Experiment 2: Determination of the Spring Constant (Hooke's Law)

Purpose

This experiment is performed to determine the spring constant with mass-spring system.

References

- 1. Physics Laboratory Experiments, Yuksel Sahan, Zambak Publications.
- 2. Physical Science Lab Manual, Pearson Education, Inc., publishing as Pearson Prentice Hall.

Safety First

Do not overload the spring. This causes deformation.

Equipments

- 1. Spring with hook
- 2. Hanger
- 3. Rod
- 4. Ruler
- 5. Adjustable slotted masses

Pre-Lab Questions

1. What differs one spring from another?

2. Does a spring produce the same amount of force when it is compressed or decompressed for equal distances?

Introduction and Theory

Hooke's Law states that the **restoring force** of a spring is directly proportional to a small displacement in the spring. In equation form, we write

F = -kx

where x is the amount of the displacement. The \mathbf{k} is proportionality constant (spring constant) and it has a specific value for each spring.

Experimental Procedure

The equilibrium can be expressed as F = kx where F = W, where W is the weight of the added mass. Weight is mass times the acceleration of gravity or W = mg where g is about 9.81 m/s². Using this relationship weights are computed for the masses in the table above.

Data Collection and Calculations

	m (kg)	F (N)	X (mm)	X (m)	k (N/m)
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Then determine kAVERAGE .

From the above data, the below graph is plotted and determine the k value from it. Compare this value with that obtained from the table.

