
Databases and
Eloquent III
Lecture Eight

Department of Information Technology
IT 350 - Web Technologies
Fall - 2021

Rebin M. Ahmed
rebin.mohammed@tiu.edu.iq

Previous Lecture

● Overview

● Eloquent Operations

● Defining Migrations

● Running Migrations

● More Examples

2

Contents

● Collecting and Handling User Data

● Validation

● Insert, Read, Update and Delete.

3

Collecting and Handling User Data

Websites that benefit from a framework like Laravel often don’t just serve static

content. Many deal with complex and mixed data sources, and one of the most

common (and most complex) of these sources is user input in its myriad forms: URL

paths, query parameters, POST data, and file uploads.

Laravel provides a collection of tools for gathering, validating, normalizing, and

filtering user-provided data. We’ll look at those here.

4

Collecting and Handling User Data

The most common tool for accessing user data in Laravel is injecting an instance of

the Illuminate\Http\Request object. It provides easy access to all of the ways users

can provide input to your site: POST, posted JSON, GET (query parameters), and

URL segments.

5

Collecting and Handling User Data

There’s also a request() global helper and a Request facade, both of which expose

the same methods. Each of these options exposes the entire Illuminate Request

object, but for now we’re only going to cover the methods that specifically relate to

user data.

6

Collecting and Handling User Data

$request->all()

Just like the name suggests, $request->all() gives you an array containing all of the

input the user has provided, from every source. Let’s say, for some reason, you

decided to have ...

7

Collecting and Handling User Data

$request->except() and $request->only()

$request->except() provides the same output as $request->all(), but you can

choose one or more fields to exclude—for example, _token. You can pass it either a

string or an array of strings.

$request->only() is the inverse of $request->except(), you will only get the field

that you specify in the only() method.

8

Collecting and Handling User Data

$request->has()

With $request->has() you can detect whether a particular piece of user input is

available to you.

$request->method()

returns the HTTP verb for the request, and $request- >isMethod() checks whether

it matches the specified verb

9

Validation

Laravel has quite a few ways you can validate incoming data. We’ll cover form

requests in the next section, so that leaves us with two primary options: validating

manually or using the validate() method on the Request object. Let’s start with the

simpler, and more common, validate().

10

Validation

validate() on the Request Object

The Request object has a validate() method that provides a convenient shortcut for

the most common validation workflow.

11

Validation

We only have four lines of code running our validation here, but they’re doing a lot.

First, we explicitly define the fields we expect and apply rules (here separated by

the pipe character, |) to each individually.

Next, the validate() method checks the incoming data from the $request and

determines whether or not it is valid.

If the data is valid, the validate() method ends and we can move on with the

controller method, saving the data or whatever else.

12

Validation

But if the data isn’t valid, it throws a ValidationException. This contains instruc‐

tions to the router about how to handle this exception.

In our examples here we’re using the “pipe”

syntax: 'fieldname': 'rule|otherRule|anotherRule'.

But you can also use the array syntax to do the same thing:

'fieldname': ['rule' , 'otherRule' , 'anotherRule'].

13

Validation

The validate() method on requests (and the withErrors() method on redirects that it

relies on) flashes any errors to the session. These errors are made available to the

view you’re being redirected to in the $errors variable. And remember that as a

part of Laravel’s magic, that $errors variable will be available every time you load

the view, even if it’s just empty, so you don’t have to check if it exists with isset().

14

Validation

15

REST Routes and Actions

16

Update form

17

Delete Form

18

Activities and Next Week Topics

This Week:

● Practise the different types of Validation.

● Practise Update and Delete with a different examples.

● Apply Validation, Update, and Delete techniques to your projects.

Next Week:

● User Authentication and Authorization(Register, Login, Reset Password, Forget

Password, Email Verification)

19

References / Further Readings

● Laravel.com : Laravel’s official Documentation.

● Matt Stauffer, 2019. Laravel: Up & Running: A Framework for Building Modern

PHP Apps. O’Reilly Media.

● Dayle Rees, 2016. Laravel: Code Smart.

20

