
OBJECT-ORIENTED
PROGRAMMING I

IT 411

IT DEPT.

TIU

4RD GRADE

Lect. Mohammad Salim 1

Presentation 3

Application Bar, List View and
Build A Custom Widget

25 Nov 2021

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

COURSE CONTENT

¡ Flutter and OOP

2

CONTENTS

¡ Application bar

¡ List view

¡ Build a custom widget

¡ Navigation in Flutter

¡ Stateful Widgets and building an interactive
applications

3

APP BAR: SCAFFOLDING A MATERIAL APP

¡ By using MaterialApp widget we can get
Scaffold widget.

¡ Scaffold help us to get many attributes like
appBar and BottomBar and many more
others.

¡ The scaffold will expand to fill the
available space. That usually means that it
will occupy its entire window or device
screen.

4

APP BAR: SCAFFOLDING A MATERIAL APP

¡ An app bar consists of a toolbar and potentially other widgets,
such as a TabBar and a FlexibleSpaceBar.

¡ App bars are typically used in the Scaffold.appBar property, which
places the app bar as a fixed-height widget at the top of the
screen.

¡ The AppBar displays the toolbar widgets, leading, title, and actions,
above the bottom (if any). The bottom is usually used for
a TabBar.

5

https://api.flutter.dev/flutter/material/TabBar-class.html
https://api.flutter.dev/flutter/material/FlexibleSpaceBar-class.html
https://api.flutter.dev/flutter/material/Scaffold/appBar.html
https://api.flutter.dev/flutter/material/AppBar/leading.html
https://api.flutter.dev/flutter/material/AppBar/title.html
https://api.flutter.dev/flutter/material/AppBar/actions.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/AppBar/bottom.html
https://api.flutter.dev/flutter/material/TabBar-class.html

APP BAR: SCAFFOLDING A MATERIAL APP

6

APP BAR: SCAFFOLDING A MATERIAL APP

7

LIST VIEW

¡ ListView is the most commonly used scrolling widget. It displays its
children one after another in the scroll direction. In the cross axis, the
children are required to fill the ListView.

¡ There are four options for constructing a ListView, however we will
cover only two of them:

1. The default constructor takes an explicit List<Widget> of children. This
constructor is appropriate for list views with a small number of children
because constructing the List requires doing work for every child that
could possibly be displayed in the list view instead of just those children
that are actually visible.

2. The ListView.builder constructor takes an IndexedWidgetBuilder, which
builds the children on demand. This constructor is appropriate for list
views with a large (or infinite) number of children because the builder is
called only for those children that are actually visible. 8

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

LIST VIEW

This example uses the default constructor
for ListView which takes an explicit List<Widget> of
children. This ListView's children are made up
of Containers with Text.

9

https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/dart-core/List-class.html
https://api.flutter.dev/flutter/widgets/ListView-class.html
https://api.flutter.dev/flutter/widgets/Container-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html

LIST VIEW

This example mirrors the previous one, creating the
same list using the ListView.builder constructor. Using
the IndexedWidgetBuilder, children are built lazily and
can be infinite in number.

10

https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html
https://api.flutter.dev/flutter/widgets/IndexedWidgetBuilder.html

BUILD A CUSTOM WIDGET

¡ Everything’s a widget in Flutter… so wouldn’t it be
nice to know how to make your own?

¡ There are several methods to create custom
widgets, but the most basic is to combine simple
existing widgets into the more complex widget that
you want,

¡ This is called composition

¡ In Practical steps (Put your cursor on Any Nested
Widget and right-click to show the context
menu. Then choose Refactor ▸ Extract ▸
Extract Flutter Widget….)

11

NAVIGATION IN FLUTTER

¡ Flutter has an imperative routing mechanism, the Navigator widget, and a
more idiomatic declarative routing mechanism (which is similar to build
methods as used with widgets), the Router widget.

¡ The two systems can be used together (indeed, the declarative system is
built using the imperative system).

1. Typically, small applications are served well by just using the Navigator API,
via the MaterialApp constructor’s MaterialApp.routes property.

To learn about Navigator and its imperative API, see the Navigation
recipes in the Flutter cookbook, and the Navigator API docs.

2. More elaborate applications are usually better served by the Router API,
via the MaterialApp.router constructor.

12

https://api.flutter.dev/flutter/material/MaterialApp/routes.html
https://docs.flutter.dev/cookbook/navigation
https://docs.flutter.dev/cookbook
https://api.flutter.dev/flutter/widgets/Navigator-class.html
https://api.flutter.dev/flutter/material/MaterialApp/MaterialApp.router.html

NAVIGATE TO A NEW SCREEN AND BACK
Most apps contain several screens for displaying different types of
information. For example, an app might have a screen that displays
products. When the user taps the image of a product, a new screen
displays details about the product.

¡ Terminology: In Flutter, screens and pages are called routes. The
remainder of this recipe refers to routes.

¡ In Android, a route is equivalent to an Activity. In iOS, a route is
equivalent to a ViewController. In Flutter, a route is just a
widget.

¡ This coming example uses the Navigator to navigate to a new
route.

13

https://api.flutter.dev/flutter/widgets/Navigator-class.html

NAVIGATE TO A NEW SCREEN AND BACK
1. Create two routes:

¡ First, create two routes to work with. Since this is a basic example, each route contains only a single button.

¡ Tapping the button on the first route navigates to the second route.

¡ Tapping the button on the second route returns to the first route. First, set up the visual structure:

14

NAVIGATE TO A NEW SCREEN AND BACK

2. Navigate to the second route using Navigator.push()

¡ To switch to a new route, use the Navigator.push() method. The push() method adds a Route to the stack of
routes managed by the Navigator. Where does the Route come from? You can create your own, or use
a MaterialPageRoute, which is useful because it transitions to the new route using a platform-specific animation.

¡ In the build() method of the FirstRoute widget, update the onPressed() callback:

15

https://api.flutter.dev/flutter/widgets/Navigator/push.html
https://api.flutter.dev/flutter/material/MaterialPageRoute-class.html

NAVIGATE TO A NEW SCREEN AND BACK

3. Return to the first route using Navigator.pop()

¡ How do you close the second route and return to the first? By using the Navigator.pop() method.
The pop() method removes the current Route from the stack of routes managed by the Navigator.

¡ To implement a return to the original route, update the onPressed() callback in
the SecondRoute widget:

16

https://api.flutter.dev/flutter/widgets/Navigator/pop.html

INTERACTIVE EXAMPLE

17

INTERACTIVE EXAMPLE

18

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE
APPLICATIONS

19

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE
APPLICATIONS

¡ A widget is either stateful or stateless. If a widget can change—when a user interacts with it, for example—it’s
stateful.

¡ A stateless widget never changes. Icon, IconButton, and Text are examples of stateless widgets. Stateless widgets
subclass StatelessWidget.

¡ A stateful widget is dynamic: for example, it can change its appearance in response to events triggered by user
interactions or when it receives data. Checkbox, Radio, Slider, InkWell, Form, and TextField are examples of
stateful widgets. Stateful widgets subclass StatefulWidget.

¡ A widget’s state is stored in a State object, separating the widget’s state from its appearance.

¡ The state consists of values that can change, like a slider’s current value or whether a checkbox is checked.
When the widget’s state changes, the state object calls setState(), telling the framework to redraw the
widget.

20

https://api.flutter.dev/flutter/widgets/Icon-class.html
https://api.flutter.dev/flutter/material/IconButton-class.html
https://api.flutter.dev/flutter/widgets/Text-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/material/Checkbox-class.html
https://api.flutter.dev/flutter/material/Radio-class.html
https://api.flutter.dev/flutter/material/Slider-class.html
https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/Form-class.html
https://api.flutter.dev/flutter/material/TextField-class.html
https://api.flutter.dev/flutter/widgets/StatefulWidget-class.html
https://api.flutter.dev/flutter/widgets/State-class.html

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE
APPLICATIONS

21

STATEFUL WIDGETS AND BUILDING AN INTERACTIVE
APPLICATIONS

22

¡ Flutter has widget for almost everything you need, and it allows you to
build your own custom widget if you want to build your own brand
widgets.

¡ A ListView and ListTile widgets are very useful when you want your
app has any kind of list.

¡ The navigation in Flutter is done by Navigator API from
MaterialApp widget.

¡ You should always start by creating StatelessWidgets and only
use StatefulWidgets when you need to manage and maintain the
state of your widget.

¡ Most of the time you can use Stateless widgets unless you want to
update data on the UI !

23

