Chapter 8: projectile motion

Projectile Motion

A projectile is any body that is given an initial velocity and then follows a path determined entirely by the effects of gravitational acceleration and air resistance. A batted baseball, a thrown football, a package dropped from an airplane, and a bullet shot from a rifle are all projectiles. The path followed by a projectile is called its trajectory.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

Pralecthe motion
I. Rolling Down From height

General equations:

$$
\left.\begin{array}{l}
d=v^{t} t(\text { constantaccelaration }) d_{y}=h \\
v_{F}=v_{0}+a t \\
v_{F}^{2}=v_{0}^{2}+2 a d \\
d=v_{a v} t=\frac{1}{2}\left(v_{0}+v_{F}\right) \cdot t \\
d=v_{0} t+\frac{1}{2} a t^{2} \\
d=x_{F}-x_{0} \\
d=y_{F}-y_{i}
\end{array}\right\}
$$

Ground

* $d_{y}=v_{y_{0}} t+\frac{1}{2} a_{y} t^{2}$ (at
$v_{y_{0}}=0 \quad 2 a_{y}$ duration)
$\therefore h=\frac{1}{2} a t^{2}$ when $\alpha=g$ $h=\frac{1}{2} g t^{2}-n 1$ to measure

$$
* d=v_{t}
$$

$d_{x}=v_{x} t$ at x-direction:
d_{x} is $R($ the Range of the Ground)
$\dot{\sim} R=v_{\pi} t$ - 2 to measure the Range

* $v_{f_{y}}=v_{0 y}+a_{y} t$ when $v_{0 y}=0$
$U_{F y}=a_{y} t$ as $a=g$
$V_{F y}=g t$ to measure the Finarredocity
* also:

$$
\begin{aligned}
& v=\sqrt{v_{x}^{2}+v_{y}^{2}} \cdots y \\
& G=\tan ^{-1} \frac{v_{y}}{v_{x}} \cdots 5
\end{aligned}
$$

Page 1.

II Symmetric
$*^{*} v_{Y P}$

$$
\begin{aligned}
& V_{y P}=v_{y}+a_{y} t \\
& U_{y F}=0 \text { at } P_{\sin t} B \\
& v_{y_{0}}=v_{\sin \theta} \\
& i-v_{\sin \theta}=g t
\end{aligned}
$$

$$
\theta=\tan ^{-1} \frac{v_{y}}{v_{x}}
$$

$$
t_{A-C}=2\left(-\frac{\cos n \theta}{g}\right)
$$

* hight at Point B

$$
\begin{aligned}
& v_{y p}^{2}=v_{y_{0}}^{2}+2 a_{y} d y \\
& 0=(v \sin \theta)^{2}+2 g h \\
& \sim \cdot h=-\frac{v^{2} \sin ^{2} \theta}{2 g} .
\end{aligned}
$$

* Range:

$$
\mathbb{R}_{x}=v_{x} t \text { or } R=\frac{-v^{2} \sin ^{2} \theta}{g}
$$

also:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& v=\sqrt{6_{x}^{2}+u_{y}^{2}}
\end{aligned}
$$

Examples 1

A motorcycle stunt rider rides off the edge of a cliff. Just at the edge his velocity is horizontal, with magnitude $9 \mathrm{~m} / \mathrm{s}$ Find the motorcycle's position, distance from the edge of the cliff, and velocity 0.50 s after it leaves the edge of the cliff.

Ex 1

$\begin{aligned} X & =U_{0 x} t \\ & =9 \times 25=4.5 \mathrm{~m}\end{aligned}$
y
$=u_{o} t+\frac{1}{2} g t^{2}$

$y=-10+\frac{1}{2}(-9.8)(0.5)^{2}$
$y=-12 \mathrm{~m}$
$r=\sqrt{x^{2}+y^{2}}=\sqrt{(4 \cdot 5)^{2}+(-12)^{2}}$

$$
r=4.7 \mathrm{~m}
$$

$l_{x}=u_{\text {ox }}=9 \mathrm{mis}$
$\begin{aligned} v_{v} & =U_{0 y}+g t=0+(2.8) * 0.5 \\ v_{y} & =-4.9 \mathrm{~m} / \mathrm{s} \\ v^{2} & =\sqrt{e_{x}^{2}+c_{y}^{2}} \\ & =\sqrt{g^{2}+4.9^{2}}=10.2 \mathrm{~m} / \mathrm{s}\end{aligned}$

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{v_{y}}{v_{x}}=\tan ^{-1} \frac{-4 \cdot 9}{9} \\
& \theta=-29^{\circ}
\end{aligned}
$$

Example 2
A batter hits a baseball so that it leaves the bat at speed $37 \mathrm{~m} / \mathrm{s}$ at an angle $\theta=53.1^{\circ}$. (a) Find the position of the ball and its velocity (magnitude and direction) at $t=2 \mathrm{sec}$ (b) Find the time when the ball reaches the highest point of its flight, and its height h at this time. (c) Find the horizontal range R -that is, the horizontal distance from the starting point to where the ball hits the ground.

$$
v_{0}=37 \mathrm{~m} / \mathrm{s}, \theta=53.1
$$

$$
t=2 \mathrm{sec}
$$

$$
v_{o x}=U_{0} \cos \theta
$$

$$
=37 \cos 53.1=22.2 \mathrm{~m} / \mathrm{s}
$$

$$
\theta_{0}=0_{0} \sin B
$$

$$
\begin{aligned}
& =37 \sin 3.1=29.6 \mathrm{~m} / \mathrm{s} \\
& =0 . t=22.2
\end{aligned}
$$

$$
\begin{aligned}
& x=10 \times t=22.2 \mathrm{~kg}=44.4 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& y=v_{0 y} t+\frac{1}{2} g t^{2}=29.6 \times 2-\frac{1}{2}(9.8) \times 2^{2} \\
& y=39.6 m
\end{aligned}
$$

$$
n=\sqrt{x^{2}+y^{2}}=\sqrt{44 \cdot 4^{2}+39.6^{2}}
$$

$$
\begin{aligned}
& v_{x}=v_{0 x}+a_{x} t \quad a_{x}=0 \quad v_{n}=v_{x}=22.2 \mathrm{~m} / \mathrm{s} \\
& v_{y}=v_{y}+g t=29.6-9.842=10 \mathrm{~m} / \mathrm{s} \\
& v=\sqrt{c_{x}^{2}+v_{y}^{2}}=\sqrt{22.2^{2}+10^{2}}=24.4 \mathrm{~m} / \mathrm{\delta} \\
& \theta=\tan ^{-1} \frac{v_{y}}{y_{x}}=\tan ^{-1} \frac{10}{22.2}=24.2^{\circ}
\end{aligned}
$$

(b)
c)

$$
\begin{aligned}
& v_{y}=v_{y y}+g t_{1}=0 \Rightarrow t=\frac{-v_{0 y}}{g}=-\frac{29.6}{-9.8}=3.02 \mathrm{sec} \\
& h=u_{u y} t+\frac{1}{2} g t_{1}^{2} \\
& =29.6 \$ 3.02-\frac{1}{2} \theta .8(3.02)^{2} \quad \begin{array}{l}
u_{y}=0_{0 y}-g t_{2}
\end{array} \\
& h=44.7 \mathrm{~m} \\
& R=U_{0 \%} t_{2}=22.2 ष 6.04=134 \mathrm{~m}=-29.6 \mathrm{~m} / \mathrm{\delta} \\
& \text { But, } t_{2}=2 A t_{1}=6.04 \mathrm{~s}=134 \mathrm{~m}
\end{aligned}
$$

Example 3

A ball is kicked horizontally from the roof of a building that is 300 m tall and lands about 400 m from the base of the building.
a) Calculate the initial speed of the ball
b) Calculate the final speed of the ball just before it hits the ground.
c) Find the angle of the ball relative to the positive x-axis.

Example 4
A ball is kicked off the ground at $40 \mathrm{~m} / \mathrm{s}$ at an angle of 60°. Find
a) Maximum height
b) Time it takes to hit the ground
c) Range of the ball

$$
\begin{aligned}
& a=\frac{-v^{2} \sin ^{2} \theta}{2 g} \\
&= \frac{\left.-40^{2} \sin 60\right)^{2}}{2(-9.8)}=61.2 \mathrm{~m} \\
& \text { or } \\
& v_{y}=U_{0 y}+g t \\
& 0=U_{0 y+}+g t \Rightarrow t=\frac{-U_{0 y}}{g}=\frac{-U_{0} \sin \theta}{g}=\frac{-40 \sin 60}{-9.8} \\
& t=3.5 \sec \\
& h=U_{c y t}+\frac{1}{2} g t^{2}=U_{0} \sin \epsilon t+\frac{1}{2} g t^{2} \\
&=40 \sin 60 * 3.5-4.9+3.5^{2}=61.2 \mathrm{~m}
\end{aligned}
$$

b)

$$
t=\frac{2 v \sin \theta}{9}=\frac{2(40) \sin 6 c}{9.8}=7.07 \mathrm{sec}
$$

or : $t=2 * 3.5=7 \mathrm{sec}$
(c)

$$
\begin{aligned}
& R=U_{x} t=U_{x_{0} \cos \theta t} \\
& = \\
& \text { or } \begin{aligned}
& 20 \cos 60 * 7.07=141.4 \mathrm{~m} \\
& Q=\frac{-v^{2} \sin 2 \theta}{9}=-\frac{40^{2} \sin 120}{-9.8} \\
&=141.39 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Example 5

A ball is kicked from the ground at a speed $40 \mathrm{~m} / \mathrm{s}$ at an angle of 30°. Calculate the horizontal and vertical velocity and acceleration components when the ball was kicked and when it reaches its maximum height.

