

Petroleum and Mining Department First Grade- Fall Semester

Calculus- Functions and Their Graphs (Lecture 3)

Lecture content

- Functions and Their Graphs
- Common Functions; Mathematical Models
- Composite Function

Learning Outcomes

At the end of this lecture you will be able to:

- Evaluate the concept of domain and range
- Draw the graph of functions
- Represent a Function Numerically
- Show the properties of Even Functions and Odd Functions graphs.
- Evaluate the concept of Sums, Differences, Products, and Quotients
- Evaluate the composite of functions
- Use the techniques to solve examples.

What is Function?

- Functions are a tool for describing the real world in mathematical terms.
- A function can be represented by an equation, a graph, a numerical table, or a verbal description.

Definition

A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The set of inputs is called the **domain** of the function. The set of outputs is called the **range** of the function.

Example

For the function $f(x) = 3x^2 + 2x - 1$, evaluate

a. f(-2)

- b. $f(\sqrt{2})$
- c. f(a+h)

Solution

Substitute the given value for *x* in the formula for f(x).

a.
$$f(-2) = 3(-2)^2 + 2(-2) - 1 = 12 - 4 - 1 = 7$$

b. $f(\sqrt{2}) = 3(\sqrt{2})^2 + 2\sqrt{2} - 1 = 6 + 2\sqrt{2} - 1 = 5 + 2\sqrt{2}$
c. $f(a+h) = 3(a+h)^2 + 2(a+h) - 1 = 3(a^2 + 2ah + h^2) + 2a + 2h - 1$
 $= 3a^2 + 6ah + 3h^2 + 2a + 2h - 1$

EXAMPLE If
$$f(x) = 2x^2 - 5x + 1$$
 and $h \neq 0$, evaluate $\frac{f(a+h) - f(a)}{h}$

SOLUTION We first evaluate f(a + h) by replacing x by a + h in the expression for f(x):

$$f(a + h) = 2(a + h)^{2} - 5(a + h) + 1$$

= 2(a² + 2ah + h²) - 5(a + h) + 1
= 2a² + 4ah + 2h² - 5a - 5h + 1

Then we substitute into the given expression and simplify:

$$\frac{f(a+h) - f(a)}{h} = \frac{(2a^2 + 4ah + 2h^2 - 5a - 5h + 1) - (2a^2 - 5a + 1)}{h}$$
$$= \frac{2a^2 + 4ah + 2h^2 - 5a - 5h + 1 - 2a^2 + 5a - 1}{h}$$
$$= \frac{4ah + 2h^2 - 5h}{h} = 4a + 2h - 5$$

• Functions; Domain and Range

- y = f(x) ("y equals f of x").
- The set *D* of all possible input values is called the **domain** "D" of the function.
- The set of all values of f(x) as x varies throughout D is called the range "R" of the function.
- The symbol *f* represents the function, the letter *x* is the independent variable representing the input value of *f*, and *y* is the dependent variable or output value of *f* at *x*.

Note: Range is the set of nonnegative real numbers, i.e. division by zero and $\sqrt{-ve}$ is not allowed. $f(x) = \frac{1}{x-3}$ so the domain should be any number except 3 $\operatorname{also} f(x) = \sqrt{x-3}$.

For example, consider the function f, where the domain is the set $D = \{1, 2, 3\}$ and the rule is f(x) = 3 - x

domain {1, 2, 3} and rule f(x) = 3 - x. The graph consists of the points (x, f(x))

for all x in the domain.

• Graphs of Function:

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is: $y \neq y$

Example: Sketch the graph of the following function.

 $f\left(x\right)=x^{2}-2$ *Domain is* $(-\infty, \infty)$ *and* f(x)(x, y) \boldsymbol{x} Range is $[-2, \infty)$ **•**(3,7) (-3,7) -3 (-3, 7)7 5 -1 (-1, -1)-1 3 (0, -2)0 -2 (1, -1)1 -1 -2 (-1,-1) -3 2 3 -1 (1,-1) (3, 7)3 7 _**3**[(0,-2) f(x)=9y f(x)(x, y) \boldsymbol{x} (4,9) (-5,9) (-2,9) (1,9) -5 (-5, 9)9 6 -2 (-2, 9)9 (1, 9)1 9 3 (4, 9)9 4 Lecturer: Jwan Khaleel M. -5 -2-1

Example: Sketch the graph of the following function.

Domain is $[-1, \infty)$ and Range is $[0, \infty)$ **EXAMPLE** // The graph of a function *f* is shown in Figure shown.

- (a) Find the values of f(1) and f(5).
- (b) What are the domain and range of f?

SOLUTION

(a) We see from Figure the value of f at 1 is f(1) = 3.
(the point on the graph that lies above x = 1 is 3 units above the x-axis.)

When x = 5, the graph lies about 0.7 units below the x-axis, so we estimate that $f(5) \approx -0.7$.

(b) We see that f(x) is defined when $0 \le x \le 7$, so the domain of f is the closed interval [0, 7]. Notice that f takes on all values from -2 to 4, so the range of f is

$$\{y \mid -2 \le y \le 4\} = [-2, 4]$$

Example

Find the domains and ranges of each of the following are:

(a)
$$y = x^3 - 5 \le x < 4$$
 (b) $y = x^4$ (c) $y = \frac{1}{(x-1)(x+2)}$ $0 \le x \le 6$

Solution

(a)
$$y = x^3 - 5 \le x < 4$$

domain $-5 \le x < 4$, range $-125 \le y < 64$
(b) $y = x^4$
domain $-\infty < x < \infty$, range $0 \le y < \infty$
(c) $y = \frac{1}{(x-1)(x+2)}$, $0 \le x \le 6$
domain $0 \le x < 1$ and $1 < x \le 6$,
range $-\infty < y \le -0.5$, $0.25 \le y < \infty$

$$(x-1)(x+2) \ge 0$$

$$x^2 + x - 2 \ge 0$$

Example// Find the Domain and Range of each function

1.
$$f(x) = 2x + 3$$

2. $f(x) = x^2 + 4$
3. $f(x) = \frac{1}{x}$
4. $f(x) = \sqrt{x - 4}$
5. $f(x) = \sqrt{4 - x}$
6. $f(x) = \frac{1}{\sqrt{x - 4}}$

7.
$$f(x) = x^2 + 3x + 1$$

8. $f(x) = \frac{2x+1}{x^2+5x+6}$
9. $f(x) = \frac{2}{x^2+3}$
10. $f(x) = \sqrt{x^2 + 5x + 6}$
11. $f(x) = \frac{x^2+2x+3}{\sqrt{x+1}}$
12. $f(x) = \sqrt{1 - x^2}$

• Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its domain. One example is the **absolute value functions**.

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0, \end{cases} \qquad f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Example: Sketch the graph of the following piecewise function.

$f(x)=egin{cases} 10-2x & ext{if } x<2\ x^2+2 & ext{if } x\geq2 \end{cases}$							$f\left(x ight) = egin{cases} 5+x & ext{if } x \geq 1 \ 2 & ext{if } -2 \leq x < 1 \ 1-x^2 & ext{if } x < -2 \end{cases}$									
x	10-2x	(x,y)	x	$x^{2} + 2$	(x,y)	x	$1-x^2$	(x, y)	x	2	(x, y)	x	5+x	(x, y)		
-1	12	(-1, 12)	2	6	(2, 6)	-4	-15	(-4, -15)	-2	2	(-2, 2)	1	6	(1.6)		
1	8	(1, 8)	3	11	(3, 11)	-3	-8	(-3, -8)	-1	2	(-1, 2)	2	7	(2,7)		
2	6	(2, 6)	5	27	(5, 27)	-2	-3	(-2, -3)	1	2	(1,2)	3	8	(3,8)		
(-1,12) 10 $(1,8)$ $(2,6)$ $(5,27)$							$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									

- Increasing and Decreasing Functions
- If the graph of a function climbs or rises as you move from left to right, function is **increasing.**
- If the graph descends or falls as you move from left to right, the function is **decreasing.**

DEFINITIONS Let *f* be a function defined on an interval *I* and let x_1 and x_2 be any two points in *I*.

- 1. If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- 2. If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be decreasing on I.

• Increasing and Decreasing Functions

Function	Where increasing	Where decreasing
$y = x^2$	$0 \le x < \infty$	$-\infty < x \leq 0$
$y = x^3$	$-\infty < x < \infty$	Nowhere
y = 1/x	Nowhere	$-\infty < x < 0$ and $0 < x < \infty$
$y = 1/x^2$	$-\infty < x < 0$	$0 < x < \infty$
$y = \sqrt{x}$	$0 \le x < \infty$	Nowhere
$y = x^{2/3}$	$0 \le x < \infty$	$-\infty < x \leq 0$

• Even Functions and Odd Functions: Symmetry

EXAMPLE Recognizing Even and Odd Functions

 $f(x) = x^{2}$ $f(x) = x^{2} + 1$ f(x) = x f(x) = x + 1

Even function: $(-x)^2 = x^2$ for all x; symmetry about y-axis. Even function: $(-x)^2 + 1 = x^2 + 1$ for all x; symmetry about y-axis (Figure 'a). Odd function: (-x) = -x for all x; symmetry about the origin. Not odd: f(-x) = -x + 1, but -f(x) = -x - 1. The two are not equal. Not even: $(-x) + 1 \neq x + 1$ for all $x \neq 0$ (Figure b).

Lecturer: Jwan Khaleel M.

20

EXAMPLE Determine whether each of the following functions is even, odd, or neither even nor odd.

(a) $f(x) = x^5 + x$ (b) $g(x) = 1 - x^4$ (c) $h(x) = 2x - x^2$ SOLUTION (a) $f(-x) = (-x)^5 + (-x) = (-1)^5 x^5 + (-x)$

 $= -x^5 - x = -(x^5 + x)$ = -f(x)

Therefore f is an odd function.

(b) $g(-x) = 1 - (-x)^4 = 1 - x^4 = g(x)$

So g is even.

(c)
$$h(-x) = 2(-x) - (-x)^2 = -2x - x^2$$

Since $h(-x) \neq h(x)$ and $h(-x) \neq -h(x)$, we conclude that *h* is neither even nor odd.

Lecturer: Jwan Khaleel M.

y ∧

(c)

(b) 21

Common functions

• Sums, Differences, Products, and Quotients

We define functions f + g, f - g, and fg by the formulas $x \in D(f) \cap D(g)$

Definition Given two functions *f* and *g*, the sum, difference, product, and quotient functions are defined by

$$(f+g)(x) = f(x) + g(x) \qquad (f-g)(x) = f(x) - g(x)$$
$$(fg)(x) = f(x) g(x) \qquad \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Functions can also be multiplied by constants: If c is a real number, then the function c f is defined for all x in the domain of f by

$$(cf)(x) = cf(x).$$

EXAMPLE Given the functions f(x) = 2x - 3 and $g(x) = x^2 - 1$, find each of the following functions and state its domain.

a. (f+g)(x) b. (f-g)(x) c. $(f \cdot g)(x)$ d. $(\frac{f}{g})(x)$

Solution

a. $(f + g)(x) = (2x - 3) + (x^2 - 1) = x^2 + 2x - 4$. The domain of this function is the interval $(-\infty, \infty)$.

b.
$$(f - g)(x) = (2x - 3) - (x^2 - 1) = -x^2 + 2x - 2$$
. The domain of this function is the interval $(-\infty, \infty)$.

c.
$$(f \cdot g)(x) = (2x - 3)(x^2 - 1) = 2x^3 - 3x^2 - 2x + 3$$
. The domain of this function is the interval $(-\infty, \infty)$.

d.
$$\left(\frac{f}{g}\right)(x) = \frac{2x-3}{x^2-1}$$
. The domain of this function is $\{x|x \neq \pm 1\}$.

EXAMPLE

The functions defined by the formulas

$$f(x) = \sqrt{x}$$
 and $g(x) = \sqrt{1-x}$

have domains $D(f) = [0, \infty)$ and $D(g) = (-\infty, 1]$. The points common to these domains are the points

$$[0, \infty) \cap (-\infty, 1] = [0, 1].$$
Function Formula Domain
$$f + g \qquad (f + g)(x) = \sqrt{x} + \sqrt{1 - x} \qquad [0, 1] = D(f) \cap D(g)$$

$$f - g \qquad (f - g)(x) = \sqrt{x} - \sqrt{1 - x} \qquad [0, 1]$$

$$g - f \qquad (g - f)(x) = \sqrt{1 - x} - \sqrt{x} \qquad [0, 1]$$

$$f \cdot g \qquad (f \cdot g)(x) = f(x)g(x) = \sqrt{x(1 - x)} \qquad [0, 1]$$

$$f/g \qquad \frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1 - x}} \qquad [0, 1] (x = 1 \text{ excluded})$$

$$g/f \qquad \frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1 - x}{x}} \qquad (0, 1] (x = 0 \text{ excluded})$$

• Composite Functions

Composition is another method for combining functions.

DEFINITION If f and g are functions, the **composite** function $f \circ g$ ("f composed with g") is defined by

 $(f \circ g)(x) = f(g(x)).$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f.

The $f \circ g$ machine is composed of the *g* machine (first) and then the *f* machine.

EXAMPLE If $f(x) = x^2$ and g(x) = x - 3, find the composite functions $f \circ g$ and $g \circ f$. SOLUTION We have $(f \circ g)(x) = f(g(x)) = f(x - 3) = (x - 3)^2$

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 - 3$$

EXAMPLE Find $f \circ g \circ h$ if f(x) = x/(x + 1), $g(x) = x^{10}$, and h(x) = x + 3.

SOLUTION

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x + 3))$$

 $= f((x + 3)^{10}) = \frac{(x + 3)^{10}}{(x + 3)^{10} + 1}$

EXAMPLE Consider the functions $f(x) = x^2 + 1$ and g(x) = 1/x.

- a. Find $(g \circ f)(x)$ and state its domain and range.
- b. Evaluate $(g \circ f)(4)$, $(g \circ f)(-1/2)$.

Solution

a. We can find the formula for $(g \circ f)(x)$ in two different ways. We could write

$$(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \frac{1}{x^2 + 1}$$

Alternatively, we could write

$$(g \circ f)(x) = g(f(x)) = \frac{1}{f(x)} = \frac{1}{x^2 + 1}$$

b.
$$(g \circ f)(4) = g(f(4)) = g(4^2 + 1) = g(17) = \frac{1}{17}$$

 $(g \circ f)\left(-\frac{1}{2}\right) = g\left(f\left(-\frac{1}{2}\right)\right) = g\left(\left(-\frac{1}{2}\right)^2 + 1\right) = g\left(\frac{5}{4}\right) = \frac{4}{5}$

EXAMPLE Consider the functions f and g described by **Table 1** and **Table 2**

Table 1	x	-3	-2	-	-1 ()	1		2	3		4
	f(x)	0	4	2	2	4	ŀ	-2		0	-	-2	4
		Table 2	x			Ļ		-2	0		2	4	
			g (x))	1		(0	3		0	5	

- a. Evaluate $(g \circ f)(3), (g \circ f)(0)$.
- b. State the domain and range of $(g \circ f)(x)$.
- c. Evaluate $(f \circ f)(3), (f \circ f)(1)$.
- d. State the domain and range of $(f \circ f)(x)$.

SOLUTION

a.
$$(g \circ f)(3) = g(f(3)) = g(-2) = 0$$

 $(g \circ f)(0) = g(4) = 5$

b. The domain of g∘f is the set {-3, -2, -1, 0, 1, 2, 3, 4}.
Since the range of f is the set {-2, 0, 2, 4}, the range of g∘f is the set {0, 3, 5}.

c.
$$(f \circ f)(3) = f(f(3)) = f(-2) = 4$$

 $(f \circ f)(1) = f(f(1)) = f(-2) = 4$

d. The domain of *f* ∘ *f* is the set {-3, -2, -1, 0, 1, 2, 3, 4}.
Since the range of *f* is the set {-2, 0, 2, 4}, the range of *f* ∘ *f* is the set {0, 4}.

EXAMPLE If
$$f(x) = \sqrt{x}$$
 and $g(x) = x + 1$, find
(a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$.
Solution
Composite Domain
(a) $(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x + 1}$ $[-1, \infty)$
(b) $(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$ $[0, \infty)$
(c) $(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{1/4}$ $[0, \infty)$
(d) $(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2$ $(-\infty, \infty)$
To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that $g(x) = x + 1$ is defined for all real x but belongs to the domain of f only if $x + 1 \ge 0$, that is to say, when $x \ge -1$.

• Shifting a Graph of a Function

Shift Formulas Vertical Shifts y = f(x) + kShifts the graph of f up k units if k > 0Shifts it down k units if k < 0Horizontal Shifts y = f(x+h)Shifts the graph of f left h units if h > 0Shifts it *right* |h| units if h < 0

EXAMPLE

(a) Adding 1 to the right-hand side of the formula y = x² to get y = x² + 1 shifts the graph up 1 unit (Figure).
(b) Adding -2 to the right-hand side of the formula y = x² to get y = x² - 2 shifts the graph down 2 units (Figure).

(c) Adding 3 to x in $y = x^2$ to get $y = (x + 3)^2$ shifts the graph 3 units to the left (Figure).

To shift the graph of $y = x^2$ to the left, we add a positive constant to x To shift the graph to the right, we add a negative constant to x. (d) Adding -2 to x in y = |x|, and then adding
-1 to the result, gives y = |x - 2| - 1
and shifts the graph 2 units to the right
and 1 unit down (Figure).

Vertical and Horizontal Scaling and Reflecting Formulas

For c > 1, the graph is scaled:

- y = cf(x) Stretches the graph of f vertically by a factor of c.
- $y = \frac{1}{c}f(x)$ Compresses the graph of f vertically by a factor of c.
- y = f(cx) Compresses the graph of f horizontally by a factor of c.
- y = f(x/c) Stretches the graph of f horizontally by a factor of c.
- For c = -1, the graph is reflected:
- y = -f(x) Reflects the graph of f across the x-axis.
- y = f(-x) Reflects the graph of f across the y-axis.

EXAMPLE scale and reflect the graph of $y = \sqrt{x}$.

EXAMPLE Given the function $f(x) = x^4 - 4x^3 + 10$ (Figure a), find formulas to

- (a) compress the graph horizontally by a factor of 2 followed by a reflection across the y-axis (Figure b).
- (b) compress the graph vertically by a factor of 2 followed by a reflection across the x-axis (Figure c).

Solution

(a) We multiply x by 2 to get the horizontal compression, and by -1 to give reflection across the y-axis. The formula is obtained by substituting -2x for x in the right-hand side of the equation for f:

$$y = f(-2x) = (-2x)^4 - 4(-2x)^3 + 10$$

= 16x⁴ + 32x³ + 10.

(b) The formula is

$$y = -\frac{1}{2}f(x) = -\frac{1}{2}x^4 + 2x^3 - 5.$$

• Ellipses

$$x^2 + y^2 = r^2$$

Substituting cx for x in the standard equation for a circle gives

If 0 < c < 1, the graph of Equation (1) horizontally stretches the circle; if c > 1 the circle is compressed horizontally. In either case, the graph of Equation (1) is an ellipse

Graph of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b,$

where the major axis is horizontal.

If we divide both sides of Equation (1) by r^2 , we obtain

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (2)

where a = r/c and b = r. If a > b, the major axis is horizontal;

if a < b, the major axis is vertical.

The center of the ellipse given by Equation (2) is the origin

Substituting x - h for x, and y - k for y, in Equation (2) results in

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1.$$
 (3)

Equation (3) is the standard equation of an ellipse with center at (h, k).

Example

What is the standard form equation of the ellipse that has vertices $(\pm 8, 0)$ and foci $(\pm 5, 0)$?

The foci are on the x-axis, so the major axis is the x-axis.

Thus the equation will have the form:

The vertices are
$$(\pm 8, 0)$$
, so $a=8$ and $a^2=64$.

The foci are $(\pm 5, 0)$, so c = 5 and $c^2 = 25$.

We know that the vertices and foci are related by the equation $c^2 = a^2 - b^2$. Solving for b^2 we have $c^2 = a^2 - b^2$

$$25 = 64 - b^2$$
 Substitute for c^2 and a^2 .
 $b^2 = 39$ Solve for b^2 .

Now we need only substitute $a^2 = 64$ and $b^2 = 39$ into the standard form of the equation.

The equation of the ellipse is

$$rac{x^2}{64} + rac{y^2}{39} = 1$$

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Example

What is the standard form equation of the ellipse that has vertices (-2, -8)and (-2, 2) and foci (-2, -7) and (-2, 1)?

The x-coordinates of the vertices and foci are the same, so the major axis is parallel to the y-axis.

Thus, the equation of the ellipse will have the form $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$

First, we identify the center, (h, k). The center is halfway between the vertices, (-2, -8)

and (-2, 2). Applying the midpoint formula, we have:

$$(h,k) = \left(\frac{-2+(-2)}{2}, \frac{-8+2}{2}\right) = (-2, -3)$$

44

Next, we find a^2 . The length of the major axis, 2a, is bounded by the vertices. We solve for a by finding the distance between the y-coordinates of the vertices.

$$2a = 2 - (-8)$$

 $2a = 10$
 $a = 5$ So $a^2 = 25$.

Now we find c^2 . The foci are given by $(h, k \pm c)$. So, (h, k - c) = (-2, -7) and (h, k + c) = (-2, 1). We substitute k = -3 using either of these points to solve for c. k + c = 1-3 + c = 1c=4So $c^2 = 16$. Next, we solve for b^2 using the equation $c^2 = a^2 - b^2$. $2 - 2 h^2$

$$-a - b^{2}$$

 $16 = 25 - b^{2}$
 $b^{2} = 9$

Finally, we substitute the values found for h, k, a^2 , and b^2 into the standard form equation for an ellipse: $\frac{(x+2)^2}{2} + \frac{(y+3)^2}{25} = 1$

Assignments

A// Evaluate the difference quotient for the given function. Simplify your answer:

1.
$$f(x) = 4 + 3x - x^2$$
, $\frac{f(3+h) - f(3)}{h}$
2. $f(x) = x^3$, $\frac{f(a+h) - f(a)}{h}$
3. $f(x) = \frac{1}{x}$, $\frac{f(x) - f(a)}{x - a}$
4. $f(x) = \sqrt{x + 2}$, $\frac{f(x) - f(1)}{x - 1}$

B// Find the Domain and Range of each function

1.
$$f(x) = \frac{3}{\sqrt{x^2-4}}$$

2.
$$f(x) = 3x^2 + 6x - 2$$

3.
$$f(x) = 2 + \sqrt{x-1}$$

$$4. \quad \mathbf{f}(x) = \sqrt{x-1}$$

5.
$$f(x) = \frac{\sqrt{x+1}}{x^2-4}$$

C// Evaluate f(-3), f(0), and f(2) for the pricewise defined function. Then sketch the graph of the function.

$$1. f(x) = \begin{cases} x^2 + 2 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$
$$2. f(x) = \begin{cases} 5 & \text{if } x < 2 \\ \frac{1}{2}x - 3 & \text{if } x \ge 2 \end{cases}$$
$$3. f(x) = \begin{cases} x + 1 & \text{if } x \le -1 \\ x^2 & \text{if } x > -1 \end{cases}$$
$$4. f(x) = \begin{cases} -1 & \text{if } x \le 1 \\ 7 - 2x & \text{if } x > 1 \end{cases}$$

D// say whether the function is even, odd, or neither. Give reason for your answer.

1.
$$f(x) = 3$$
 2. $f(x) = x^{-5}$

 3. $f(x) = x^2 + 1$
 4. $f(x) = x^2 + x$

 5. $g(x) = x^3 + x$
 6. $g(x) = x^4 + 3x^2 - 1$

 7. $g(x) = \frac{1}{x^2 - 1}$
 8. $g(x) = \frac{x}{x^2 - 1}$

 9. $h(t) = \frac{1}{t - 1}$
 10. $h(t) = |t^3|$

 11. $h(t) = 2t + 1$
 12. $h(t) = 2|t| + 1$

E//

1.	If $f(x) = x + 5$ and $g(x) =$	$x^2 - 3$, find the following.
	a. <i>f</i> (<i>g</i> (0))	b. g(f(0))
	c. $f(g(x))$	d. $g(f(x))$
	e. $f(f(-5))$	f. $g(g(2))$
	g. $f(f(x))$	h. $g(g(x))$
2.	If $f(x) = x - 1$ and $g(x) =$	1/(x + 1), find the following.
	a. $f(g(1/2))$	b. $g(f(1/2))$
	c. $f(g(x))$	d. $g(f(x))$
	e. <i>f</i> (<i>f</i> (2))	f. $g(g(2))$
	g. $f(f(x))$	h. $g(g(x))$

F// The accompanying figure shows the graph of $y = x^2$ shifted to two new positions. Write equations for the new graphs.

G// Evaluate each expression using the functions

$$f(x) = 2 - x, \quad g(x) = \begin{cases} -x, & -2 \le x < 0\\ x - 1, & 0 \le x \le 2. \end{cases}$$

a. $f(g(0))$ b. $g(f(3))$ c. $g(g(-1))$
d. $f(f(2))$ e. $g(f(0))$ f. $f(g(1/2))$

H// Give equations of ellipses. Put each equation in standard form and sketch the ellipse.

4.
$$9x^2 + 25y^2 = 225$$

5. $3x^2 + (y - 2)^2 = 3$

References

- 1. Engineering Mathematics by K.A. Stroud& Dexter J. Booth (8th edition)
- 2. Calculus, by George B. Thomas, 12th Edition
- 3. Calculus, Volume-1, by Gilbert Strang, Edwin "Jed" Herman
- 4. Calculus by James Stewart (2019)

The end of the lecture Enjoy your time