Presentation 4 (Last) _

I'T DEPT.

OBJECT-ORIENTED TIU
PROGRAMMING | B GRADE
IT 411

Application Bar, List View and
Build A Custom Widget

Thses slide notes are based on many different online resources such as Flutter.dev, Flutter Apprentice Book and The complete Fluter bootcamp course

Week Hour Date Topic
1 2 4-7/10/2021 Introduction to OOP , Class diagram
C O U R S E C O N T E N T 2 2 10-14/10/2021 Introduction to OOP , Class diagram and Dart Packages
3 2 17-21/10/2021 Section 1: Build Your First Flutter App, structure of Flutter projects, create the Ul o

a Flutter app by Widgets

Section 2: Everything’s a Widget, start to build a full-featured recipe app named

4 2 24-28/10/2021 Eocdalleh

5 2 31/10-4/11/2021 Section 2: Everything’s a Widget, start to build a full-featured recipe app named

Fooderlich
6 2 7-11/11/2021 Understanding widgets
7 2 14-18/11/2021 Midterm Exam
8 2 21-25/11/2021 Stateless widgets and build our personal profile application (HW2)

Flutter and OOP

9 2 28/11-2/12/2021 Application bar, list view and build a custom widget ’

10 2 5-9/12/2021 Navigation in Flutte, Stateful Widgets and building an interactive applications
11 2 12-16/12/2021 ‘ Material Design, Build for Android and iOS platforms, Colors and Themes

12 2 19-23/12/2021 Handle user input and Handle gestures and responsive design

13 2 26-30/12/2021 Flutter Packages and Plugins, Images, Icons, Fonts

14 2 2-5/1/2022 APls and how to get data from internet

15 2 9-13/1/2022 Final Exam

16 2 16-20/1/2022 Final Exam

CONTENTS

=Tr
- .O;Z:;tio.use‘f - False . .
Shriorn Clon — “urppop 7, Material Design
r_mod.use_x = fajge
::"Of‘_.od.uSe_y = False
For_mod.use_z = Trye
IR e ot the end -a Colors and Themes

S _ob.select= 1
ser_ob.select=1
b ntext.scene.objects.actiw . i]
S "selected” + str(modifier BUIICI fOI’Andro|d and IOS
pirror ob.select = 0
bpy.Zontext.selected_ot
.ata.objects[one.name].so~

lect exactip Handle user input, gestures and responsive design

wrint("please se

OPERATOR CLASSES -

MATERIAL DESIGN W MATERIAL DESIGN

ﬁ m ate rl a | ‘ IO/d eve I O p/fl u tte r . MATERIAL DESIGN Design Components Develop Resources Blog Q

Flutter ~

Components
VW

Documentation Fl utter Material Flutter GitHub repo

Transition patterns

= Material is an adaptable system of Bl et uale procucs uing Mot Camponens o Flater, bl U Famener E———
guidelines, components, and tools that
support the best practices of user
interface design.

= Backed by open-source code, Material
streamlines collaboration between
designers and developers, and helps teams
quickly build beautiful products.

DOCUMENTATION COMPONENTS
Learn about the MaterialApp class for Flutter Outlined text field

First time using Material Components? Here's an overview of how to use a convenience widget to add A new style of text field that draws attention

MATERIAL FLUTTER TUTORIALS

Material Flutter tutorials

Start implementing Material Components with these hands-on lessons for Flutter

= In the following slides we’ll explore
some examples from these
tutorials.

Flutter 101: Material basics Flutter 102: Structure and layout Flutter 103: Theming with color, shape,
motion, and type

Learn the basics of using Material Components for Learn how to use Material for structure and layout
Flutter by building a simple app with core on Flutter Discover how Material Components for Flutter
components make it easy to differentiate your product and
express your brand through design
Flutter 104: Advanced components Building Beautiful Transitions with
ot Material Motion for Flutter

earn how to use an advanced component —
backdrop menu — for Flutter Build Material's motion system into an example

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

= |n this example, you'll build a login page for
Shrine that contains:

= An image of Shrine's logo
" The name of the app (Shrine)

= Two text fields, one for entering a username and
the other for a password

= Two buttons

Android

\%

SHRINE

i0S

K 2:17

\4

SHRINE

NEXT

NEXT

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

Android

TO0DO:

, [Name ‘

= The text fields each have TaxtField! %\
a decoratlon:flelc? that takes v Jecoration(@
an InputDecoration widget. S mdt tre R

The filled: field means the 1abalText:
background of the text field is -
lightly filled in to help people
recognize the tap or touch target
area of the text field.

" The second text
field's obscureText: true value
automatically replaces the input
that the user types with bullets,
which is appropriate for
passwords.

TextField(
decoration: cons nputDecoration(
filled: true,
labelText: 'Pass

obscureText: true,

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

Add Buttons

i0S

27

Choosing between text and elevated buttons

= We'll use two kinds of MDC button widgets: the TextButton and
the ElevatedButton.

" Why not simply display two elevated buttons? Each button type
indicates which actions are more important than others.

= The action we'd least like them to take is cancelling the login. Because
an elevated button draws the eye with its raised appearance, it should
be used for the more important action. By comparison, the plain text
button to the left of it looks less emphasized.

SHRINE

NEXT

https://codelabs.developers.google.com/codelabs/mdc-101-flutter

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

Add Buttons

Add the buttons

Then add two buttons to the ButtonBar's list of children

Add the ButtonBar
After the text fields, add the ButtonBar to the ListView 's children: // TODO: Adc Q7

SHRINE

TextButton(
child: const Text(CANCEL'),
onPressed: () {

ButtonBar/(
TODO: Add a bevelec
1§ | 2ar tne

children: <Widget>|

. d . - - . h - o \ |

TODO: Add buttons

a ' . A A~ - - - -
Ono | ’) .
v [’ V. AU o L s

// TODO: Add a beve
ElevatedButton(
child: const Text(
onPressed: () {
" TODO: Show the next

The ButtonBar arranges its children in a row.

Why do we have empty blocks for the onPressed: fields?
If we passed null, or didn't include the field (which then defaults
to null), the buttons would become disabled. There would be
no feedback on touch and we couldn't get a good idea of their
enabled behavior. Using empty blocks prevents them from F
being disabled.)

https://codelabs.developers.google.com/codelabs/mdc-101-flutter

MATERIAL COMPONENTS (MDC) BASICS (FLUTTER)

Add Buttons

" The ButtonBar handles the layout work for you. It
positions the buttons horizontally, so they appear
next to one another.

= Touching a button initiates an ink ripple animation,
without causing anything else to happen.

= Let's add functionality into the
anonymous onPressed: functions, so that the cancel
button clears the text fields, and the next button
dismisses the screen:

Add TextEditingControllers
Now when you type something into the text fields,
hitting cancel clears each field again!

CANCEIL NEXT

To make it possible to clear the text fields' values, we'll add TextEditingControllers to control their text

Right under the _LoginPageState class's declaration, add the controllers as final variables.

TODO: Add text editing
final _usernameController
final _passwordController

TODO: Add T
EWN

TextField(
controller: _usernameController,

TextField(
controller: _passwordController,

Edit onPressed

Add a command to clear each controller in the TextButton's onPressed: function

TODO: Clear th

_usernameController.clear(
_passwordController.clear();

https://codelabs.developers.google.com/codelabs/mdc-101-flutter

COLORS AND THEMES

= The Material Design color system can help you

create a color theme that reflects your brand or ._“..
style.

= The Material Design color system helps you apply 900 800 700 60 Se0 400 300 200 100 S0 |

color to your Ul in a meaningful way. In this system, g
you select a primary and a secondary color to ‘,
represent your brand. Dark and light variants of

each color can then be applied to your Ul in
different ways.

= Color themes are designed to be harmonious,
ensure accessible text, and distinguish Ul elements A sample primary and secondary palette
and surfaces from one another.

= The Material Design palette tool or 2014 Material 1. Primary color
Design palettes are available to help you select 2. Secondary color
colors. 3. Light and dark variants I

https://material.io/design/color/the-color-system

COLOR THEME CREATION

The baseline Material color theme

= Material Design comes designed with a
built-in, baseline theme that can be used as-
is, straight out of the proverbial box.

This includes default colors for:
|. Primary and secondary colors
2. Variants of primary and secondary colors

3. Additional Ul colors, such as colors for
backgrounds, surfaces, errors, typography,
and iconography.

= All of these colors can be customized for
your app.

Primary Primary

Variant

e #370083

Background Surface

(s) T ¢) AFFFFFF #800020
On Primary On Secondary

Q SFFFFFF 0 #000000

On Background On Surface On Error

@ #000000 0 #000000 Q SFFFFFF

PRIMARY COLOR

= A primary color is the color displayed most
frequently across your app's screens and components.

Dark and light primary variants

= Your primary color can be used to make a color
theme for your app, including dark and light primary
color variants.

= Distinguish Ul elements

= To create contrast between Ul elements, such as a top
app bar from a system bar, you can use light or dark
variants of your primary colors.

= You can also use these to distinguish elements within
a component, such as the icon of a floating action
button from its circular container.

PRIMARY COLOR

= A top app bar uses light Lo
urple
and dark primary color
. . L. . . ___ nalytics Q
variants to distinguish it Analy

from a system bar. 123.4M 537

*Z2Z% of taege

= This Ul uses a primary

. — | ™
color and two primary mrg oy =

variants. VY 345 8 M
#6200EE R —
455 M S
4:53 H
#370083 231242 Bounce rate

Pogevews

12%

SECONDARY COLOR

= A secondary color provides more ways to accent
and distinguish your product. Having a secondary
color is optional, and should be applied sparingly to
accent select parts of your Ul

If you don’t have a secondary color, your primary
color can also be used to accent elements.

Secondary colors are best for:

2
3
4.
5

Floating action buttons

Selection controls, like sliders and switches
Highlighting selected text

Progress bars

Links and headlines

= Just like the primary color, your secondary color can
have dark and light variants.A color theme can use
your primary color, secondary color, and dark and
light variants of each color.

SECONDARY COLOR

= Dark and light variants of primary and
secondary colors

= This Ul uses a color theme with a
primary color, a primary variant, and a
secondary color.

Color swatches

A swatch is a sample of a color chosen from a range of similar colors.

Primary

Purple

123.4 M 537

#6200EE

\w.—~~ 3458M

s 453 H
23,242 S—

12% B9

SURFACE, BACKGROUND,AND ERROR COLORS

Background 0_ Marketing Conversion
= Surface, background, and error colors 1234 M 537
typically don’t represent brand: T PR
Conversion
= Surface colors affect surfaces of SFFFFFF 432 1M _...Il.
components, such as cards, sheets, and (1) 100% I O;WQN

menus. Surface

= The background color appears behind \/\/J

scrollable content. The baseline

background and surface color is #FFFFFF. e Users
Avg. session
= Error color indicates errors in 2] o 45.5M 453 H
components, such as invalid text in a text '
field. The baseline error color is #800020. Sessions #56.6% 00 tergut
23'242 Bounce rate

1 M0/

#800020

100%

"On" colors

App surfaces use colors from specific categories in your
color palette, such as a primary color.VWhenever elements,
such as text or icons, appear in front of those surfaces,
those elements should use colors designed to be clear and
legible against the colors behind them.

This category of colors is called “on” colors, referring to
the fact that they color elements that appear “on” top of
surfaces that use the following colors: a primary color,
secondary color, surface color, background color, or error
color.When a color appears “on” top of a primary color it’s
called an “on primary color” They are labelled using the
original color category (such as primary color) with the
prefix “on.”

“On” colors are primarily applied to text, iconography, and
strokes. Sometimes, they are applied to surfaces.

The default values for “on” colors are #FFFFFF and
#000000.

On Primary

On Secondary

On Background

On Surface

On Error

#FFFFFF
100%

#000000
100%

#000000
100%

#000000
100%

#FFFFFF
100%

TYPOGRAPHY AND ICONOGRAPHY COLORS

Analytics

Weekly stats

Marketing

123.4 M

Conversion

432.1TM

+12.3% of target

o~

Users

Conversion

537

+22% of target

—=nnlllzs ©

Error

N/A

No data available

45 5 M Avg. session
4:53 H

Sessions +56.6% of target

23’242 Bounce rate e—e 8
1 D0/

ALTERNATIVE COLORS

= The Material Design color system supports alternative colors, which are colors used as alternatives to your
brand’s primary and secondary colors (they constitute additional colors to your theme).Alternative colors can be
used to distinguish different sections of a UL.

|. Alternative colors are best for:
2. Apps with light and dark themes
3. Apps with different themes in different sections

4. Apps that are part of a suite of products

= Alternative colors should be used cautiously, because they can be challenging to implement cohesively with
existing color themes.

ng the lives

a
o0a0e008e %0 3t
K

b
b
b

transformir

S

ileged children in the inner city

B o S S

Poverty To

The Fortnightly

Empowerment In

Chicago
‘g‘ by Betty Eghan

How one woman iz

underpriv

8 2
¢ > ®
2 2 O
i D 5 £ ®
o R 2
- g L s 2
e ~ £y T 5
50 ~— £ 5 & E
] .u S 35 § <
S i v Zg o S =
2 : b g 2w S o
= i o 8z 4 ¥
wm. T Y 4L 2 3 2
E . Vo - % 2 o9
g i3 @ 2 = &
) = > ~
S oo i IS pw wm = =
© oo 2 am EE
3EE @
i RO =25
i)
X
U ¢
A
“— ©
O ©
tlie
- L
(7)) Q 8 o
E o 9
o 2 o m
O R
¥ Cc U
- s &7
v S
O v £
2§87
C © m o
2 9 c
LU & 22
nw = % g
(0]
v 9 =
-t £ E 25
T |nn_~ 0 M v .
£ wu
A » 9 TV o
> 2
x 8 S gE
N - c o 9
a (%] — T <
o « A
R O 5 8%y
T «© £ £ <
= S5
LU € ¢ & 8§
- € £ E
¥e 2 U
] = o O O C
w F X
20
A -]

20

ALTERNATIVE COLORS FOR SECTION THEMES

Alternative colors can be used to theme different

parts of an app.

This app has three primary colors.

Distinct themes are used in different parts of the
app; allowing users to better locate themselves

within it.

Primary
Theme 1

500 #FFDEO3

Primary
Theme 2

#0336FF

Theme 1

&L o

Choose topics
that interest you

i
4 Gaming Music
S 164 % 212
ustration Photography v
326 321
A o g

Architecture S| Technology

e ;| e

ARCHITECTURE
o Understanding
‘"he Composition

of Modern Cities

Theme 2

=E#e L ED

nts,
Buildings, and Other
Structures

This video course introduces the
photography of structures. including
urban and rural buildings. monuments,

and less traditional structures.

Instruction includes the handling
equipment and methods used {

21

ALTERNATIVE COLORS FOR SECTION THEMES

Theme |

= Yellow is used as the primary color for
areas such as onboarding and choosing
content of interest.

Primary
Option 1

500 #FFDEO3

Secondary
Option 1

#0336FF

&H&HwL

Choose topics
that interest you

f £= = 12
lllustration S Photography
= 326 . > = 321

Architecture . & . | Technology
= 58 .\ = 118

@

22

ALTERNATIVE COLORS FOR SECTION THEMES

rimar
Owl Blue

Theme 2

= Blue is used as the primary color for areas
of the app that relate to the user’s
personal account, such as selected courses.

An Introduction
To Oil Painting
On Canvas Understanding

#0336FF

Primary The Composition
owl Yellow)12 of Modern Cities

118

23

500 #FFDEO3

ALTERNATIVE COLORS FOR SECTION THEMES

Theme 3

Pink is used as the primary color for
courses.

PHOTOGRAPHY

Monuments,
Buildings, and Other
Structures

This video course introduces the
photography of structures, including
urban and rural buildings, monuments,

and less traditional structures.

Instruction includes the handling
equipment and methods used t

24

TOOLS FOR PICKING COLORS

¥ cotor oo o o @

TO O I S fO r p i C ki n g C O | o rS @ USER INTERFACES ~ ACCESSIBILITY MATERIALPALETTE CUSTOM

16 >

Red

Material palette generator A - *II I "R
S | | | N

The Material palette generator can be used to generate a palette for any color you input. Hue, chroma, and .l ...-.....
Deep Purple

lightness are adjusted by an algorithm that creates palettes that are usable and aesthetically pleasing. =
CURRENT SCHEME RESET ALL

Primary Secondary TextonP

Input colors

Color palettes can be generated based on the primary input color, and whether the desired palette should ‘
be analogous, complementary, or triadic in relation to the primary color.

Texton$

Alternatively, the tool can generate expanded palettes, based on any primary and secondary color.

P - Dark
#790e8b

§ = Dark
#h61827

Color variations for accessibility

These palettes provide additional ways to use your primary and secondary colors. They include lighter and

. « 1 25
darker options to separate surfaces and provide colors that meet accessibility standards. httpS./ /material.io/resources/color/

BUILDING PLATFORM SPECIFIC Ul (10S & ANDROID

With Flutter, we are able to design apps that look native to both iOS
and Android using a single code base.

" For example, an appBar will render differently on iOS and Android.
The title text, position and font are appropriate to the platform as is
the back navigation button.

= In Flutter, you can import dart:io and use Platform property to look

up which platform you are currently running on.The APl is quite nice:

import 'dart:io';

Platform.isI0S // Returns true on 1i0S devices
Platform.isAndroid // Returns true on Android devices

Android

Vain

€1]

26

BUILDING PLATFORM SPECIFIC Ul (10S & ANDROID

Hello Switch
To incorporate specific native widgets, we can use the

themes platform property to determine the platform
and build a relevant widgets accordingly in either the
Material or Cupertino style.

Hello Switch

= Here is a Material switch when we toggle between
device platforms via the Flutter inspector, the switch

style does not change.
Hello! &

= To use Cupertino widgets, we import the
Cupertino.dart package.

= This allows us to use the Cupertino switch.

= We will check if the platform is iOS, and if it is, we
show the CupertinoSwitch. Now, when we toggle
between devices, the iOS version shows the default Y
iOS toggle.

BUILDING PLATFORM SPECIFIC Ul (10S & ANDROID

i ; ody: HelloSwitch()
® You can customize the master theme and its elloSwiteh(,

properties.

This master theme is propagated down the widget
tree. Child widgets are able to inherit the master

theme's styling. widget build(BuildContext
Center(
The child widget can also override the theme and child: Row(

[. i ainAxisAliagnment: Ma
customize their styling. ey e

Text(
style: TextStyle(fontSize:

: Oft: ontext)
¢ CupertinoSwitch

CREATE AND STYLEA TEXT FIELD

= Text fields allow users to type text into an app.They are used to build forms, send messages, create search experiences,
and more. In this recipe, explore how to create and style text fields.

= Flutter provides two text fields: TextField and TextFormField.

TextField

TextField is the most commonly used text input widget.

By default, a TextField is decorated with an underline. You can add a label, icon, inline hint text, and error text by
supplying an InputDecoration as the decoration property of the TextField. To remove the decoration entirely
(including the underline and the space reserved for the label), set the decoration to null.

TextField(D
decoration: const InputDecoration(
border: OutlineInputBorder(),
hintText: 'Enter a search term' 29
).
);

https://api.flutter.dev/flutter/material/TextField-class.html
https://api.flutter.dev/flutter/material/TextFormField-class.html

CREATE AND STYLEA TEXT FIELD

TextFormField

TextFormField wraps a TextField and integrates it with the enclosing Form. This provides additional
functionality, such as validation and integration with other FormField widgets.

TextFormField(
decoration: const InputDecoration(
border: UnderlineInputBorder(),
labelText: 'Enter your username'

)%
)

30

INTERACTIVE EXAMPLE

@override : 9
Widget build(BuildContext context) { Form Stynng Demo %
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>|
const Padding(
padding: EdgeInsets.symmetric(horizontal: 8, vertical: 16), Enter a search term
child: TextField(
decoration: InputDecoration(
border: OutlineInputBorder(),
hintText: 'Enter a search term’,

),) Enter your username

).
Padding(

padding: const EdgeInsets.symmetric(horizontal: 8, vertical: 16),
child: TextFormField(
decoration: const InputDecoration(
border: UnderlineInputBorder(),
labelText: 'Enter your username',

)' 31

HANDLE CHANGES TO ATEXT FIELD

= In some cases, it’s useful to run a callback function every time the text in a text field changes. For example, you
might want to build a search screen with autocomplete functionality where you want to update the results as the
user types.

How do you run a callback function every time the text changes? With Flutter, you have two options:
|. Supply an onSubmitted or onChanged() callback to a TextField or a TextFormField.

Retrieving Text
2. Use aTextEditingController.

1. Supply an onChanged () callback to a TextField - onChanged
or a TextFormField « onSubmitted

The simplest approach is to supply an onChanged() callback to a TextField or a TextFormField. Whenever the text changes, s CONt [)H[}f
the callback is invoked.

In this example, print the current value of the text field to the console every time the text changes.

TextField(D
onChanged: (text) { 32
print('First text field: Stext');
} 37
).

HANDLE CHANGES TO ATEXT FIELD

2.Use a TextEditingController

A more powerful, but more elaborate approach, is to supply a TextEditingController as the controller property of the
TextField or a TextFormField.

To be notified when the text changes, listen to the controller using the addListener () method using the following steps:

1. Create a TextEditingController. class _MyCustomFormState extends State<MyCustomForm> {
2. Connect the TextEditingController to a text field. // Create a text controller. Later, use it to retrieve the
3. Create a function to print the latest value. / current value of the TextField.
4. Listen to the controller for changes. final myController = TextEditingController();
Connect the TextEditingController to a text field Create a function to print the latest value

Supply the TextEditingController to either a TextField or a TextFormField. Once you wire these two classes together, you

)) You need a function to run every time the text changes. Create a method in the _MyCustomFormState class that prints out the
can begin listening for changes to the text field.

current value of the text field.

TextField(D

void _printLatestValue() { [—l:l
controller: myController,

print('Second text field: S${myController.text}');
).)

@override
void initState() {
super.initState(); 33
Start listening to changes
myController.addListener(_printLatestValue);
}

GESTURES

= Responding to gestures is vital to an interactive app. Examples of gestures include taps, Gestures
drags and scaling.

= If we want to add our own interactivity to any widget, we can wrap the widget in a onTapDown

GestureDetector. Gestures can make an app experience feel much more seamless.
» onTap
= Material design applications typically react to touches with ink splash effects.

The InkWVell class implements this effect and can be used in place of onDoubleTap
a GestureDetector for handling taps.

onLongPress

= [If this widget has a child, it defers to that child for its sizing behavior. If it does not have a
child, it grows to fit the parent instead. - onVerticalDragStart

= GestureDetector widget Attempts to recognize gestures that correspond to its non-
null callbacks.

["r,HH‘1||7":»"_ paate

34

https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html

EXAMPLE

/// This is the private State class that goes with MyStatefulWidget. Q%b qab
class _MyStatefulWidgetState extends State<MyStatefulWidget> {
bool _lightIsOn = false;

@override
Widget build(BuildContext context) {
return Scaffold(
body: Container(O
alignment: FractionalOffset.center, -
child: Column(TURN LIGHT ON TURN LIGHT OFF
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>|
Padding(GestureDetector (
padding: const EdgeInsets.all(8.0), onTap: () {
child: Icon(setState(() {
Icons.lightbulb_outline, // Toggle light when tapped.
color: _lightIsOn ? Colors.yellow.shade606 : Colors.black, })fllghtlson = e ClRa S
size: 60, y, ’

), child: Container(
o color: Colors.yellow.shade660,
padding: const EdgeInsets.all(8),
// Change button text when light changes state.
child: Text(_lightIsOn ? 'TURN LIGHT OFF' : 'TURN

CREATING RESPONSIVE AND ADAPTIVE APPS

= One of Flutter’s primary goals is to create a framework that
allows you to develop apps from a single codebase that look
and feel great on any platform.

® This means that your app may appear on screens of many
different sizes, from a watch, to a foldable phone with two

screens, to a high def monitor. everywhere

= Two terms that describe concepts for this scenario
are adaptive and responsive.

x Select a Category

= |deally, you'd want your app to be both but what, exactly,

. . . f Length
does this mean? These terms are similar, but they are not " % Seioa Catogary
t Area i U volume IQJ Mass
the same. U
@ o Time Digital Storage
[©) Mass

36

A Energy @ Currency
@ Time

Energy

THE DIFFERENCE BETWEEN AN ADAPTIVE AND A RESPONSIVE APP

Adaptive and responsive can be viewed as separate dimensions of an app:
HOWEVER, you can have an adaptive app that is not responsive, or vice versa.
And, of course, an app can be both, or neither.

" Responsive :

Typically, a responsive app has had its layout tuned for the available screen size. Often this means (for example), re-laying out
the Ul if the user resizes the window, or changes the device’s orientation. This is especially necessary when the same app
can run on a variety of devices, from a watch, phone, tablet, to a laptop or desktop computer.

= Adaptive

Adapting an app to run on different device types, such as mobile and desktop, requires dealing with mouse and keyboard
input, as well as touch input. It also means there are different expectations about the app’s visual density, how component
selection works (cascading menus vs bottom sheets, for example), using platform-specific features (such as top-level

windows), and more.

37

CREATING A RESPONSIVE FLUTTER APP

" Flutter allows you to create apps that self-adapt to the device’s screen size and orientation.

There are two basic approaches to creating Flutter apps with responsive design:

= Use the LayoutBuilder class

From its builder property, you get a BoxConstraints object. Examine the constraint’s properties to decide what to display.
For example, if your maxVVidth is greater than your width breakpoint, return a Scaffold object with a row that has a list
on the left. If it’s narrower, return a Scaffold object with a drawer containing that list.

You can also adjust your display based on the device’s height, the aspect ratio, or some other property.When the
constraints change (for example, the user rotates the phone, or puts your app into a tile Ul in Nougat), the build function
runs.

= Use the MediaQuery.of() method in your build functions

This gives you the size, orientation, etc, of your current app.This is more useful if you want to make decisions based on the
complete context rather than on just the size of your particular widget. Again, if you use this, then your build function
automatically runs if the user somehow changes the app’s size.

Other useful widgets and classes for creating a responsive Ul:

AspectRatio, CustomSingleChildLayout, CustomMultiChildLayout, FittedBoxFractionallySizedBox, LayoutBuilder,
MediaQuery, MediaQueryData, OrientationBuilder. 38

https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder/builder.html
https://api.flutter.dev/flutter/rendering/BoxConstraints-class.html
https://api.flutter.dev/flutter/rendering/BoxConstraints/maxWidth.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery/of.html
https://api.flutter.dev/flutter/widgets/AspectRatio-class.html
https://api.flutter.dev/flutter/widgets/CustomSingleChildLayout-class.html
https://api.flutter.dev/flutter/widgets/CustomMultiChildLayout-class.html
https://api.flutter.dev/flutter/widgets/FittedBox-class.html
https://api.flutter.dev/flutter/widgets/FractionallySizedBox-class.html
https://api.flutter.dev/flutter/widgets/LayoutBuilder-class.html
https://api.flutter.dev/flutter/widgets/MediaQuery-class.html
https://api.flutter.dev/flutter/widgets/MediaQueryData-class.html
https://api.flutter.dev/flutter/widgets/OrientationBuilder-class.html

PACKAGES, PLUGINS,AND PUBSPEC.YAML

= Just like with widgets, we don't want to reinvent the wheel each time
we start to add a big feature to our app. Login, authentication,
network calls, what should we use!?

Location Material SQLite OAuth2

= The answer is packages.
= Package is a library of functions that can be shared easily.

= Packages enable the creation of modular code that can be
shared easily.

" WVe can use both Flutter and Dart packages.

= Some integrate with device APlIs such as the Battery package.
These are called plug-ins as they interface with either the oS or
Android platforms.

= Others, such as the Firebase package, are just called regular
packages.

" We already used the material package and we will also be using 39
the Dart 10 package to connect to our APl.You can also
write and publish your own packages.

PACKAGES, PLUGINS,AND PUBSPEC.YAML

Location

In order to use packages, we have to specify our dependencies in a
pubspec.yaml file which contains metadata for our app. Information that
you include into

= Pubspec include the name, version, description, authors, dependencies, Tree-shakin g
and more.

= For Flutter applications, a dependency would be the Flutter SDK. Ve s o pe ;
can also specify assets and fonts inside Pubspec. Process Wher? redundant and
unused code is removed

= When you make changes to Pubspec.yaml, you'll want to run a flutter during code compilation
S _— S

packages PUB GET this will gets or updates the required packages that your
app depends on.

W pub.dev

= Even though you import a large package, only the functions you use end up
being compiled down to code in release mode.This is because Flutter uses
tree shaking to remove redundant and unused code in the
compilation process for the binary used in production.

The official package repository for and apps.
= You can search for packages on the Dart packages site. Using packages
and plugins can make your development that much more efficient.

IMAGE AND ICON ASSETS

" lcons and images are also saved and managed . e
within the assets directory and pubspec.yaml oo
fl @ Two-Tone e E C+ é-\l- EI'- 'e @ @
ile.

= Material design provides over built-in icons, B e E B B E B
such as play, refresh, alarm, pets, insert ¢ B ©® @ - 8B @ @

photo, and more.The material components also
incorporate these icons.

= You can use them by setting "Use material icon
to true" in your apps pubspec.yaml file.

® These icons can be used in icon buttons which let
you specify a function to run when the icon is
tapped.

" The flutter image widget has separate
constructors based on whether your path

points to an asset, local file, or from the
Web.

41

NO ASSETS? USE AN API!

| would like a cute

= Sometimes, the data you want to save changes. So, you can't animal photo. My AP e
. e k 12345, atabase
save It In an asset. eyis 123

= For example, you might want to randomly select a cute
animal picture from an API each day or for this app, you might
want to know this moment's exchange rate for currencies.

= For this, we will call an APl which retrieves real-time data.

Connecting to APIs can be done with the HTTP client in

dal"t:io. Wbat's t(.)d.ay"s | Currency
00c exchange rate from: Exchange

1000 USD to Gold Bars? Rate AP|

" We create a HTTP client that points to our endpoint. Our
current app does not require authentication or an API key.

= So we just hit the endpoint with our to from an amount
query parameters to get the unit conversion that we want.

NO ASSETS? USE AN API!

flutter.udacity.com

= You can try out some queries by going to T e
ﬂuttel‘.udacity.comlcuI"I"ency in your Q. https://flutter.udacity.com/currency/convert?from=US Dollar&to=Gold Bar
browser.

Result:
= An APl doesn't immediately return your data
the way a local asset would because Dart runs {"status":"ok","conversion":0.40439439630352586}
in a single thread.

= If we solely wait for the API call to return,

we would see a frozen screen and we | would like a cute |
' . . animal photo. My API ase
wouldn't be able to interact with the app. key is 12345, database

= The API call may take some time to return
based on the server's speed, your Internet
connection, and other factors.

var photo = retrievePhoto();
showPhotoOrlLoadinglndicator(photo);

43

Rather than wait for it, we wrap the APl in an
asynchronous operation.

This lets your app continue to run without getting
blocked.

Dart uses future objects to represent asynchronous
operations.

When a function that returns a future is invoked, two
things happen.

First, the function cues up work to be done and returns an
incomplete future object.

Later, when a value is available, the future object completes
with that value or with an error. We'll discuss errors later.

Future

A Future represents a means for getting a value
sometime in the future, used in asynchronous

-

operations.

| would like a cute
animal photo. My API
key is 12345.

var photo = await retr

showPhotoOrLoadingIndice

Image
database

Loading

S
My pnote !
y\oad‘“g’

44

We save the value that the future returns
into a variable and call await on the
function.

We need to wrap the function in which this is
called with an async keyword.

Let's look at how we do this for the convert
API call. First, we make a request to our
URIL

Note that it returns a future object a
double.We also add the async keyword to
our convert function. Now let's get our
response. This is also an asynchronous
operation.

So we add the await keyword.

We have to decode our JSON response
body too before we parse it and return it to
the units.

This is also an async operation.Then, we
return the conversion as a double.

Image
database

async

var|photo}= await retrieve Photo();

showPHotOvO‘rLoadinglndicator(photo);

Now you know both how to retrieve live data from an APl and how to use

asynchronous functions.
45

KEY POINTS

Material design is very useful and has interesting online tools to show you best practices
Regarding Ul and UX design.

Material Design color system can help you create a color theme that reflects your brand or st

Sometimes you need to get a specific native widget or behavior then you can check the dgvice
Platform then customize your content using Cupertino and Material libraries. Y

You learned about getting user text input and how to handle it.

Images, Icons, and Fonts are useful assets that you can use or import into your app.

If your App data changes! , then you need to use an API to get data from Internet.

