Flutter Apprentice 2021 Second Edition Book _

I'T DEPT.
OBJECT-ORIENTED T
PROGRAMMING | T
IT 4 I I Section2:
Chapter 4 — Undestanding
Widgets

GET FREEACCESSTO
FLUTTER APPRENTICE

FREE access to Flutter

Apprentice from October 6,
2021 through January 6,2022.

Flutter

Apprentice

SECOND EDITION
Learn to Build Cross-Platform Apps

By the raywenderlich Tutorial Team
Mike Katz, Kevin D. Moore, Vincent Ngo & Vincenzo Guzzi

COURSE CONTENT

Week Hour Date Topic
1 2 4-7/10/2021 Introduction to OOP , Class diagram
2 2 10-14/10/2021 Introduction to OOP , Class diagram and Dart Packages

COURSE CONTENT

Section 1: Build Your First Flutter App, structure of Flutter projects, create the Ul of

8 2 leaEg e a Flutter app by Widgets
4 2 24-28/10/2021 Eoeggzﬂiga Everything’s a Widget, start to build a full-featured recipe app named

5 2 31/10-4/11/2021 Section 2: Everything’s a Widget,|layout widgets| scrollable widgets and interactive

widgets
6 2 7-11/11/2021 Section lll: Navigating Between Screens, routes and navigation
7 2 14-18/11/2021 Midterm Exam
8 2 21-25/11/2021 Midterm Exam

Flutter and OOP
9 2 28/11-2/12/2021 Section lll: Navigating Between Screens : deep links and URLs

10 2 5-9/12/2021 Section IV: Networking, Persistence & State: Share Preference

1" 2 12-16/12/2021 Section IV: Networking, Persistence & State: Serialization with JSON
12 2 19-23/12/2021 Section IV: Networking, Persistence & State: Networking in Flutter
13 2 26-30/12/2021 Section IV: Networking, Persistence & State: Chopper Library

14 2 2-5/1/2022 Section IV: Networking, Persistence & State: State Management

15 2 9-13/1/2022 Final Exam

16 2 16-20/1/2022 Final Exam

CONTENTS

SECTION 2 (Everything’s a Widget)

Chapter 4: Understanding Widgets
4.1 What is a widget?

4.2 Unboxing Card?2

4.3 Rendering widgets

4.4 Getting Started

4.5 Types of widgets

4.6 Key points

4.7 Where to go from here?

CHAPTER 4: UNDERSTANDING WIDGETS

You may have heard that everything in Flutter is a widget.While that
might not be absolutely true, most of the time when you'’re building

apps, you only see the top layer: widgets. In this chapter, you'll dive

into widget theory.You'll explore:

= Widgets
= Widget rendering

= Flutter Inspector

= Types of widgets
= Widget lifecycle
It’s time to jump in!

Note: This chapter is mostly theoretical. You'll make just a few code changes to the
project near the end of the chapter.

WHAT ISAWIDGET?

= A widget is a building block for your user interface. Using widgets is like combining Legos. Like Legos, you can mix and
match widgets to create something amazing.

Flutter’s declarative nature makes it super easy to build a Ul with widgets. A widget is a
blueprint for displaying your app state.

I =f(state)

Screen Build

You can think of widgets as a function of Ul. Given a state, the build() method of a
widget constructs the widget UL

UNBOXING CARD2

In the previous chapter, you created three recipe cards. Now, you'll look in more detail at the widgets that
compose Card2: R,

Fooderlich

Do you remember which widgets you needed to build this card?

Recall that the card consists of the following:

= Container widget: Styles, decorates and positions widgets. - et
= Column widget: Displays other widgets vertically.
. . y . . Mike Katz n
= AuthorCard custom widget: Displays the author’s information. | & St AuthorCard 2
-]
= Expanded widget: Uses a widget to fill the remaining space. Eianlel =
= Stack widget: Places widgets on top of each other. G ”
olumn) =
= Positioned widget: Controls a widget’s position in the stack. S Stack Wl)
()
g Positioned j) =)
) Text
— Recipe /

Container

WIDGET TREES

Every widget contains a build() method. In this method, you create a Ul composition by
nesting widgets within other widgets. This forms a tree-like data structure. Each widget
can contain other widgets, commonly called children. Below is a visualization of Card2's

widget tree: Root Widget

(e ™)
Card2 build()
J

.

= =)
Center build()
)

Container build()

~
Column build()
7,

(AuthorCard) (Expanded) build()

WIDGET TREES

You can also break down AuthorCard and Expanded :

build() (AuthorCard)
build((Container)

(Expanded) build(
(Stack) build()

|
| |

build
— (phic) (Positioned J (Positioned) build()

build() () ClconButtonj (Text) (RotatedBoxj build()

| |
build() (Circlelmage) (SizedBox) (Column)
I
| |
build() (Text) (Text)

(Text) build()

The widget tree provides
a blueprint that describes
how you want to lay out
your Ul.

The framework traverses
the nodes in the tree and
calls each build() method

to compose your entire
UL.

RENDERING WIDGETS

In Chapter |,“Getting Started”, you learned that Flutter’s architecture contains three
layers:

In this chapter, you'll focus on the framework layer.You can break this layer into
four parts:

= Material and Cupertino are Ul control libraries built on top of the widget layer.
They make your Ul look and feel like Android and iOS apps, respectively.

= The Widgets layer is a composition abstraction on widgets. It contains all the
primitive classes needed to create Ul controls. Check out the official
documentation here: https://api.flutter.dev/flutter/widgets/widgets-library.html.

= The Rendering layer is a layout abstraction that draws and handles the widget’s
layout. Imagine having to recompute every widget’s coordinates and frames
manually. Yuck!

" Foundation, also known as the dart:ui layer, contains core libraries that handle
animation, painting and gestures.

Framework (Dart)

Engine (C/C++)

Embedder (Platform-specific)

Material or Cupertino

Widgets

Rendering

Foundation

https://api.flutter.dev/flutter/widgets/widgets-library.html

RENDERING WIDGETS

Three Trees

Flutter’s framework actually manages not one, but three

trees in parallel:

= Widget Tree

® Element Tree Widgets Element RenderObject
Configuration Lifecycle management Paint

= RenderObject Tree

Here’s how a single widget works under the hood:

I. Widget:The public API or blueprint for the 0——(FooElement)7—0

framework. Developers usually just deal with
composing widgets.

¢ Hold properties e Manage references e Knows how to size
2. Element: Manages a widget and a widget’s render « ‘Biklic ABY and element tree and paint
object. For every widget instance in the tree, there is a e Representsa * Layout Children
corresponding element. Widget in a tree e Listen for input, hit-
testing

3. RenderObiject: Responsible for drawing and laying
out a specific widget instance.Also handles user

interactions, like hit-testing and gestures. I

RENDERING WIDGETS

Types of elements

Element Tree RenderObject Tree

StatelessElement)""(RenderDecoratedBox)

StatelessElement }----(RenderPositionedBox)

StatelessElement)" o (RenderFlex

Widget Tree
There are two types of elements: e J
&
= ComponentElement:A type of element that’s composed of
other elements. This corresponds to composing widgets inside (T } _________ (
other widgets. \
= RenderObjectElement:A type of element that holds a A—— } {
render object. -
You can think of ComponentElement as a group of elements, . } _________ (
and RenderObjectElement as a single element. Remember that N
each element contains a render object to perform widget painting, I I I
layout and hit testing. () (} ((
AuthorCard Expanded [-°°

N N
StatelessElement)’"((RenderObject)

Example trees for Card2

The image on the right shows an example of the three trees for
the Card2 UI:

RENDERING WIDGETS

Types of elements

= As you saw in previous chapters, Flutter starts to build your app by calling runApp(). Every

widget’s build() method then composes a subtree of widgets. For each widget in the widget tree, Flutter creates a
corresponding element.

" The element tree manages each widget instance and associates a render object to tell the framework how to
render a particular widget.

Note: For more details on Flutter widget rendering, check out the Flutter team’s talk they gave in China on
how to render widgets: https://youtu.be/9967gFRENMs.

https://youtu.be/996ZgFRENMs

GETTING STARTED

Open the starter project in Android Studio, run flutter pub get if necessary, then run
the app. You'll see the Fooderlich app from the previous chapter:

— b soacivin \§ Next, open DevTools by tapping the blue Dart icon, as shown below:
Fooderlich
o Run: . main.dart
Editor's Choice 3 {
The Art of Dough S| . El Console r 1S
'\.l Syncing files t0 ucvaive arnune ves.

Reloaded @ of 677 libraries in 117ms.

DevTools will open in your browser. Select a widget on the left to see its layout on the

right.

\
.- k
>

-

Lamtom.’tshe = bread. ; . s :
Spendartich Note: It works best with the Google Chrome web browser. Click the @ icon to switch
between dark and light mode!

Flutter DevTools

O Flutter Inspector & CPU Profiler ™ Memory # Debugges
‘S Select Widget Mode o ™ bd AN - -
v im root] Layout Explorer Details Tree

« @ Fooderlch

- &3 MaterialApp Stack - RenderStack 231380
- @ Home 3] A

v E Scoflcld

I« @ cardy

v 4 Center

=389 0

v B Positione &
) Text - A.

v B Positionec E
) Text Text - RenderParagraph#965bb _

v & Positione w=2009 (
) Text

|-« 23 AppBa
0 Text
v o BotiomNavigatonB
™o v
M loor 18
oo) 18.0)

A
v

Console 0 =

Dutler Gev/Gevlools/ NSPectc G »64-64 ios

GETTING STARTED

DevTools overview
DevTools provides all kinds of awesome tools to help you debug your Flutter app. These
include:

= Flutter Inspector: Used to explore and debug the widget tree.

= Performance: Allows you to analyze Flutter frame charts, timeline events and CPU
profiler.

= CPU Profiler: Allows you to record and profile your Flutter app session.
= Memory: Shows how objects in Dart are allocated, which helps find memory leaks.

= Debugger: Supports breakpoints and variable inspection on the call stack. Also allows
you to step through code right within DevTools.

= Network: Allows you to inspect HTTP, HTTPS and web socket traffic within your Flutter
app.

= Logging: Displays events fired on the Dart runtime and app-level log events.

= App Size: Helps you analyze your total app size.

There are many different
tools to play with, but in
this chapter, you’ll only
look at the Flutter
Inspector.

For information about
how the other tools work,
check out:
https://flutter.dev/docs/d
evelopment/tools/devtool

s/overview.

https://flutter.dev/docs/development/tools/devtools/overview

FLUTTER INSPECTOR

The Flutter Inspector has four key benefits. It helps you:

= Visualize your widget tree.
= |Inspect the properties of a specific widget in the tree.
= Experiment with different layout configurations using the Layout Explorer.

= Enable slow animation to show how your transitions look.

Flutter Inspector tools

Here are some of the important tools to use with the Flutter Inspector.

= Select Widget Mode: When enabled, this allows you to tap a particular widget on a
device or simulator to inspect its properties.

‘s Select Widget Mode

FLUTTER INSPECTOR

Flutter DevTools

[J Flutter Inspector 4~ Performance & CPU Profiler /™ Memory 4k Debugger “ Network EX Logging @) App Size
« g: e efresh Tree ow Animations ow Guidelines ow Baselines & Highlight Repain
Select Widget Mod: C Refresh T & Slow Animati I+ Show Guideli A4 Show B li 4 Highlight R i
Fooderlich
i ooy Layout Explorer Details Tree s Ex
v @ Fooderlich
v @ MaterialApp i .iuthorCard
v @ Home v {1 Container
v E Scaffold null ®
B ® card2 padding: Edgelnsets.all(16.0)
v <+ Center clipBehavior: Clip.none @
*
~ {1 Container bg: null @
~ B column fg: null @
- v @ AuthorCard constraints: null @
1 margin: null @
v addin
Padding
3 _ « 0D Row padding: Edgelnsets.all(16.0)
:E v @ Circlelmage dependencies: [Directionality]
s v © CircleAvatar > renderObject: RenderPadding#cefae relayoutt
>
g © CircleAvatar 0 Row
[=] SizedBox
wv
v B Column
[@ Text: "Mike Katz
Text
— v @ IconButton
™ Icon
| — v |=| Expanded
18
Console

flutter.dev/devtools/inspector 2

FLUTTER INSPECTOR

Clicking any element in the widget tree also highlights the widget on the device and jumps
to the exact line of code. How cool is that!

Here’s a screenshot of how it looks on a device:
= Refresh Tree: Simply reloads the current widget's info.

Fooderlich =

C Refresh Tree

. Mike Katz
Smoothie Connoisseur -
= Slow Animation: Slows down the animation so you can visually inspect the Ul
transitions.

® Slow Animations

.§ ———
i -

-~ —
o
o
=« Show Guidelines: Shows visual debugging hints. That allows you to check the borders, g

paddings and alignment of your widgets. - Reci

I+l Show Guidelines 19
= =

FLUTTER INSPECTOR

= Highlight Repaints: Adds a random border to a widget every time Flutter repaints it.
This is useful if you want to find unnecessary repaints.

«& Highlight Repaints

If you feel bored, you can spice things up by enabling disco mode, as shown below:

. v Vs e g W - — " B e - e N s
O O 3 . ~
Fooderhch Fooderhch Fooderiich

Recipe Trends

20

FLUTTER INSPECTOR

= Highlight Oversized Images: Tells you which images in your app are oversized.
M Highlight Oversized Images

If an image is oversized it will invert the image’s colors and flip it upside down. As shown

10:43 «?%

Fooderlich

below:

21

Card Card2 Card3

TYPES OF WIDGETS
Stateless widgets

You can't alter the state or properties of Stateless widget once it's built. When your
properties don't need to change over time, it's generally a good idea to start with a

stateless widget. The lifecycle of a stateless widget starts with a constructor,
which you can pass parameters to, and a build() method,
which you override.The visual description of the widget is

Stateless Widgets determined by the build() method.
Lifecycle
The following events trigger this kind of widget to update:
[°°“5"“°t°'j |. The widget is inserted into the widget tree for the first

l time.

2. The state of a dependency or inherited widget —
—D[build(context)(] ancestor nodes — changes.

22

TYPES OF WIDGETS

Stateful widgets

Stateful widgets preserve state, which is useful when parts of your Ul need to change

dynamically.

For example, one good time to use a stateful widget is when a user taps a Favorite button
to toggle a simple Boolean value on and off.

Stateful Widgets
Lifecycle
(constructor j
Stateful widgets store their mutable state in a separate State class. That's why every
stateful widget must override and implement createState() .

Next, take a look at the stateful widget's lifecycle.
D | createState()

23

TYPES OF WIDGETS

BuildContext
assigned

E mounted = true

= Every widget’s build() method takes widget.properties
a BuildContext as an argument.The build context

\V/

tells you where you are in the tree of widgets.You (d,dc,mgemndmm)
can access the element for any widget through 7
the BuildContext. :><:
= Later, you'll see why the build context is important, v
especially for accessing state information from (didUpdateWidget] (setState)
parent widgets. 4 o ¢
oldWidget state changes

{ dirty = false I
\/

24

mounted = false

TYPES OF WIDGETS

Now, take a closer look at the lifecycle:

1. When you assign the build context to the widget, an internal flag, mounted , is set to
true . This lets the framework know that this widget is currently on the widget tree.

2. initState() is the first method called after a widget is created. This is similar to
onCreate() in Android or viewDidLoad() iniOS.

3. The first time the framework builds a widget, it calls didChangeDependencies() after
initState() . It might call didChangeDependencies() again if your state object
depends on an inherited widget that has changed. There is more on inherited widgets
below.

4. Finally, the framework calls build() after didChangeDependencies() . This function
is the most important for developers because it's called every time a widget needs
rendering. Every widget in the tree triggers a build() method recursively, so this
operation has to be very fast.

Note: You should always perform heavy computational functions asynchronously and
store their results as part of the state for later use with the build() function.

build() should never do anything that's computationally demanding. This is similar to
how you think of the iIOS or Android main thread. For example, you should never make a
network call that stalls the Ul rendering.

25

TYPES OF WIDGETS

5. The framework calls didUpdateWidget(_) when a parent widget makes a change or
needs to redraw the Ul. When that happens, you’ll get the oldWidget instance as a
parameter so you can compare it with your current widget and do any additional logic.

6. Whenever you want to modify the state in your widget, you call setState() . The
framework then marks the widget as dirty and triggersa build() again.

Note: Asynchronous code should always check if the mounted property is true before
calling setstate() , because the widget may no longer be part of the widget tree.

7. When you remove the object from the tree, the framework calls deactivate() . The
framework can, in some cases, reinsert the state object into another part of the tree.

8. The framework calls dispose() when you permanently remove the object and its
state from the tree. This method is very important because you’ll need it to handle
memory cleanup, such as unsubscribing streams and disposing of animations or
controllers.

The rule of thumb for dispose() is to check any properties you define in your state and 26
make sure you've disposed of them properly.

ADDING STATEFULWIDGETS

Card2 iscurrentlya StatelessWidget . Notice that the Heart button on the top-right
currently only displays a SnackBar() , but nothing else like turning a solid color like a
typical Favorite button. This isn't because you haven't hooked up any actions. It's
because the widget, as it is, can't manage state dynamically. To fix this, you'll change this
cardintoa StatefulWidget .

. Mike Katz
Smoothie Connoisseur

Smoothies

AuthorCard is nested within Card2 . Open author_card.dart and right-click on
AuthorCard . Then click Show Context Actions from the menu that pops up:

import ...
class AuthorCacd nd do
1 Show Context Actions Xe
final Strint Copy Reference XoxC
final Strin¢ (] paste ®V
final Imagef

Paste from History... oRV

Select Convert to StatefulWidget. Instead of converting manually, you can just use this
menu shortcut to do it automatically:

import ...
@

:l-ass AuthorCard extends StatelessWidget {

1 Convert to StatefulWidget

final String authorName;
final String title;
final ImageProvider imageProvider;

27

ADDING STATEFULWIDGETS

There are now two classes:

AuthorCard extends StatefulWidget {

_AuthorCardState createState() => _AuthorCardState();
¥

class _AuthorCardState extends State<AuthorCard> {

wWidget build(BuildContext context) {

¥

A couple of things to notice in the code above:

= The refactor converted AuthorCard froma StatelessWidget into a
StatefulWidget . It added a createState() implementation.

= The refactor also created the _AuthorCardState state class. It stores mutable data
that can change over the lifetime of the widget. %

ADDING STATEFULWIDGETS

Implementing favorites

In _AuthorCardState , add the following property right after the class declaration:

Here's how the new state works:

_isFavorited = . :
1. First, it checks if the user has favorited this recipe card. If true , it shows a filled heart.

If false , it shows an outlined heart.

Now that you've created a new state, you need to manage it. Replace the current 2. It changes the color to red to give the app more life.

IconButton in _AuthorCardState with the following: 3. When the user presses the IconButton , it togglesthe _isFavorited state via a call
to setState() .

IconButton(Save the change to trigger a hot reload and see the heart button toggle on and off when

you tap it, as shown below:
icon: Icon(_isFavorited ? Icons.favorite : Icons.favorite_border),

iconSize: 30,
Carrier 5:46 PM %Camer = 5:46 PM %
Fooderlich Fooderlich

color: Colors.red[400],
onPressed: () {

setState(() {
_isFavorited = !_isFavorited;

. Mike Katz O . Mike Katz

4 2 ’ -9 g :
Smoothie Connoisseur Smoothie Connoisseur

29

ADDING STATEFULWIDGETS

Examining the widget tree
Now that you've turned AuthorCard into a stateful widget, your next step is to look at

how the element tree manages state changes.

Recall that the framework will construct the widget tree and, for every widget instance,
create an element object. The element, in this case, isa StatefulElement and it
manages the state object, as shown below:

Widget Tree Element Tree

£ Stateful D State
[AuthorCard]4 D[(_isFavorited = false)]
[Icon ()]4"'

When the user taps the heart button, setState() runs and toggles _isFavorited to 30
true. Internally, the state object marks this element as dirty. That triggers a call to
build()

Mike Katz

V4
Stateless
Element

-1

ADDING STATEFULWIDGETS

Widget Tree Element Tree

Mike Katz Stateful State
Smoothee me@ [AUthorcard]q { Element D (_isFavorited = false)

Tap to favorite

((reoncwr) +{
dirty!

new Icon widget instance

4.....
-+

This is where the element object shows its strength. It removes the old widget and

replaces it with a new instance of Icon that contains the filled heart icon. y

ADDING STATEFULWIDGETS

Widget Tree Element Tree

Mike Katz S Stateful e State
Smoothie Cm@ [AuthorCard]Q [Element] D[(_isFavorited = false)]
[o]«[m]

clean

Rather than reconstructing the whole tree, the framework only updates the widgets that
need to be changed. It walks down the tree hierarchy and checks for what's changed. It
reuses everything else.

Now, what happens when you need to access data from some other widget, located

elsewhere in the hierarchy? You use inherited widgets. 32

INHERITED WIDGETS

Scenario 2 .- AR] - e 2 cacaeae
D(InheritedWidget Jq
o> <

" Inherited widgets let you access state

e

widget — but that quickly becomes 1
annoying and cumbersome. (Widget) (Widget

v

‘ ' Widget : ;
information from the parent elements : Q 5 5

in the tree hierarchy. (= :

| | Widget) Widget) : :

= Imagine you have a piece of data way Widget) Widget) : \ T\,
up in the widget tree that you want to s s \a‘ 5 : ' :

. . R beeanenas { Widget J (Widget) '

access. One solution is to pass the data (D) , :
down as a parameter on each nested i - 3 vy

.
= Wouldn't it be great if there was a v (Widget){ Widget

centralized way to access such data? ® v @
| Widget .

INHERITED WIDGETS

That’s where inherited widgets come in! By adding an inherited widget in your tree, you can reference the data from
any of its descendants.This is known as lifting state up.

For example, you use an inherited widget when:

Accessing a Theme object to change the Ul’s appearance.
Calling an API service object to fetch data from the web.
Subscribing to streams to update the Ul according to the data received.

Inherited widgets are an advanced topic.You'll learn more about them in Section 4,“Networking, Persistence and
State”, which covers state management and the Provider package—a wrapper around an inherited widget.

34

KEY POINTS (CHAPTER 4)

" Flutter maintains three trees in parallel: the Widget, Element and RenderObject trees.
= A Flutter app is performant because it maintains its structure and only updates the widgets that need redrawing.
" The Flutter Inspector is a useful tool to debug, experiment with and inspect a widget tree.

" You should always start by creating StatelessWidgets and only use StatefulWidgets when you need to
manage and maintain the state of your widget.

" Inherited widgets are a good solution to access state from the top of the tree.

35

WHERE TO GO FROM HERE?

= If you want to learn more theory about how widgets work, check out the following links:

Detailed architectural overview of Flutter and widgets: https://flutter.dev/docs/resources/architectural-overview.

" The Flutter team created a YouTube series explaining widgets under the
hood: https://www.youtube.com/playlist?list=PLjxrf2q8roU2Hd|QDj]zOeO6|3FoFLWVr2.

" The Flutter team gave a talk in China on how to render widgets: https://youtu.be/996 ZgFRENMs.

In the next chapter, you'll get back to more practical concerns and see how to create scrollable widgets.

36

https://flutter.dev/docs/resources/architectural-overview
https://www.youtube.com/playlist?list=PLjxrf2q8roU2HdJQDjJzOeO6J3FoFLWr2
https://youtu.be/996ZgFRENMs

