Organic Compounds

An **organic compound** is one that has carbon as the principal element

Carbon is unique

It has 6 electrons in its outer shell arranges 1s²2s²sp²

Organic compounds have specific geometry around the carbon to carbon bond.

If there are four atoms or groups around a carbon atom, it has a tetrahedral geometry.

• Functional groups are specific groups of atoms or bonds within molecules that are responsible for the characteristic chemical reactions of those molecules.

Name	Formula	Prefix	Suffix	Example	Notes
Carboxylic acid		*	-oic acid	O Ethanoic	Common are acetic acid (vinegar) and butyric acid (human vomit)
Sulphonic acid	O R1 ^S OH	•	- sulfonicic acid	O _{s-OH} Tolene So sulphonic acid	Used in batteries and dye production.
Anhydride		*	-anhydride	o≺oyo Maleic anhydride	Used in production of polymers
Ester		•	R ₁ R ₂ oate	$\frac{1}{2}_{0}$ Ethyl acetate	Often good smell and flavor
Acid halide		Haloformyl-	-R ₁ oyl halide	CI Acetyl	Usually lachrymatory
Amide		Amido-	-amide	NH ₂ Ethan amide	Distinctive feature of proteins (hair, spider silk, enzymes)
Nitriles	R—C≡	Cyano-	-nitrile	N ^{Benzo} nitrile	Found in a lot of fruits and nuts, as well as application in medicine
Aldehyde	R ₁ H	Oxo-	-al	H carbaldehyde	Production of resins and plastics. Ingredients of flavours and parfumes.
Ketone		Oxo-	-one	O Propan- one	Solvents, precursor for polymers, pharmaceutics.
Alcohol	R-O	Hydroxy-	-ol	OH Methanol	Favorite way to spend Friday evening.
Thial	R—S	Mercanto-		Han Methane	Cysteine, many

Thiol	R—S_H	Mercapto-	-thiol	H _H _H _H BH Methane thiol	Cysteine, many cofactors
Amine	R1 R2	Amino-	-amine	Methan NH2 amine	Amino acids, dyes, drugs
Alkene	R1===R2				
	$R_{7} \longrightarrow R_{2}$				
Ether	R1 0 R2	[group] oxy-	*	$\sim \circ \sim \frac{Methoxy}{ethane}$	Solvents, anesthetics
Halide/ Pseudohalide	-X	Halo-		Chloro Ci ethane	Used in lamps, photography

Hydrocarbons

- Introduction
 - A hydrocarbon is a compound consisting of only hydrogen and carbon.
 - The carbon to carbon can be single, double, or triple bonds.
 - The bonds are always nonpolar.
 - Alkanes are hydrocarbons with only single bonds.
 - (a "family" of hydrocarbons)
 - $C_n H_{2n+2}$

• Carbon-to-carbon bonds can be

• (A) single

• (B) double,

• (C) triple

Number of carbon atom(s)	IUPAC name	Molecular formula	Condensed structural formula	Structural formula
1	Methane	CH ₄	CH ₄	$\overset{H}{\overset{H}{\underset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{$
2	Ethane	C ₂ H ₆	CH ₃ CH ₃	$\begin{array}{ccc} H & H \\ & \\ H - C - C - H \\ & \\ H & H \end{array}$
3	Propane	C ₃ H ₈	CH ₃ CH ₂ CH ₃	$\begin{array}{cccc} H & H & H \\ H & - & H \\ H - & C & - & C \\ - & C & - & C \\ H & H & H \\ H & H & H \end{array}$
4	Butane	C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	$\begin{array}{cccccc} H & H & H & H \\ H & - & - & - & - & - \\ H & - & - & - & - & - & - \\ H & - & - & - & - & - & - \\ H & - & - & - & - \\ H & - & - & - & - & - $

The first four members of straight-chain alkanes

IUPAC nomenclature

names of radicals (alkyl groups):

CH₃- "methyl" CH₃Cl methyl chloride CH₃OH methyl alcohol, etc.

CH₃CH₂- "ethyl"

CH₃CH₂CH₂- "*n*-propyl" CH₃CHCH₃ "isopropyl"

- Reactions of alkanes:
- alkane + $H_2SO_4 \rightarrow$ no reaction (NR)
- alkane + NaOH \rightarrow NR
- alkane + Na \rightarrow NR
- alkane + $KMnO_4 \rightarrow NR$
- alkane + H_2 , Ni \rightarrow NR
- alkane + $Br_2 \rightarrow NR$
- alkane + $H_2O \rightarrow NR$
- (Alkanes are typically non-reactive. They don't react with acids, bases, active metals, oxidizing agents, reducing agents, halogens, etc.)

Reactions of alkanes :

1- Combustion : generally $CnH_2n+2 + excess O_2$ $nCO_2 + (n+1)H_2O$ $1-C_5H_{12}+8O_2 \rightarrow 5CO_2+6H_2O$ $Q\setminus Ethane+O_2 ?+?$

- Cycloalkanes and Aromatic Hydrocarbons
 - Cycloalkanes are alkanes (only carbon to carbon single bonds) which form a ring structure.
 - -An **aromatic compound** is one that is based on the benzene ring.
 - A **benzene ring** that is attached to another compound is given the name phenyl.

 (A)The bonds in C₆H₆ are something between single and double, which gives it different chemical properties than doublebonded hydrocarbons.

• (B) The six-sided symbol with a circle represents the benzene ring. Organic compounds based on the benzene ring are called aromatic hydrocarbons because of their aromatic character.

Nomenclature

1. dehydrohalogenation of alkyl halides

•
$$|$$
 $|$ $|$
• $-C - C - C - + KOH(alc.)$ \rightarrow $-C = C - + KX + H_2O$
• $|$ $|$
• $H X$

2. dehydration of alcohols:

Double bond reaction :

Involve addition reactions 1- Halogenation : i.e addition of $X_2 = Cl_2$, Br_2 , I_2 as a general

Dienes

a diene or diolefin in oranic chemistry is a hydrocarbon that contains two carbon double bonds

Dienes can be divided into three classes, depending on the relative location of the double bonds:

1.Cumulated dienes have the double bonds sharing a common atom as in a group of compounds called allenes (R-C=C=C-R)
2.Conjugated dienes have conjugated double bonds separated by one single bond (R-C=C-C=C-R).

3.Unconjugated dienes (isolated) have the double bonds separated by two or more single bonds. They are usually less stable than isomeric conjugated dienes. This can also be known as an isolated diene (R'-C=C-R-C=C-R')

Aromatic compounds :

Are benzene & compounds that resemble benzene in chemical behavior aromatic HCs characterized by a tendency to undergo ionic substitution reactions .

Benzene

naphthalene

Molecules with alternating single and double bonds, gives the stability for benzene molecules for this reason it undergoes substitution reaction rather than addition reaction.

Dewar structure of benzene

Nomenclature of benzene derivatives

1- Mono substituted derivatives :

Q / Define resonance then write kekule & Dewar structure of benzene ? Q/ Explain why benzene ring undergoes neucleophilic substitution reaction ? Q /Draw chemical structure for the : Benzoic acid , Toluene , Benzaldehyde

2- Disubstituted :

2- Sulfonation of benzene

<u>Alcohols</u>

- Are compounds of general formula ROH . The
- functional group is the hydroxyl (-OH) group .
- R, may be an alkyl or any substituted alkyl group like:

As the compound aromatic ring attached to hydroxyl group we say that is phenol not alcohol such as :

Starch <u>fermentation</u> CH₃CH₂OH + Fusel oil or liquor Fusel oil or liquor :is the mixture of i alcohol such as 1- propanol , isobutyl alcohol (2- methyl -1-propanol) and active amyl alcohol (2-methyl-1-butanol)

Carboxylic acids

Organic compounds that show weak acidity , their functional group is carboxyl group attached to either alkyl (RCOOH) or aryl groups (ArCOOH)

Ex

HCOOH

Formic acid Methanoic acid

$CH_3(CH_2)_{10}COOH$

Lauric acid Dodecanoic acid

32 нооссн,соон

CH3CH2COOH

Propanoic acid

Propane dioic acid

Benzoic acid

СH₂=СНСООН

Acrylic acid Propenoic acid

СООН

O-hydroxyl benzene Carboxylic acid Or o- hydroxyl benzoic acid

Preparation of carbocxylic acids by Oxidation of alcohol KMnO₄ RCH₂OH → RCOOH + H₂O

 $\frac{\text{Reactions of carboxylic acids}}{1 - \text{conversion into esters}_{\text{RC}}^+ - \text{or}_{\text{RC}}^+ - \text{or}_{\text{RC}}^+ - \text{or}_{\text{RC}}^+ - \text{or}_{\text{RC}}^+ + \text{H}_2\text{o}}$ $\text{Reactivity of R'OH} \stackrel{\text{more}}{:} 1^{\circ} > 2^{\circ} > 3^{\circ}$

Aldehydes :

Reactions of aldehyde

2- Reduction to alcohols

4- Cannizzaro reaction :

Mandelic acid

