Tishk International University Engineering Faculty Petroleum and Mining Department

Well Logging I

Lecture 5: Density Logs

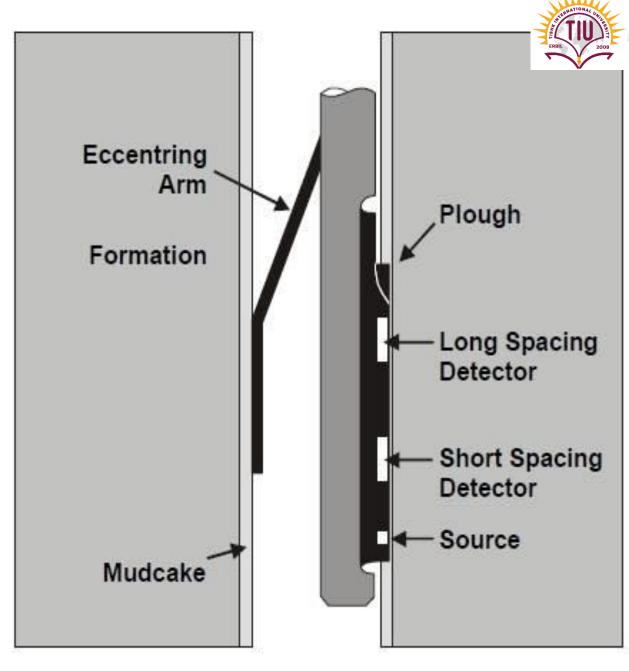
3rd Grade - Fall Semester 2021-2022

Instructor: Frzan Ali

Density Logs

- The Density Log or Formation Density Log
- The tool components
- Names of Modern density tools
- Density Log and Principles of measurement
- Log Presentation
- Depth of investigation and resolution.
- Formation Density Log Determination of Porosity from chart
- Principal uses
- Log presentation scale and units
- The Photoelectric Factor
- How dose it work
- Volumetric Photo-Electric Absorption Index
- Some Notes

The Density Log or Formation Density Log


- The formation density log measures the bulk density of the formation.
- Its main use is to derive a value for the total porosity of the formation.
- It is also useful in the detection of gas-bearing formations and in the recognition of evaporites.
- The formation density tools are induced radiation tools.
- They bombard the formation with radiation and measure how much radiation returns to a sensor.

and is placed **16** inches from the source.

- A radioactive source. This is usually Caesium-137 or Cobalt-60, and emits gamma rays of medium energy (in the range 0.2 2 MeV). For example, Caesium-137 emits gamma rays with a energy of 0.662 MeV.
- A short range detector. This detector is very similar to the detectors used in the natural gamma ray tools, and is placed 7 inches from the source.
 A long range detector. This detector is identical to the short range detector,

Fig. Schematic diagram of a formation density tool.

Modern density tools

1- Density measurement

Name	Symbol	Company
Formation Density Compensated	FDC	Schlumberger
Compensated Densilog	CDL	Western Atlas, Halliburton
Compensated Density	CDS	BPB

2- Photoelectric measurement

Name	Symbol	Company
Litho-Density Tool	LDT	Schlumberger
Compensated Z-Density	ZDL	Western Atlas
Photoelectric Density	PDS	ВРВ
Spectral Density Tool	HSDL	Halliburton

Density Log

- The density log is the continuous record of a formation's *Bulk density* (g/cm³), and indicate by the Greek letter ρ (rho).
- This is the **overall density** of rock including solid matrix and the fluid enclosed in the pores.
- Geologically, bulk density is a function of the density of the minerals forming a rock (ρ_{ma}) and the volume of the fluids which it encloses porosity (ρ_{ff}).
- For example, sandstone with no porosity will have a bulk density of 2.65 g/cm³.
- At **10%** porosity the bulk density is only **2.49 g/cm³**,
- the sum of 90% quartz grains (density 2.65 g/cm³) and 10% water (density1.0 g/cm³).

*Pb = (0:9 Å 2.65) + (0.10*1.0) = 2.485*

Principles of measurement

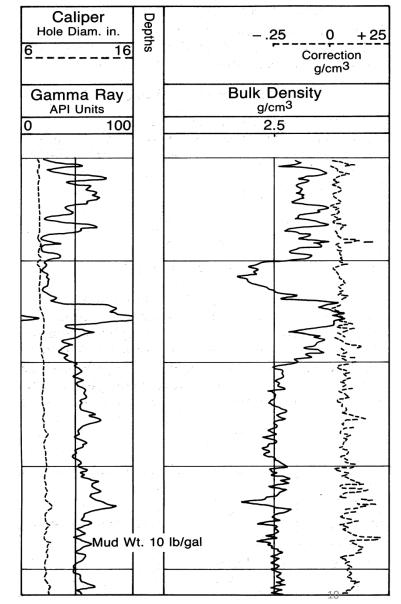
- The logging technique of the density tool is to subject the formation to a bombardment of focused GRs and to measure their attenuation between the tool source and detectors.
- Such attenuation (Compton scattering) is a function of the number of electrons that the formation contains (electron density) which is very closely related to its common density.
- In dense formations, Compton scattering attenuation is extreme, and few detectable GRs reach the tool's detectors,
- while in lesser density (higher porosity) the number is much higher.
- Detector counts in modern tools are converted directly to bulk density for the log printout.
- The actual values presented on the density log are transformed to give actual values of calcite (2.7g/cm³) and pure water 1.0g/cm³).

 The number of Gammaray reaching the detector is function of the number of electrons present in the formation (electron density ρe).

$\rho e = \frac{2Z}{A}.\rho b$

Z= atomic number (also known as the **proton number**)

A= mass number (protons and neutrons)

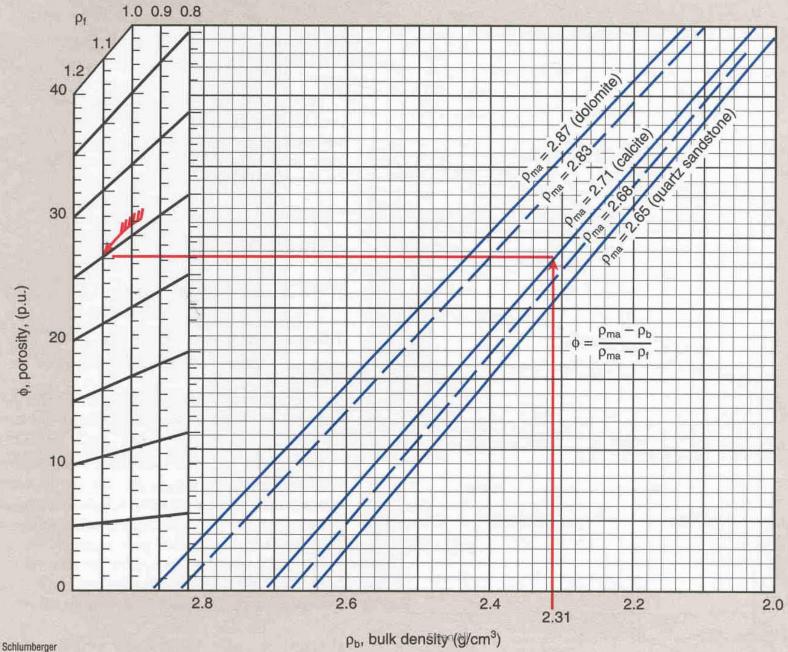

Log Presentation

The formation density log is recorded in tracks 2 and 3 of the standard API log presentation on a linear scale.

The scale is in g/cm³, and usually spans 1.95 to 2.95 g/cm³ as this is the normal range for rocks

The automatic compensation (correction) for mud cake is often shown in either track 2 or track 3 on a linear scale.

This curve $(\Delta \rho)$) is included as a quality control curve. If the correction curve is greater than ± 0.15 g/cm³, the data in the main curve will not be very reliable.



- **The depth** of investigation is very shallow (around 10 to 13cm), which makes it very susceptible to hole conditions (enlargement).
- The bed resolution is good, at average logging speeds (about 400m/h, 1300m/h) true densities can be read in beds down to about 60cm (2ft);
- good bed resolution makes the density log used for drawing bed boundaries

Formation Density Log Determination of Porosity

Principal uses:

Quantitatively the density log is used to

- a- to calculate acoustic impedance in seismic interpretations.
- **b-** Calculate porosity; to calculate porosity from density log it is necessary to know the density of rock.
- As an example, if the tool measures a bulk density of 2.5g/ cm³ in a saltwater bearing formation ($\rho_{ff} = 1.1g/$ cm³), we can interpret any of the following according to the lithology:

Lithology	Grain density	porosity
Sandstone	2.65g/ cm ³	10%
Limestone	2.71g/ cm ³	13%
Dolomite	2.87g/ cm ³	21%

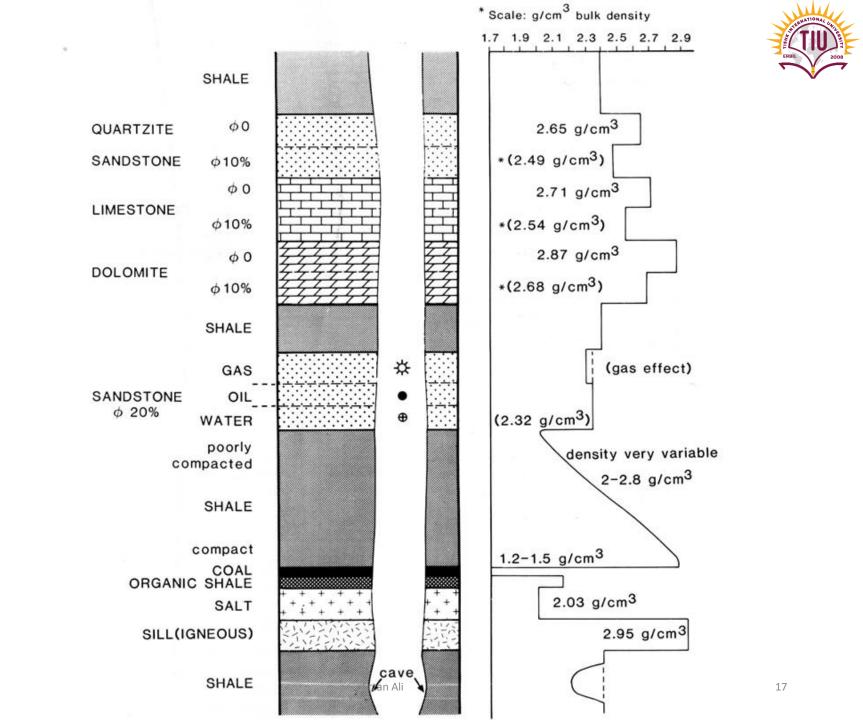
- Of course, if we know the grain (matrix) density and the fluid density we can solve the equation that gives the porosity from the summation of fluid and matrix composition:
- Bulk density (ρ b) = $\Phi \times \rho_{ff} + \rho_{ma}$ (1- Φ).
- Porosity Φ_{D} =

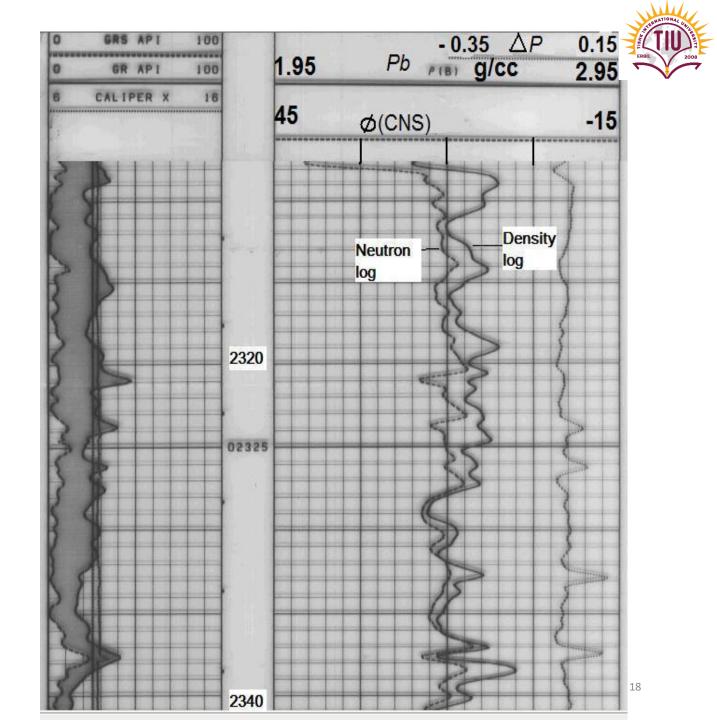
$$\frac{\rho ma - \rho b}{\rho ma - \rho fl}$$

 $\Phi_{\rm D}$ = porosity derived from density log $ho_{\rm ma}$ = density of matrix (rock), from the table $ho_{\rm fl}$ = fluid density (fresh or salt muds).

It also used to calculate acoustic impedance.

Qualitative use


- **Qualitatively** the log can assist the geologist to:
- Identify evaporate minerals, most evaporates tend to be give intervals of constant densities if they are pure.
- Detect gas bearing zones
- determine hydrocarbon density
- evaluate shaly sand reservoirs and complex lithologies


Log presentation scale and units

- The density log is normally plotted on a linear scale of bulk density (figure).
- The log is run across track 2 and 3 with Neutron log (dashed line), most often with scale of **1.95** and **2.95** g/cm³.

Lithology	ρmagm/cm ³	Pe (b/e)	
Sandstone	2.64	1.81	
Limestone	2.71	5.08	
Dolomite	2.88	3.14	
Anhydrite	2.96	5.05	
Salt	2.04	4.65	
Fresh water	1.0		
Salt water	1.15±		
Barite (mud additive)		267	

The Photoelectric Factor

• The Photoelectric Factor (or PEF) log

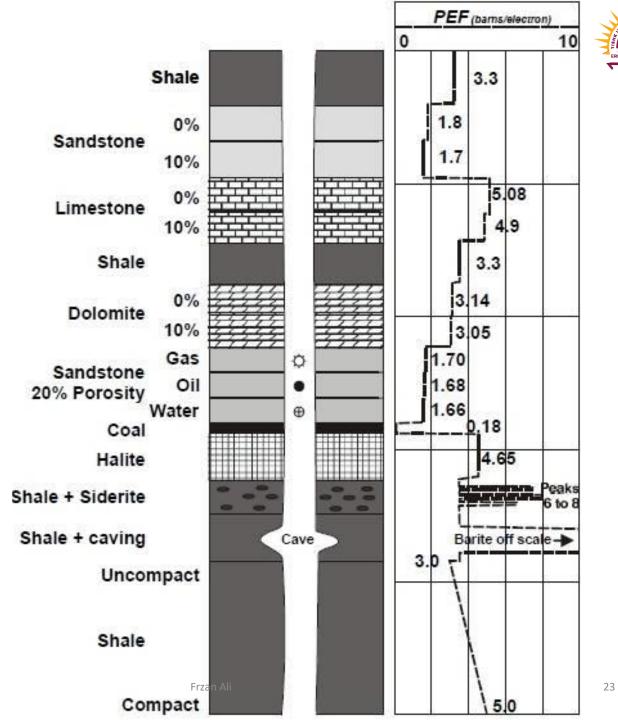
(the Litho-Density log of Schlumberger) is a continuous record of the effective photoelectric absorption cross section index or **Pe** of a formation,

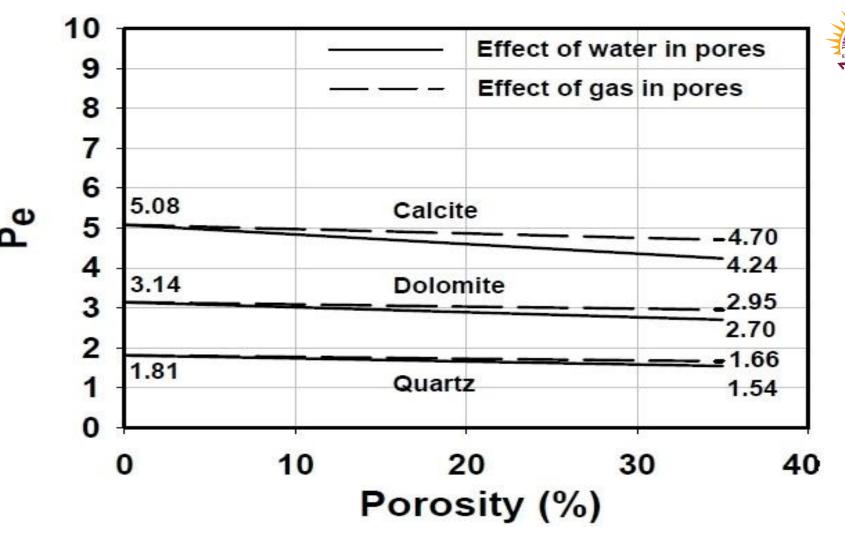
• it is strongly depend on the average atomic number, **Z** (chemical composition and indirectly lithology), the effect of porosity are kept minimum.

How dose it work?

- When the GRs pass through matter, at most energies they degrade through collision or Compton scattering .
- In addition, at low energies, below about 100 keV, the phenomenon known as photoelectric absorption takes effect.
- Photoelectric absorption occurs when GRs have lost sufficient energy to be captured by electrons electrically bound to atoms.
- The capturing electron acquires energy, leaves its atomic orbit and becomes ionized.
- The degree of absorption depends on both the atomic number Z (Protons) and the electron density (ρ_e) of the atoms.

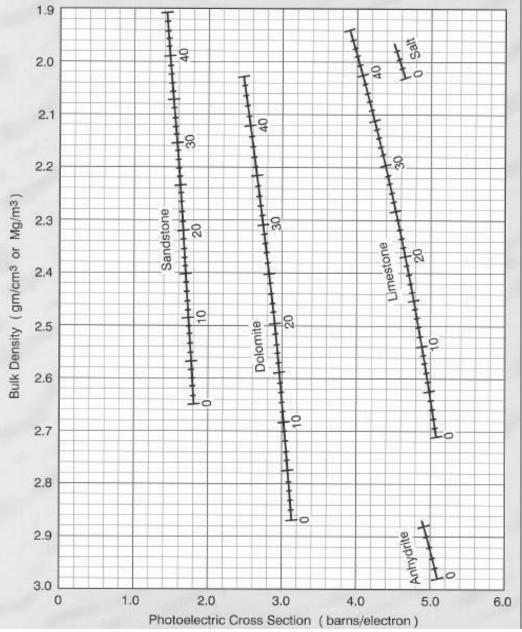
Volumetric Photo-Electric Absorption Index


- The Volumetric photo-electric absorption index **U** of a material describes the likelihood that a gamma ray will be photo-electrically absorbed per unit volume of the material.
- It can be written in terms of the specific photo-electric absorption index as


Table; Photo-electric data for common minerals and fluids.

Mineral	Formula	Pe	Z	ρβ	$ ho_{ m E}$	U
Anhydrite	CaSO ₄	5.055	15.69	2.960	2.957	14.93
Barite	BaSO ₄	266.82	47.2	4.500	4.01	1070
Biotite		6.30				21.03
Calcite	CaCO ₃	5.084	15.71	2.710	2.708	13.77
Dolomite	CaCO ₃ .MgCO ₃	3.142	3.74	2.870	2.864	9.0
K Feldspar		2.86				7.51
Gypsum	CaSO ₄ .2H ₂ O	3.420	14.07	2.320	2.372	9.37
Quartz	SiO ₂	1.806	11.78	2.654	2.650	4.79
Zircon	ZrSiO ₄	69.10	32.45	4.560	4.279	311
Pure Water	H ₂ O	0.358	7.52	1.000	1.110	0.398
Oil	(CH ₂)n	0.119	5.53	0.850	0.948	0.136xp oil

Figure 3.2.2 Measurements of the photoelectric absorption (*PEF*) lithodensity log for common lithologies


Pe as a function of porosity and fluid content.

The figure shows how little influence up to 35% porosity changes have on the *Pe values for quartz, limestone and* dolomite.

Matrix identification using the PEF and density log

data for a formation saturated with a fluid of density equal to 1.0 g/cm³.

Some Notes:

- If the formation's actual pma is less than the pma used to calculate Φ, (equation). Ex: (sandstone bed pma = 2.64 g/cm³) using a limestone (pma = 2.71 g/cm³), the calculated porosity higher than the actual porosity.
- The heavy minerals show negative porosity (its pb > pma)
- If the formation's actual fluid density is greater than the fluid density used to calculate the Φ, ex: (pfl=1.1 g/cm³) using freshwater value (pfl=1.0 g/cm³), the calculated porosity lower than the actual porosity, and vas versa.
- A correction curve (Δp in g/cm³) is also displayed in track 2 or 3, this curve indicates how much correction has been added to the pb curve during processing due to borehole effects.
- When (Δρ) exceeds 0.2 g/cm³ the values of (pb) obtained from the density log considered invalid.