QUESTION BANK 6

Q1. A 68.5 kg skater moving initially at $2.4 \mathrm{~m} / \mathrm{s}$ on rough horizontal ice comes to rest uniformly in 3.52 s due to friction from the ice. What force does friction exert on the skater?

Solution:

$$
\begin{gathered}
v_{f}=v_{0}+a t, \quad v_{f}=0, \quad \text { thus } \quad a=-\frac{v_{0}}{t}=-\frac{2.4}{3.52}=-0.68 \mathrm{~m} / \mathrm{s}^{2} \\
\text { Force }=m a=68.5 *(-0.68)=-47 \mathrm{~N}, \quad \text { Friction }=47 \mathrm{~N}
\end{gathered}
$$

Q2. A box rests on a frozen pond, which serves as a frictionless horizontal surface. If a fisherman applies a horizontal force with magnitude 48.0 N to the box and produces an acceleration of magnitude $3 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass of the box?

Solution:

$$
F=m a \rightarrow m=\frac{F}{a}=\frac{48}{3}=16 \mathrm{Kg}
$$

Q3. A dock worker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves 11.0 m in 5.00 s . What is the mass of the block of ice?

Solution:

$$
F=m a \rightarrow m=\frac{F}{a}=\frac{F}{\left(\frac{x}{t^{2}}\right)}=\frac{80}{\left(\frac{11}{25}\right)}=\frac{80}{0.44}=182 \mathrm{~kg}
$$

Q4. Superman throws a $2400-\mathrm{N}$ boulder at an adversary. What horizontal force must Superman apply to the boulder to give it a horizontal acceleration of 12 $\mathrm{m} / \mathrm{s}^{2}$.
Solution:

$$
\begin{gathered}
w=m g \rightarrow m=\frac{w}{g}=\frac{2400}{9.8}=244.9 \mathrm{~kg} \\
F=m a=244.9 * 12=2938 \mathrm{~N}
\end{gathered}
$$

Q5. A stockroom worker pushes a box with mass 11.2 kg on a horizontal surface with a constant speed of $3.5 \mathrm{~m} / \mathrm{s}$. The coefficient of kinetic friction between the box and the surface is 0.20 . (a) What horizontal force must the worker apply to maintain the motion? (b) Acceleration?

Solution:

a. Friction $=\mu_{\mathrm{K}} \mathrm{n}=\mu_{\mathrm{K}} \mathrm{mg}=0.2 * 11.2 * 9.8=22 \mathrm{~N}$
b. $F=m a \rightarrow a=\frac{F}{m}=\frac{22}{11.2}=1.96 \mathrm{~m} / \mathrm{s}^{2}$

Q6: from the below diagram, determine the tension force produces between points AB and AC .
Solution:

$\mathrm{F}_{\mathrm{AD}}=\mathrm{mg}=30^{*} 9.8=294 \mathrm{~N}$

$$
\begin{gathered}
\theta_{1}=\tan ^{-1} \frac{300}{400}=36.8^{0} \\
\theta_{2}=\tan ^{-1} \frac{300}{500}=30.8^{0} \\
\sum f x=0
\end{gathered}
$$

$$
-F_{A B} \cos 36.8+F_{A C} \cos 30.8=0
$$

$F_{A B}=1.07 F_{A C} \ldots \ldots \ldots \ldots$. (1)

$$
\begin{gather*}
\sum f y=0 \\
-294+F_{A B} \sin 36.8+F_{A C} \sin 30.8=0 \tag{2}
\end{gather*}
$$

$-294+0.6 F_{A B}+0.514 F_{A C}=0$
By Substituting 1 in 2,

$$
\begin{gathered}
-294+0.6\left(1.07 F_{A C}\right)+0.514 F_{A C}=0 \\
F_{A C}=254.3 N \\
F_{A B}=272.1 N
\end{gathered}
$$

