Question bank 4. Acceleration

Question 1

A car takes 300 km in 6 hours on a straight road to the south.
a) What is the velocity of the car?
b) How many kilometers does the car take in half an hour?

Question 2

The car shown in the figure has a velocity of $25 \mathrm{~m} / \mathrm{s}$.
a) What distance does the car cover, if it moves with this velocity for 10 minutes? ($\mathbf{1} \mathbf{~ m i n}=\mathbf{6 0}$ seconds)
b) In how many seconds does the car cover a distance of $\mathbf{1 k m}$?

Question 3

A bicycle rider uniformly moves with a speed of $\mathbf{2 4} \mathbf{~ m} / \mathrm{s}$ for $\mathbf{6}$ seconds.
Calculate the distance covered by the rider.

Question 4

A dog runs 45 meters due to east for 10 seconds and then runs 15 meters due west for 20 seconds.
A) What is the dog's average velocity?
B) What is the dog's average speed?

Question 5

Answer the questions below according to the graph.
a. between which points is its speed
steady?
b. what is the steady velocity?
c. what is the distance travilled between
D and A ?
d. what is the avrage speed between D

The distance-time graph above is for a motor cycle travelling along a straight road.

Question 6

The figure on the right shows the distance-time graph of car moving.
a) Calculate the velocity of the car.
b) If the car moves with this velocity for $\mathbf{2 0}$ hours, what distance does the car cover?

Question 7

Using the position-time graph given below, calculate
The velocity of the moving object between the Intervals:
a) $0-5 \mathrm{~s}$
b) $5-15 \mathrm{~s}$
c) $\mathbf{1 5 - 2 0 \mathrm { s }}$
d) 0-20s

Question 8

An airplane flies at $\mathbf{2 0 0} \mathbf{~ m} / \mathrm{s}$ in the direction 53° counter clockwise from east.
a) What is the component of the displacement on the east axis? (Take, $t=2 \mathrm{~s}$)
b) What is the component of the displacement on the north axis? (Take, $t=2 \mathrm{~s}$)

Question 9

The position-time graph below shows the motion of a car. Interpret the graph of the car.

Question 10
The car X moves with $20 \mathrm{~m} / \mathrm{s}$ and Y with $10 \mathrm{~m} / \mathrm{s}$ in the same direction for 50 seconds.
a) Draw position-time graph of the cars.
b) Calculate how many metres they take during the motion.

Question 11

A car is moving with $\mathbf{2 4} \mathbf{~ m} / \mathrm{s}$ initial speed then it stops. If the car stops in 8 seconds find;
a) Acceleration
b) Breaking distance (distance to stop)

Question 12

A ball initially at rest rolls down a hill and has an acceleration of $\mathbf{3} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$.
a) If it accelerates for $\mathbf{1 0} \mathbf{s}$, how far will it move during this time?
b)What will be the final velocity?

Question 13

An antelope moving with constant acceleration covers the distance between two points 70.0 m apart in 7.00 s . Its speed as it passes the second point is $15 \mathrm{~m} / \mathrm{s}$ (a) What is its speed at the first point? (b) What is its acceleration?

