
OBJECT-ORIENTED
PROGRAMMING I

IT 411

IT DEPT.

TIU

4RD GRADE

Lect. Mohammad Salim 1

Flutter Apprentice 2021 Second Edition Book

Section2:
Chapter 4 – Undestanding

Widgets

4 Nov 2021

GET FREE ACCESS TO
FLUTTER APPRENTICE

¡ FREE access to Flutter
Apprentice from October 6,
2021 through January 6, 2022.

2

COURSE CONTENT

¡ Flutter and OOP

3

CONTENTS

SECTION 2 (Everything’s a Widget)

¡ Chapter 4: Understanding Widgets

¡ 4.1 What is a widget?

¡ 4.2 Unboxing Card2

¡ 4.3 Rendering widgets

¡ 4.4 Getting Started

¡ 4.5 Types of widgets

¡ 4.6 Key points

¡ 4.7 Where to go from here?

4

CHAPTER 4: UNDERSTANDING WIDGETS

You may have heard that everything in Flutter is a widget. While that
might not be absolutely true, most of the time when you’re building
apps, you only see the top layer: widgets. In this chapter, you’ll dive
into widget theory. You’ll explore:

¡ Widgets

¡ Widget rendering

¡ Flutter Inspector

¡ Types of widgets

¡ Widget lifecycle

It’s time to jump in!
5

WHAT IS A WIDGET?

¡ A widget is a building block for your user interface. Using widgets is like combining Legos. Like Legos, you can mix and
match widgets to create something amazing.

6

UNBOXING CARD2

In the previous chapter, you created three recipe cards. Now, you’ll look in more detail at the widgets that
compose Card2:

Do you remember which widgets you needed to build this card?

Recall that the card consists of the following:

¡ Container widget: Styles, decorates and positions widgets.

¡ Column widget: Displays other widgets vertically.

¡ AuthorCard custom widget: Displays the author’s information.

¡ Expanded widget: Uses a widget to fill the remaining space.

¡ Stack widget: Places widgets on top of each other.

¡ Positioned widget: Controls a widget’s position in the stack.

7

WIDGET TREES

8

WIDGET TREES

9

The widget tree provides
a blueprint that describes
how you want to lay out
your UI.

The framework traverses
the nodes in the tree and
calls each build() method
to compose your entire
UI.

RENDERING WIDGETS

In Chapter 1, “Getting Started”, you learned that Flutter’s architecture contains three
layers:

In this chapter, you’ll focus on the framework layer. You can break this layer into
four parts:

¡ Material and Cupertino are UI control libraries built on top of the widget layer.
They make your UI look and feel like Android and iOS apps, respectively.

¡ The Widgets layer is a composition abstraction on widgets. It contains all the
primitive classes needed to create UI controls. Check out the official
documentation here: https://api.flutter.dev/flutter/widgets/widgets-library.html.

¡ The Rendering layer is a layout abstraction that draws and handles the widget’s
layout. Imagine having to recompute every widget’s coordinates and frames
manually. Yuck!

¡ Foundation, also known as the dart:ui layer, contains core libraries that handle
animation, painting and gestures. 10

https://api.flutter.dev/flutter/widgets/widgets-library.html

RENDERING WIDGETS

Flutter’s framework actually manages not one, but three
trees in parallel:

¡ Widget Tree

¡ Element Tree

¡ RenderObject Tree

Here’s how a single widget works under the hood:

1. Widget: The public API or blueprint for the
framework. Developers usually just deal with
composing widgets.

2. Element: Manages a widget and a widget’s render
object. For every widget instance in the tree, there is a
corresponding element.

3. RenderObject: Responsible for drawing and laying
out a specific widget instance. Also handles user
interactions, like hit-testing and gestures. 11

Three Trees

RENDERING WIDGETS

There are two types of elements:

¡ ComponentElement: A type of element that’s composed of
other elements. This corresponds to composing widgets inside
other widgets.

¡ RenderObjectElement: A type of element that holds a
render object.

You can think of ComponentElement as a group of elements,
and RenderObjectElement as a single element. Remember that
each element contains a render object to perform widget painting,
layout and hit testing.

Example trees for Card2

The image on the right shows an example of the three trees for
the Card2 UI:

12

Types of elements

RENDERING WIDGETS

¡ As you saw in previous chapters, Flutter starts to build your app by calling runApp(). Every
widget’s build() method then composes a subtree of widgets. For each widget in the widget tree, Flutter creates a
corresponding element.

¡ The element tree manages each widget instance and associates a render object to tell the framework how to
render a particular widget.

13

Types of elements

Note: For more details on Flutter widget rendering, check out the Flutter team’s talk they gave in China on
how to render widgets: https://youtu.be/996ZgFRENMs.

https://youtu.be/996ZgFRENMs

GETTING STARTED

14

GETTING STARTED

15

GETTING STARTED

16

There are many different
tools to play with, but in
this chapter, you’ll only
look at the Flutter
Inspector.
For information about
how the other tools work,
check out:
https://flutter.dev/docs/d

evelopment/tools/devtool
s/overview.

https://flutter.dev/docs/development/tools/devtools/overview

FLUTTER INSPECTOR

17

FLUTTER INSPECTOR

18

FLUTTER INSPECTOR

19

Here’s a screenshot of how it looks on a device:

FLUTTER INSPECTOR

20

FLUTTER INSPECTOR

21

TYPES OF WIDGETS

The lifecycle of a stateless widget starts with a constructor,
which you can pass parameters to, and a build() method,
which you override. The visual description of the widget is
determined by the build() method.

The following events trigger this kind of widget to update:

1. The widget is inserted into the widget tree for the first
time.

2. The state of a dependency or inherited widget —
ancestor nodes — changes.

22

Stateless widgets

TYPES OF WIDGETS

23

TYPES OF WIDGETS

¡ Every widget’s build() method takes
a BuildContext as an argument. The build context
tells you where you are in the tree of widgets. You
can access the element for any widget through
the BuildContext.

¡ Later, you’ll see why the build context is important,
especially for accessing state information from
parent widgets.

24

TYPES OF WIDGETS

25

TYPES OF WIDGETS

26

ADDING STATEFUL WIDGETS

27

ADDING STATEFUL WIDGETS

28

ADDING STATEFUL WIDGETS

29

ADDING STATEFUL WIDGETS

30

ADDING STATEFUL WIDGETS

31

ADDING STATEFUL WIDGETS

32

INHERITED WIDGETS

¡ Inherited widgets let you access state
information from the parent elements
in the tree hierarchy.

¡ Imagine you have a piece of data way
up in the widget tree that you want to
access. One solution is to pass the data
down as a parameter on each nested
widget — but that quickly becomes
annoying and cumbersome.

¡ Wouldn’t it be great if there was a
centralized way to access such data?

33

INHERITED WIDGETS

That’s where inherited widgets come in! By adding an inherited widget in your tree, you can reference the data from
any of its descendants. This is known as lifting state up.

For example, you use an inherited widget when:

¡ Accessing a Theme object to change the UI’s appearance.

¡ Calling an API service object to fetch data from the web.

¡ Subscribing to streams to update the UI according to the data received.

¡ Inherited widgets are an advanced topic. You’ll learn more about them in Section 4, “Networking, Persistence and
State”, which covers state management and the Provider package—a wrapper around an inherited widget.

34

KEY POINTS (CHAPTER 4)

¡ Flutter maintains three trees in parallel: the Widget, Element and RenderObject trees.

¡ A Flutter app is performant because it maintains its structure and only updates the widgets that need redrawing.

¡ The Flutter Inspector is a useful tool to debug, experiment with and inspect a widget tree.

¡ You should always start by creating StatelessWidgets and only use StatefulWidgets when you need to
manage and maintain the state of your widget.

¡ Inherited widgets are a good solution to access state from the top of the tree.

35

WHERE TO GO FROM HERE?

¡ If you want to learn more theory about how widgets work, check out the following links:

Detailed architectural overview of Flutter and widgets: https://flutter.dev/docs/resources/architectural-overview.

¡ The Flutter team created a YouTube series explaining widgets under the
hood: https://www.youtube.com/playlist?list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2.

¡ The Flutter team gave a talk in China on how to render widgets: https://youtu.be/996ZgFRENMs.

In the next chapter, you’ll get back to more practical concerns and see how to create scrollable widgets.

36

https://flutter.dev/docs/resources/architectural-overview
https://www.youtube.com/playlist?list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2
https://youtu.be/996ZgFRENMs

