
OBJECT-ORIENTED
PROGRAMMING I

IT 411

IT DEPT.

TIU

3RD GRADE

Lect. Mohammad Salim 1

Presentation 4 (Last)

Application Bar, List View and
Build A Custom Widget

8 Dec 2021

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

COURSE CONTENT

¡ Flutter and OOP

2

CONTENTS

3

Material Design

Colors and Themes

Build for Android and iOS

Handle user input, gestures and responsive design

MATERIAL DESIGN

¡ Material is an adaptable system of
guidelines, components, and tools that
support the best practices of user
interface design.

¡ Backed by open-source code, Material
streamlines collaboration between
designers and developers, and helps teams
quickly build beautiful products.

4

MATERIAL FLUTTER TUTORIALS

¡ In the following slides we’ll explore
some examples from these
tutorials.

5

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

¡ In this example, you'll build a login page for
Shrine that contains:

¡ An image of Shrine's logo

¡ The name of the app (Shrine)

¡ Two text fields, one for entering a username and
the other for a password

¡ Two buttons

6

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

¡ The text fields each have
a decoration: field that takes
an InputDecoration widget.
The filled: field means the
background of the text field is
lightly filled in to help people
recognize the tap or touch target
area of the text field.

¡ The second text
field's obscureText: true value
automatically replaces the input
that the user types with bullets,
which is appropriate for
passwords. 7

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

Choosing between text and elevated buttons

¡ We'll use two kinds of MDC button widgets: the TextButton and
the ElevatedButton.

¡ Why not simply display two elevated buttons? Each button type
indicates which actions are more important than others.

¡ The action we'd least like them to take is cancelling the login. Because
an elevated button draws the eye with its raised appearance, it should
be used for the more important action. By comparison, the plain text
button to the left of it looks less emphasized.

8

Add Buttons

https://codelabs.developers.google.com/codelabs/mdc-101-flutter

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

9

Add Buttons

Why do we have empty blocks for the onPressed: fields?
If we passed null, or didn't include the field (which then defaults
to null), the buttons would become disabled. There would be
no feedback on touch and we couldn't get a good idea of their
enabled behavior. Using empty blocks prevents them from
being disabled.

https://codelabs.developers.google.com/codelabs/mdc-101-flutter

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

¡ The ButtonBar handles the layout work for you. It
positions the buttons horizontally, so they appear
next to one another.

¡ Touching a button initiates an ink ripple animation,
without causing anything else to happen.

¡ Let's add functionality into the
anonymous onPressed: functions, so that the cancel
button clears the text fields, and the next button
dismisses the screen:

Add TextEditingControllers

10

Add Buttons

Now when you type something into the text fields,
hitting cancel clears each field again!

https://codelabs.developers.google.com/codelabs/mdc-101-flutter

COLORS AND THEMES

¡ The Material Design color system can help you
create a color theme that reflects your brand or
style.

¡ The Material Design color system helps you apply
color to your UI in a meaningful way. In this system,
you select a primary and a secondary color to
represent your brand. Dark and light variants of
each color can then be applied to your UI in
different ways.

¡ Color themes are designed to be harmonious,
ensure accessible text, and distinguish UI elements
and surfaces from one another.

¡ The Material Design palette tool or 2014 Material
Design palettes are available to help you select
colors. 11

https://material.io/design/color/the-color-system

COLOR THEME CREATION

¡ Material Design comes designed with a
built-in, baseline theme that can be used as-
is, straight out of the proverbial box.

This includes default colors for:

1. Primary and secondary colors

2. Variants of primary and secondary colors

3. Additional UI colors, such as colors for
backgrounds, surfaces, errors, typography,
and iconography.

¡ All of these colors can be customized for
your app.

12

The baseline Material color theme

PRIMARY COLOR

¡ A primary color is the color displayed most
frequently across your app's screens and components.

Dark and light primary variants

¡ Your primary color can be used to make a color
theme for your app, including dark and light primary
color variants.

¡ Distinguish UI elements

¡ To create contrast between UI elements, such as a top
app bar from a system bar, you can use light or dark
variants of your primary colors.

¡ You can also use these to distinguish elements within
a component, such as the icon of a floating action
button from its circular container.

13

PRIMARY COLOR

¡ A top app bar uses light
and dark primary color
variants to distinguish it
from a system bar.

¡ This UI uses a primary
color and two primary
variants.

14

SECONDARY COLOR
¡ A secondary color provides more ways to accent

and distinguish your product. Having a secondary
color is optional, and should be applied sparingly to
accent select parts of your UI.

¡ If you don’t have a secondary color, your primary
color can also be used to accent elements.

¡ Secondary colors are best for:

1. Floating action buttons

2. Selection controls, like sliders and switches

3. Highlighting selected text

4. Progress bars

5. Links and headlines

¡ Just like the primary color, your secondary color can
have dark and light variants. A color theme can use
your primary color, secondary color, and dark and
light variants of each color.

15

SECONDARY COLOR

¡ Dark and light variants of primary and
secondary colors

¡ This UI uses a color theme with a
primary color, a primary variant, and a
secondary color.

16

SURFACE, BACKGROUND, AND ERROR COLORS

¡ Surface, background, and error colors
typically don’t represent brand:

¡ Surface colors affect surfaces of
components, such as cards, sheets, and
menus.

¡ The background color appears behind
scrollable content. The baseline
background and surface color is #FFFFFF.

¡ Error color indicates errors in
components, such as invalid text in a text
field. The baseline error color is #B00020.

17

TYPOGRAPHY AND ICONOGRAPHY COLORS

"On" colors

¡ App surfaces use colors from specific categories in your
color palette, such as a primary color. Whenever elements,
such as text or icons, appear in front of those surfaces,
those elements should use colors designed to be clear and
legible against the colors behind them.

¡ This category of colors is called “on” colors, referring to
the fact that they color elements that appear “on” top of
surfaces that use the following colors: a primary color,
secondary color, surface color, background color, or error
color. When a color appears “on” top of a primary color, it’s
called an “on primary color.” They are labelled using the
original color category (such as primary color) with the
prefix “on.”

¡ “On” colors are primarily applied to text, iconography, and
strokes. Sometimes, they are applied to surfaces.

¡ The default values for “on” colors are #FFFFFF and
#000000. 18

ALTERNATIVE COLORS

¡ The Material Design color system supports alternative colors, which are colors used as alternatives to your
brand’s primary and secondary colors (they constitute additional colors to your theme). Alternative colors can be
used to distinguish different sections of a UI.

1. Alternative colors are best for:

2. Apps with light and dark themes

3. Apps with different themes in different sections

4. Apps that are part of a suite of products

¡ Alternative colors should be used cautiously, because they can be challenging to implement cohesively with
existing color themes.

19

ALTERNATIVE COLORS

Light and dark themes

¡ Some apps have both light and dark themes.

¡ To maintain visibility of elements and legibility of text,
you can adapt the different color schemes for dark
and light themes.

20

ALTERNATIVE COLORS FOR SECTION THEMES

¡ Alternative colors can be used to theme different
parts of an app.

¡ This app has three primary colors.

¡ Distinct themes are used in different parts of the
app, allowing users to better locate themselves
within it.

21

ALTERNATIVE COLORS FOR SECTION THEMES

Theme 1

¡ Yellow is used as the primary color for
areas such as onboarding and choosing
content of interest.

22

ALTERNATIVE COLORS FOR SECTION THEMES

Theme 2

¡ Blue is used as the primary color for areas
of the app that relate to the user’s
personal account, such as selected courses.

23

ALTERNATIVE COLORS FOR SECTION THEMES

Theme 3

¡ Pink is used as the primary color for
courses.

24

TOOLS FOR PICKING COLORS

25https://material.io/resources/color/

BUILDING PLATFORM SPECIFIC UI (IOS & ANDROID

¡ With Flutter, we are able to design apps that look native to both iOS
and Android using a single code base.

¡ For example, an appBar will render differently on iOS and Android.
The title text, position and font are appropriate to the platform as is
the back navigation button.

¡ In Flutter, you can import dart:io and use Platform property to look
up which platform you are currently running on. The API is quite nice:

26

BUILDING PLATFORM SPECIFIC UI (IOS & ANDROID

¡ To incorporate specific native widgets, we can use the
themes platform property to determine the platform
and build a relevant widgets accordingly in either the
Material or Cupertino style.

¡ Here is a Material switch when we toggle between
device platforms via the Flutter inspector, the switch
style does not change.

¡ To use Cupertino widgets, we import the
Cupertino.dart package.

¡ This allows us to use the Cupertino switch.

¡ We will check if the platform is iOS, and if it is, we
show the CupertinoSwitch. Now, when we toggle
between devices, the iOS version shows the default
iOS toggle.

27

BUILDING PLATFORM SPECIFIC UI (IOS & ANDROID

¡ You can customize the master theme and its
properties.

¡ This master theme is propagated down the widget
tree. Child widgets are able to inherit the master
theme's styling.

¡ The child widget can also override the theme and
customize their styling.

28

CREATE AND STYLE A TEXT FIELD

¡ Text fields allow users to type text into an app. They are used to build forms, send messages, create search experiences,
and more. In this recipe, explore how to create and style text fields.

¡ Flutter provides two text fields:TextField and TextFormField.

29

https://api.flutter.dev/flutter/material/TextField-class.html
https://api.flutter.dev/flutter/material/TextFormField-class.html

CREATE AND STYLE A TEXT FIELD

30

INTERACTIVE EXAMPLE

31

HANDLE CHANGES TO A TEXT FIELD

¡ In some cases, it’s useful to run a callback function every time the text in a text field changes. For example, you
might want to build a search screen with autocomplete functionality where you want to update the results as the
user types.

How do you run a callback function every time the text changes? With Flutter, you have two options:

1. Supply an onSubmitted or onChanged() callback to a TextField or a TextFormField.

2. Use a TextEditingController.

32

HANDLE CHANGES TO A TEXT FIELD

33

GESTURES

¡ Responding to gestures is vital to an interactive app. Examples of gestures include taps,
drags and scaling.

¡ If we want to add our own interactivity to any widget, we can wrap the widget in a
GestureDetector. Gestures can make an app experience feel much more seamless.

¡ Material design applications typically react to touches with ink splash effects.
The InkWell class implements this effect and can be used in place of
a GestureDetector for handling taps.

¡ If this widget has a child, it defers to that child for its sizing behavior. If it does not have a
child, it grows to fit the parent instead.

¡ GestureDetector widget Attempts to recognize gestures that correspond to its non-
null callbacks.

34

https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html

EXAMPLE

35

CREATING RESPONSIVE AND ADAPTIVE APPS

¡ One of Flutter’s primary goals is to create a framework that
allows you to develop apps from a single codebase that look
and feel great on any platform.

¡ This means that your app may appear on screens of many
different sizes, from a watch, to a foldable phone with two
screens, to a high def monitor.

¡ Two terms that describe concepts for this scenario
are adaptive and responsive.

¡ Ideally, you’d want your app to be both but what, exactly,
does this mean? These terms are similar, but they are not
the same.

36

THE DIFFERENCE BETWEEN AN ADAPTIVE AND A RESPONSIVE APP

Adaptive and responsive can be viewed as separate dimensions of an app:

HOWEVER, you can have an adaptive app that is not responsive, or vice versa.

And, of course, an app can be both, or neither.

¡ Responsive :

Typically, a responsive app has had its layout tuned for the available screen size. Often this means (for example), re-laying out
the UI if the user resizes the window, or changes the device’s orientation. This is especially necessary when the same app
can run on a variety of devices, from a watch, phone, tablet, to a laptop or desktop computer.

¡ Adaptive

Adapting an app to run on different device types, such as mobile and desktop, requires dealing with mouse and keyboard
input, as well as touch input. It also means there are different expectations about the app’s visual density, how component
selection works (cascading menus vs bottom sheets, for example), using platform-specific features (such as top-level
windows), and more.

37

CREATING A RESPONSIVE FLUTTER APP
¡ Flutter allows you to create apps that self-adapt to the device’s screen size and orientation.

There are two basic approaches to creating Flutter apps with responsive design:

¡ Use the LayoutBuilder class
From its builder property, you get a BoxConstraints object. Examine the constraint’s properties to decide what to display.
For example, if your maxWidth is greater than your width breakpoint, return a Scaffold object with a row that has a list
on the left. If it’s narrower, return a Scaffold object with a drawer containing that list.

You can also adjust your display based on the device’s height, the aspect ratio, or some other property. When the
constraints change (for example, the user rotates the phone, or puts your app into a tile UI in Nougat), the build function
runs.

¡ Use the MediaQuery.of() method in your build functions
This gives you the size, orientation, etc, of your current app. This is more useful if you want to make decisions based on the
complete context rather than on just the size of your particular widget. Again, if you use this, then your build function
automatically runs if the user somehow changes the app’s size.

Other useful widgets and classes for creating a responsive UI:

AspectRatio, CustomSingleChildLayout, CustomMultiChildLayout, FittedBoxFractionallySizedBox, LayoutBuilder,
MediaQuery, MediaQueryData, OrientationBuilder. 38

https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder/builder.html
https://api.flutter.dev/flutter/rendering/BoxConstraints-class.html
https://api.flutter.dev/flutter/rendering/BoxConstraints/maxWidth.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery/of.html
https://api.flutter.dev/flutter/widgets/AspectRatio-class.html
https://api.flutter.dev/flutter/widgets/CustomSingleChildLayout-class.html
https://api.flutter.dev/flutter/widgets/CustomMultiChildLayout-class.html
https://api.flutter.dev/flutter/widgets/FittedBox-class.html
https://api.flutter.dev/flutter/widgets/FractionallySizedBox-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery-class.html
https://api.flutter.dev/flutter/widgets/MediaQueryData-class.html
https://api.flutter.dev/flutter/widgets/OrientationBuilder-class.html

PACKAGES, PLUGINS, AND PUBSPEC.YAML

¡ Just like with widgets, we don't want to reinvent the wheel each time
we start to add a big feature to our app. Login, authentication,
network calls, what should we use?

¡ The answer is packages.

¡ Package is a library of functions that can be shared easily.

¡ Packages enable the creation of modular code that can be
shared easily.

¡ We can use both Flutter and Dart packages.

¡ Some integrate with device APIs such as the Battery package.
These are called plug-ins as they interface with either the IoS or
Android platforms.

¡ Others, such as the Firebase package, are just called regular
packages.

¡ We already used the material package and we will also be using
the Dart IO package to connect to our API. You can also
write and publish your own packages.

39

PACKAGES, PLUGINS, AND PUBSPEC.YAML

¡ In order to use packages, we have to specify our dependencies in a
pubspec.yaml file which contains metadata for our app. Information that
you include into

¡ Pubspec include the name, version, description, authors, dependencies,
and more.

¡ For Flutter applications, a dependency would be the Flutter SDK. We
can also specify assets and fonts inside Pubspec.

¡ When you make changes to Pubspec.yaml, you'll want to run a flutter
packages PUB GET this will gets or updates the required packages that your
app depends on.

¡ Even though you import a large package, only the functions you use end up
being compiled down to code in release mode. This is because Flutter uses
tree shaking to remove redundant and unused code in the
compilation process for the binary used in production.

¡ You can search for packages on the Dart packages site. Using packages
and plugins can make your development that much more efficient. 40

IMAGE AND ICON ASSETS

¡ Icons and images are also saved and managed
within the assets directory and pubspec.yaml
file.

¡ Material design provides over built-in icons,
such as play, refresh, alarm, pets, insert
photo, and more. The material components also
incorporate these icons.

¡ You can use them by setting "Use material icon
to true" in your apps pubspec.yaml file.

¡ These icons can be used in icon buttons which let
you specify a function to run when the icon is
tapped.

¡ The flutter image widget has separate
constructors based on whether your path
points to an asset, local file, or from the
Web.

41

NO ASSETS? USE AN API!

¡ Sometimes, the data you want to save changes. So, you can't
save it in an asset.

¡ For example, you might want to randomly select a cute
animal picture from an API each day or for this app, you might
want to know this moment's exchange rate for currencies.

¡ For this, we will call an API which retrieves real-time data.
Connecting to APIs can be done with the HTTP client in
dart:io.

¡ We create a HTTP client that points to our endpoint. Our
current app does not require authentication or an API key.

¡ So we just hit the endpoint with our to from an amount
query parameters to get the unit conversion that we want. 42

NO ASSETS? USE AN API!

¡ You can try out some queries by going to
flutter.udacity.com/currency in your
browser.

¡ An API doesn't immediately return your data
the way a local asset would because Dart runs
in a single thread.

¡ If we solely wait for the API call to return,
we would see a frozen screen and we
wouldn't be able to interact with the app.

¡ The API call may take some time to return
based on the server's speed, your Internet
connection, and other factors.

43

Result:

NO ASSETS? USE AN API!

¡ Rather than wait for it, we wrap the API in an
asynchronous operation.

¡ This lets your app continue to run without getting
blocked.

¡ Dart uses future objects to represent asynchronous
operations.

¡ When a function that returns a future is invoked, two
things happen.

¡ First, the function cues up work to be done and returns an
incomplete future object.

¡ Later, when a value is available, the future object completes
with that value or with an error. We'll discuss errors later.

44

NO ASSETS? USE AN API!
¡ We save the value that the future returns

into a variable and call await on the
function.

¡ We need to wrap the function in which this is
called with an async keyword.

¡ Let's look at how we do this for the convert
API call. First, we make a request to our
URI.

¡ Note that it returns a future object a
double. We also add the async keyword to
our convert function. Now let's get our
response. This is also an asynchronous
operation.

¡ So we add the await keyword.

¡ We have to decode our JSON response
body too before we parse it and return it to
the units.

¡ This is also an async operation. Then, we
return the conversion as a double.

45

Now you know both how to retrieve live data from an API and how to use
asynchronous functions.

46

¡ Material design is very useful and has interesting online tools to show you best practices

Regarding UI and UX design.

¡ Material Design color system can help you create a color theme that reflects your brand or style.

¡ Sometimes you need to get a specific native widget or behavior then you can check the device

Platform then customize your content using Cupertino and Material libraries.

¡ You learned about getting user text input and how to handle it.

¡ Images, Icons, and Fonts are useful assets that you can use or import into your app.

¡ If your App data changes! , then you need to use an API to get data from Internet.

