IT DEPT.

OBJECT-ORIENTED TIu
PROGRAMMING | o ORADE
IT 411

Application Bar, List View and
Build A Custom Widget

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

Week Hour Date Topic
1 2 4-7/10/2021 Introduction to OOP , Class diagram
2 2 10-14/10/2021 Introduction to OOP , Class diagram and Dart Packages
3 2 17-21/10/2021 Section 1: Build Your First Flutter App, structure of Flutter projects, create the Ul o

a Flutter app by Widgets

Section 2: Everything’s a Widget, start to build a full-featured recipe app named

4 2 24-28/10/2021 Fooderlich

5 2 31/10-4/11/2021 Section 2: Everything’s a Widget, start to build a full-featured recipe app named

Fooderlich
6 2 7-11/11/2021 Understanding widgets
7 2 14-18/11/2021 Midterm Exam
8 2 21-25/11/2021 Stateless widgets and build our personal profile application (HW2)

Flutter and OOP

9 2 28/11-2/12/2021 Application bar, list view and build a custom widget

10 2 5-9/12/2021 Navigation in Flutte, Stateful Widgets and building an interactive applications
1 2 12-16/12/2021 Material Design, Build for Android and iOS platforms, Colors and Themes
12 2 19-23/12/2021 Handle user input and Handle gestures and responsive design

13 2 26-30/12/2021 Flutter Packages and Plugins, Images, Icons, Fonts

14 2 2-5/1/2022 APls and how to get data from internet

15 2 9-13/1/2022 Final Exam

16 2 16-20/1/2022 Final Exam

ae -Use 2z

et False

TOor_mod. use_x False

ror_mod.use_y False
For_mod.use_z = Trye

Meelection at the end -add
S _ob.select= 1

fer_ob.select=1
Mntext.scene.objects.actiw

Wi "Selected” + str(modifier i

Mirror_ob.select = 0
bpy - context.selected_ob
.ata.objects[one.name].sc-

rint(“please select exacthy =

_ OPERATOR CLASSES -=~

CONTENTS

Application bar

List view

Build a custom widget
Navigation in Flutter

Stateful Widgets and building an interactive
applications

APP BAR: SCAFFOLDING A MATERIAL APP

= By using Material App widget we can get
Scaffold widget.

u ScaffOId help US to get many attributes Iil(e jact il App bar / primary toolbar
appBar and BottomBar and many more
others.

= The scaffold will expand to fill the
available space. That usually means that it
will occupy its entire window or device

screen.

APP BAR: SCAFFOLDING A MATERIAL APP

= An app bar consists of a toolbar and potentially other widgets,
such as a TabBar and a FlexibleSpaceBar.

= App bars are typically used in the Scaffold.appBar property, which
places the app bar as a fixed-height widget at the top of the
screen.

= The AppBar displays the toolbar widgets, leading, title,and actions,
above the bottom (if any).The bottom is usually used for
a labBar.

class MyStatelessWidget extends StatelessWidget { cading S actgns

const MyStatelessWidget({Key? key}) : super(key: key); [EE;] g [EE;][EE;][ZE;]
e

@override
Widget build(BuildContext context) {
return Scaffold(

5
spoar . Apper .

title: const Text('AppBar Demo'),

flexibleSpace

bottom

https://api.flutter.dev/flutter/material/TabBar-class.html
https://api.flutter.dev/flutter/material/FlexibleSpaceBar-class.html
https://api.flutter.dev/flutter/material/Scaffold/appBar.html
https://api.flutter.dev/flutter/material/AppBar/leading.html
https://api.flutter.dev/flutter/material/AppBar/title.html
https://api.flutter.dev/flutter/material/AppBar/actions.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/TabBar-class.html

APP BAR: SCAFFOLDING A MATERIAL APP

APP BAR: SCAFFOLDING A MATERIAL APP

¢ main.dart

| Am Rich

main() {
runApp (
MaterialApp(

home: Scaffold(

backgroundColor: Colors.
appBar: AppBar(

title: Text()

backgroundColor: Colors.
)
body: Center(

child: Image(

image:
NetworkImage(

LIST VIEW

ListView is the most commonly used scrolling widget. It displays its

children one after another in the scroll direction. In the cross axis, the
children are required to fill the ListView.

" There are four options for constructing a ListView, however we will

cover only two of them:

The default constructor takes an explicit List<VVidget> of children.This
constructor is appropriate for list views with a small number of children
because constructing the List requires doing work for every child that

could possibly be displayed in the list view instead of just those children
that are actually visible.

The ListView.builder constructor takes an IndexedVVidgetBuilder, which
builds the children on demand.This constructor is appropriate for list
views with a large (or infinite) number of children because the builder is
called only for those children that are actually visible.

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

LIST VIEW

ListView(
padding: const Edgelnsets.all(8),
children: <Widget>[
Container(
height: 50,
color: Colors.amber[600],
child: const Center(child: Text('Entry A')),
i
Container(
height: 50,
color: Colors.amber[500],
child: const Center(child: Text('Entry B')),
i
Container(
height: 50,
color: Colors.amber[100],
child: const Center(child: Text('Entry C')),
),
I

This example uses the default constructor

for ListView which takes an explicit List<VWidget> of
children.This ListView's children are made up

of Containers with Text.

Entry A

Entry B

Entry C

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html

LIST VIEW

final List<String> entries = <String>['A', 'B', 'C']; This example mirrors the previous one, creating the
final List<int> colorCodes = <int>[600, 500, 100]; same list using the ListView.builder constructor. Using

the IndexedWidgetBuilder, children are built lazily and
ListView.builder(can be infinite in number.

padding: const EdgeInsets.all(8),
itemCount: entries.length,
itemBuilder: (BuildContext context, int index) {
return Container(
height: 50,
color: Colors.amber[colorCodes[index]],
child: Center(child: Text('Entry ${entries[index]}")),
);
}
I

https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

BUILD A CUSTOMWIDGET

Everything’s a widget in Flutter... so wouldn’t it be
nice to know how to make your own?

BMI CALCULATOR
EREEE- L

BMI CALCULATOR

There are several methods to create custom
widgets, but the most basic is to combine simple
existing widgets into the more complex widget that
you want,

This is called composition

In Practical steps (Put your cursor on Any Nested
Widget and right-click to show the context
menu. Then choose Refactor » Extract »
Extract Flutter Widget....)

CALCULATE

IconButton Slider Text

P o037

01:15

01:15 of)) w—

Text Container

NAVIGATION IN FLUTTER

Flutter has an imperative routing mechanism, the Navigator widget, and a
more idiomatic declarative routing mechanism (which is similar to build
methods as used with widgets), the Router widget.

The two systems can be used together (indeed, the declarative system is
built using the imperative system).

Typically, small applications are served well by just using the Navigator API,
via the Material App constructor’s Material App.routes property.

To learn about Navigator and its imperative API, see the Navigation
recipes in the Flutter cookbook, and the Navigator API docs.

More elaborate applications are usually better served by the Router API,
via the MaterialApp.router constructor.

https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://docs.flutter.dev/cookbook/navigation
https://docs.flutter.dev/cookbook
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html

NAVIGATE TO A NEW SCREEN AND BACK

Most apps contain several screens for displaying different types of First Route Second Route
information. For example, an app might have a screen that displays
products.When the user taps the image of a product, a new screen
displays details about the product.

= Terminology: In Flutter, screens and pages are called routes.The
remainder of this recipe refers to routes.

= In Android, a route is equivalent to an Activity. In iOS, a route is
equivalent to a ViewController. In Flutter, a route is just a
widget.

= This coming example uses the Navigator to navigate to a new
route.

The next few sections show how to navigate between two routes, using these steps:

1. Create two routes.
2. Navigate to the second route using Navigator.push(). 13
3. Return to the first route using Navigator.pop().

https://api.flutter.dev/flutter/widgets/Navigator-class.html

NAVIGATE TO A NEW SCREEN AND BACK

|. Create two routes:

First, create two routes to work with. Since this is a basic example, each route contains only a single button.

= Tapping the button on the first route navigates to the second route.

class FirstRoute extends StatelessWidget {
const FirstRoute({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('First Route'),
i
body: Center(
child: ElevatedButton(
child: Text('Open route'),
onPressed: () {

// Navigate to second route when tapped.

Tapping the button on the second route returns to the first route. First, set up the visual structure:

class SecondRoute extends StatelessWidget {
const SecondRoute({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text("Second Route"),
e
body: Center(
child: ElevatedButton(
onPressed: () {
// Navigate back to first route when tapped.

e
child: Text('Go back!'"),

NAVIGATE TO A NEW SCREEN AND BACK

2. Navigate to the second route using Navigator.push()

= To switch to a new route, use the Navigator.push() method.The push() method adds a Route to the stack of

routes managed by the Navigator.Where does the Route come from!? You can create your own, or use
a MaterialPageRoute, which is useful because it transitions to the new route using a platform-specific animation.

In the build() method of the FirstRoute widget, update the onPressed() callback:

// Within the "FirstRoute’ widget
onPressed: () {
Navigator.push(
context,

MaterialPageRoute(builder: (context) => SecondRoute()),
>
'

https://api.flutter.dev/flutter/widgets/Navigator/push.html
https://api.flutter.dev/flutter/material/MaterialPageRoute-class.html

NAVIGATE TO A NEW SCREEN AND BACK

3. Return to the first route using Navigator.pop()

= How do you close the second route and return to the first? By using the Navigator.pop() method.
The pop() method removes the current Route from the stack of routes managed by the Navigator.

= To implement a return to the original route, update the onPressed() callback in
the SecondRoute widget:

// Within the SecondRoute widget

onPressed: () {
Navigator.pop(context);

}

https://api.flutter.dev/flutter/widgets/Navigator/pop.html

INTERACTIVE EXAMPLE

. £ K Flutt ey class FirstRoute extends StatelessWidget {
~ngar package:flutter/material.dart’; const FirstRoute({Key? key}) : super(key: key);

@override
Widget build(BuildContext context) ({

return Scaffold(

void main() {
runApp(const MaterialApp(

title: 'Navigation Basics',
home: FirstRoute(), appBar : “AppBar(. ,
)) title: const Text('First Route'),
]),
} body: Center(

child: ElevatedButton(
child: const Text('Open route'),
onPressed: () {
Navigator.push(

context,
MaterialPageRoute(builder: (context) => const SecondRoute()),

INTERACTIVE EXAMPLE

class SecondRoute extends StatelessWidget {
const SecondRoute({Key? key}) : super(key: key);

3 N %
@override First Route % 4 Second Route %
Widget build(BuildContext context) {

return Scaffold(
appBar: AppBar(
title: const Text("Second Route"),
),
body: Center(
child: ElevatedButton(

onPressed: () { ==
Go back!

NaVigat()l .p p(C) '
o ontext ’ pen route
}I

child: const Text('Go back!'),

STATEFULWIDGETS AND BUILDING AN INTERACTIVE
APPLICATIONS

Scaffold What We’” Make

/

Row

Image Image

. D D D D
dicel.png é dice2.png

STATEFULWIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

= A widget is either stateful or stateless. If a widget can change—when a user interacts with it, for example—it’s
stateful.

= A stateless widget never changes. Icon, IconButton, and Text are examples of stateless widgets. Stateless widgets
subclass StatelessVVidget.

= A stateful widget is dynamic: for example, it can change its appearance in response to events triggered by user
interactions or when it receives data. Checkbox, Radio, Slider; InkVVell, Form, and TextField are examples of
stateful widgets. Stateful widgets subclass StatefulVVidget.

= A widget’s state is stored in a State object, separating the widget’s state from its appearance.

" The state consists of values that can change, like a slider’s current value or whether a checkbox is checked.
When the widget’s state changes, the state object calls setState(), telling the framework to redraw the
widget.

Active Inactive 20

https://api.flutter.dev/flutter/widgets/Icon-class.html
https://api.flutter.dev/flutter/material/IconButton-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/material/Checkbox-class.html
https://api.flutter.dev/flutter/material/Radio-class.html
https://api.flutter.dev/flutter/material/Slider-class.html
https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/Form-class.html
https://api.flutter.dev/flutter/material/TextField-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/State-class.html

STATEFULWIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

A ‘Y @ 14:30
000

[main()]—)[MyHomePageH_MyHomePageState]

MaterialApp

Scaffold

[AppBar] [Center] [FloatingActionButton]

import 'package:flutter/material.dart’;

You have pushed the button this many times:
| Text() I | Text() I O

Flutter Demo Home Page

The starting point...

void main() => runApp(MyHomePage());

class MyHomePage extends StatefulWidget {

@override °
_MyHomePageState createState() => _MyHomePageState();
} 21

STATEFULWIDGETS AND BUILDING AN INTERACTIVE

APPLICATIONS

, , So here is our full Widget tree.
You may notice that we have returned an object of _MyHomePageState

Class. This class is of type State<MyHomePage> and has a build() method

that returns the Widget that should appear on the screen. @override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(

class _MyHomePageState extends State<MyHomePage> { title: Text(‘Hello Flutter’),
@override)5
Widget build(BuildContext context) { body: Center(
return null; child: Column(
} mainAxisAlignment: MainAxisAlignment.center,
} children: <Widget>|

Text(‘You have pushed the button this many times:’,),
Text(‘$_counter’),

In _MyHomePageState we will now have a global variable that will) 1,
represent state of our app and a method that will change the state of our), '
app on every click of FloatingActionButton. floatingActionButton: FloatingActionButton(

onPressed: _incrementCounter,
tooltip: ‘Increment’,
child: Icon(Icons.add),
int _counter = 0;),
void _incrementCounter() {) 22
setState(() { .
Ecounte -t) ’

}); }

KEY POINTS

Flutter has widget for almost everything you need, and it allows you to
build your own custom widget if you want to build your own brand
widgets.

A ListView and ListTile widgets are very useful when you want your
app has any kind of list.

The navigation in Flutter is done by Navigator API from
Material App widget.

You should always start by creating StatelessWidgets and only
use StatefulWidgets when you need to manage and maintain the
state of your widget.

Most of the time you can use Stateless widgets unless you want to
update data on the Ul !

