.2 A summary of the client-server model.

13



=\

-
. N
i

client/server

Data Request

. /
“l=Cl
ooo

®

Database

S

U

N

Server

Client

1
o o

Data Response

Crrre —
1

—

o o -

=
Server

14



3.5 Characteristics of Clients and
Servers

« Most instances of client-server interaction have the same
general characteristics

* A client software:

Is an arbitrary application program that becomes a client temporarily
when remote access is needed, but also performs other computation

Is invoked directly by a user, and executes only for one session
Runs locally on a user's personal computer
Actively initiates contact with a server

Can access multiple services as needed, but usually contacts one
remote server at a time

Does not require especially powerful computer hardware

15



3.5 Characteristics of Clients and
Servers

A server software:

|s a special-purpose, privileged program
|s dedicated to providing one service that can handle multiple remote
clients at the same time

Is invoked automatically when a system boots, and continues to
execute through many sessions

Runs on a large, powerful computer
Waits passively for contact from arbitrary remote clients
Accepts contact from arbitrary clients, but offers a single service

Requires powerful hardware and a sophisticated operating system
(0S)

16



3.6 Server Programs and Server-Class
Computers

Term server refers to a program that waits passively for
communication

— Not to the computer on which it executes

However, when a computer is dedicated to running one or
more server programs,

— the computer itself is sometimes called a server

Hardware vendors contribute to the confusion

— because they classify computers that have fast CPUs, large
memories, and powerful operating systems as server machines

Figure 3.3 illustrates the definitions

17



3.6 Server Programs and Server-Class
Computers

client runs SEFVEr runs in
in a standard a server-class
compurer compurer
] conmection Internet
l . r"'.. == R M".
ral
h'“'-._ i R
'-.__

Figure 3.3 Ilustration of a client and server.

18



3.7 Requests,
of Data Flow

Responses, and Direction

 Which side Initiates contact? Client and server?
* Once contact is established, two-way communication is

possible

In some cases, a client sends a series of requests and the

server issues a series of responses

Request
| >
<
"\-E[: ! Response

(Client

Request

.

S
3

Server

Response

19



3.8 Multiple Clients and Multiple Servers

« Allowing a given computer to operate multiple servers is
useful because

— the hardware can be shared

— a single computer has lower system administration overhead than
multiple computer systems

— experience has shown that the demand for a server is often sporadic
« aserver can remain idle for long periods of time

« an idle server does not use the CPU while waiting for a request to arrive

* If demand for services is low, consolidating servers on a
single computer can dramatically reduce cost
— without significantly reducing performance

20



3.8 Multiple Clients and Multiple Servers

A computer can run:
— A single client
— A single server
— Multiple copies of a client that contact a given server
— Multiple clients that each contact a particular server
— Multiple servers, each for a particular service

« Allowing a computer to operate multiple clients is useful
— because services can be accessed simultaneously

(P &<

Muliaple Servers with a load balaneer 21



3.9 Server ldentification and Demultiplexing

 How does a client identify a server?

The Internet protocols divide identification into two pieces:
— An identifier for the computer on which a server runs
— An identifier for a service on the computer

ldentifying a computer?

— Each computer in the Internet is assigned a unique 32-bit identifier
known as an Internet Protocol address (IP address)

— To make server identification easy for humans, each computer is
also assigned a name, and the Domain Name System (DNS)
ldentifying a service?

— Each service available in the Internet is assigned a unique 16-bit
identifier known as a protocol port number (or port number)

— Figure 3.4 summarizes the basic steps in identifying an application

22



So far you know how to build a Local
Area Network

M S How do we get them to

»
W
3

talk to each other?

5
g &

23



\

MAC Addresses

“Media Access Control Address”

48 bits long, written as a sequence of hexadecimal numbers
* e.g. 34:13:e4:2e:66:44

Quick — how many possible MAC addresses are there?

* 281,474,976,710,656

Used as part of a protocol called Ethernet.

24



MAC Addresses

éWh* ‘ All MAC addresses are assigned by
el'e your device’s manufacturer.
dO MAC Addresses

bluetooth connector you have has a

s
Come unique number assigned to it by the

fr OIﬁ? i manufacturer.

A delightful first look ar NETWORKS

| found this crazy when | learned this!
P &S ® Db

Every wireless adaptor, ethernet port,

A
, T

25




Solution: Internet Protocol (IP)

Inter-network connectivity provided by
the Internet protocol

Hosts use Internet Protocol to send
packets destined across networks.

IP creates abstraction layer that hides
underlying technology from network
application software

Allows range of current & future technologies

WiFi, traditional and switched Ethernet,
personal area networks, ...

)

emall WWW phane...
SMTP HTTP RTP...

Network
Applications

CSMA async sonet...

Network
Technology s

copper fiber radio...

26



|IP Addresses (IPv4)

+ Unique 32-bit number associated with a host

00001100 00100010 10011110 00000101

- Represented with the “dotted quad” notation

- e.g., 12.34.158.5
12 34 158 5

00001100 00100010 10011110]00000101 |

N

27



3.9 Server ldentification and Demultiplexing

« Start after server is « Start before any of
already running the clients

« Obtain server name » Hegister port N with
from user Internet the local system

» Use DNS to translate g_(f' o 5 « Wait for contact
R S S I

name to IP address from a client

» Specify that the » Interact with client
service uses port N until client finishes

» Contact server and « Wait for contact from
interact the next client...

Figure 3.4 The conceptual steps a client and server take to communicate.

28



Request
abecd.com/findex.htm abecd.com/index_html
4 ——
=

‘ —ID

e L)) —

Reponse
RN  -bhod.com/index html WEEB SERVER

r

What is Here s

the IP of the |F : -
sbedoom | | 156 XXX What is a

= DNS9)

Server e

DNS SERVER



Too Much of a Good Thing?

Hosts have a

- host name - 4

: —
+ MAC address xﬂ_\\
There is a reason .. “**«HHH x_
. Remember? “"H
But how do we translate? Physical

N

30



Host Names & Addresses

- Host addresses: e.g., 169.229.131.109

- a number used by protocols
- conforms to network structure (the “where”)

- Host names: e.qg., linux.andrew.cmu.edu

- mnemonic name usable by humans
- conforms to organizational structure (the “who")

. Ttl;_:a Domain Name System (DNS) is how we map from one to the
other

- adirectory service for hosts on the Internet

)

31



-

DNS provides Indirection

Addresses can change underneath

- Move www.cnn.com to a new IP address
- Humans/apps are unaffected

Name could map to multiple |IP addresses

- Enables load-balancing

Vultiple names for the same address

- E.g., many services (mail, www, ftp) on same machine

Allowing “host” names to evolve into “service” names

)

32



Command Prompt
Microsoft Windows [Version 16.8.17134.228]

| C
Ll

&
]
&

2818 Microsoft Corporation. All rights reserved.

Z:\>»NSLOOKUP google.com
Server: dcl.ishik.edu.iqg
Address: 16.1.1.1

NMon-authoritative answer:

Name: google . com

Addresses: 2aP0:14568:49817:8008: 26808
172.217.17.174




General | Alternate Canfiguration

You can get [P settngs assigned automatically if your network supports
this capabiity. Otherwios, you need to ask your network administrator
for the appropriate IP settings.

@ Obtan an IP address automatically
1 Uge the following [P address:




3.10 Concurrent Servers

Most servers are concurrent
Concurrent execution depends on the OS being used

Concurrent server code is divided into two pieces
— a main program (thread)
— a handler

The main thread accepts contact from a client and creates a
thread of control for the client

Each thread of control interacts with a single client and runs
the handler code

After handling one client the thread terminates, but the main
thread keeps the server alive
— the main thread waits for another request to arrive

35



3.11 Circular Dependencies Among Servers

A server for one service can act as a client for another

— For example, before it can fill in a web page, a web server may need to
become a client of a database

— A server may also become the client of a security service (e.g., to verify that
a client is allowed to access the service).

* Programmers must be careful to avoid circular dependencies among
servers

— since chain of requests can continue indefinitely until all three servers
exhaust resources

36



Resource A is
dependenton
Resource B

Dependency

_

Resource A

_

Resource B

Resource B is

dependenton

Resource A

37



3.12 Peer-to-Peer Interactions

« If a single server provides a given service

— the network connection between the server and the Internet can
become a bottleneck

* Figure 3.5 illustrates the architecture

SEFVEr

all rraffic goes
OVEF OnE connection
Internet

|

llﬂ\

Figure 3.5 The traffic bottleneck m a design that uses a single server.

38



39







3.12 Peer-to-Peer Interactions

« Can Internet services be provided without creating a central
bottleneck?

— One way to avoid a bottleneck forms the basis of file sharing known
as a peer-to-peer (P2P) architecture

« The scheme avoids placing data on a central server
— data is distributed equally among a set of N servers

* Figure 3.6 illustrates the architecture

/H —H__\ H.\ /H
\‘g‘/ -/ N\

Peer-to-peer
Client/Server 41



3.12 Peer-to-Peer Interactions

I/N of all traffic
Internet "

.__.-:"

Figure 3.6 Interaction in a peer-to-peer system.

42



3.13 Network Programming
and the Socket AP

Applications uses a communication interface is known as an
Application Program Interface (API)

Details of an API depend on the OS

One particular API has emerged as the de facto standard for
software that communicates over the Internet

— known as the socket API, and commonly abbreviated sockets

The socket API is avalilable for many OS
— such as Microsoft's Windows systems
— as well as various UNIX/Linux systems

43



3.14 Sockets, Descriptors, and Network 1/O

« The socket APl was originally developed as part of the UNIX
OS, so the socket APl is integrated with I/O

* When an application creates a socket to use for Internet ,
the OS returns a small integer descriptor identifying a socket

« The application then passes the descriptor as an argument

— when it calls functions to perform an operation on the socket (e.g., to
transfer data across the network or to receive data)

* In many OS, socket descriptors are integrated with other I/O
descriptors

44



3.15 Parameters and the Socket API

Socket programming differs from conventional 1/O

An application must specify many details, such as
— the address of a remote computer
— the protocol port number
— and whether the application will act as a client or as a server
To avoid having a single socket function with many parameters,

designers of the socket API chose to define many functions
— an application creates a socket, and then invokes functions for details

The advantage of the socket approach is that most functions have three
or fewer parameters

The disadvantage is that a programmer must remember to call multiple
functions when using sockets

Figure 3.7 summarizes key functions in the socket API

45



Mame Used By Meaning
| accept server | Accept an incoming connection
| bind server = Specify IP address and protocol port
| close either | Terminate communication
| connect client | Connect to a remote application
| getpeername = server | Obtain client's IP address
' getsockopt server = Obtain current options for a socket
| listen server Prepare socket for use by a server
| recv either = Receive incoming data or message
' recvmsg either = Receive data imezsage paradigm})
' recvfrom either = Receive a message and sender's addr. '
- send (write) either = Send outgeing data or message
: zsendmsg either Send an outgoing message
| sendto either = Send a message (variant of sendmsg)
| setsockopt either = Change socket options
| shutdown either = Terminate a connection
| socket either | Create a socket for use by above i

Figure 3.7 A summary of the major fimctions in the socker API

46



IP:192.168.11
PORT: 1024

3.16 Socket
Calls in a
Client and

Server

IP:1g2.168.1.254
PORT:1025

Figure 3.8 illustrates the sequence of socket calls made
by a typical client and server that use a stream
connection

— The client sends data first and the server waits to
receive data

In practice, some applications arrange for the server to
send first (i.e., send and recv are called in the reverse
order)

47



CLIENT SIDE SERVER SIDE

{i socket }

Figure 3.8 Illustration of the sequence of socket functions called by a client
and server using the stream paradigm.

48



