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Reservoir Characteristics

■ Reservoir Fluid Types according to Compressibility: 

Homework (Part I): Explain the reason 

why the minus sign (-) is present in 

equation (1) and disappeared in 

equation (2)



Reservoir Characteristics

■ Reservoir Fluid Types according to Compressibility: 

❑ Slightly Compressible Fluids: 

Homework (Part II): Derive the equation 

of isothermal compressibility coefficient 

for density and pressure relationship 

(equation 2) 



Reservoir Characteristics

Types of Flow 
Regimes 

Steady-state 
Flow

Unsteady-state 
Flow

Pseudosteady-
state Flow



Reservoir Characteristics

Reservoir Fluid Types 
according to 

Compressibility 

Incompressible 
Fluids

Slightly 
Compressible 

Fluids

Compressible 
Fluids



Reservoir Characteristics

Types of Reservoir 
Geometries

Radial Flow Linear Flow
Spherical and 
Hemispherical 

Flow



Reservoir Characteristics

Number of flowing fluids 
in the reservoir 

Single-phase 
flow (oil, water, 

or gas)

Two-phase flow 
(oil-water, oil-gas, 

or gas-water)

Three phase flow 
(oil, water, and 

gas)



Content: 
■ Fluid Flow Equations

■ Darcy’s Law

■ Darcy’s Law Assumptions

■ Derivation of Darcy’s Law for steady-state: 

• Linear Flow of Incompressible Fluids 

• Linear Flow of Slightly Compressible Fluids 

• Linear Flow of Compressible Fluids

• Radial Flow of Incompressible Fluids 

• Radial Flow of Slightly Compressible Fluids 

• Radial Flow of Compressible Fluids 



Fluid Flow Equations 

■ The fluid flow equations  that are used to describe the flow behavior in a reservoir 

can take many forms depending upon the combination of variables presented 

previously (i.e., types of flow, types of fluid, etc.). 

■ By combining the conservation of mass equation with the transport equation 

(Darcy’s equation) and various equation-of-state, the necessary flow equations can 

be developed. 

■ Since all flow equations to be considered depend on Darcy’s Law, it is important to 

consider this transport relationship. 



Darcy’s Law

■ The fundamental law of fluid motion in porous media is Darcy’s Law. 

■ The mathematical expression developed by Henry Darcy in 1856 states that velocity 

of a homogeneous fluid in a porous medium is proportional to the pressure gradient 

and inversely proportional to the fluid viscosity. 

■ For a horizontal linear system, this relationship is:

𝑣 =
𝑞

𝐴
= −

𝑘

𝜇

𝑑𝑝

𝑑𝑥
−− − 1



Darcy’s Law

𝑣 =
𝑞

𝐴
= −

𝑘

𝜇

𝑑𝑝

𝑑𝑥
−− − 1

■ 𝑣 is the apparent velocity in centimeters per second and is equal to Τ𝑞
𝐴, where q is 

the volumetric flow rate in cubic centimeters per second and A is total cross-

sectional area of the rock in square centimeters. In other words, A includes the area 

of the rock material as well as the area of the pore channels. 

■ The fluid viscosity, 𝜇, is expressed in centipoise units, and the pressure gradient, 

ൗ𝑑𝑝
𝑑𝑥, is in atmospheres per centimeter, taken in the same direction as v and q. 

■ The proportionality constant, k, is the permeability of the rock expressed in Darcy 

units.  



Darcy’s Law

𝑣 =
𝑞

𝐴
= −

𝑘

𝜇

𝑑𝑝

𝑑𝑥
−− − 1

■ The negative sign in equation (1) is added 

because the pressure gradient is negative 

in the direction of flow as shown in the 

figure. 



Darcy’s Law
■ For a horizontal-radial system, the pressure 

gradient is positive as shown in the figure 

and Darcy’s equation can be expressed in 

the following generalized radial form:

𝑣 =
𝑞𝑟

𝐴𝑟
=

𝑘

𝜇
(
𝜕𝑝

𝜕𝑟
)𝑟 −− − 2

Where 𝑞𝑟= volumetric flow rate at radius r

𝐴𝑟= cross-sectional area to flow at radius r

( ൗ𝜕𝑝
𝜕𝑟)𝑟= pressure gradient at radius r

𝑣= apparent velocity at radius r



Darcy’s Law

■ The cross-sectional area at radius r is essentially the surface area of a cylinder. For 

a fully penetrated well with a net thickness of h, the cross-sectional area 𝐴𝑟 is given 

by: 

𝐴𝑟 = 2𝜋𝑟ℎ −− − 3



Darcy’s Law Assumptions 

■ Darcy’s Law applies only when the following conditions exist: 

• Laminar (viscous) flow

• Steady-state flow

• Incompressible fluids

• Homogeneous formation 



Steady-state Flow

■ As defined previously, steady-state flow represents the condition that exists when 

the pressure throughout the reservoir does not change with time. 

■ The application of the steady-state flow to describe the flow behavior of several 

types of fluid in different reservoir geometries are presented in this lecture: 

• Linear flow of incompressible fluids 

• Linear flow of slightly compressible fluids 

• Linear flow of compressible fluids



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

▪ In the linear system, it is assumed the flow 

occurs through a constant cross-sectional area 

A, where both ends are entirely open to flow. It 

is also assumed that no flow crosses the 

sides, top, or bottom as show in the figure. 



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

▪ If an incompressible fluid is flowing across the element dx, then the fluid velocity v and the flow rate q 

are constants at all points. 

▪ The flow behavior in this system can be expressed by the differential form of Darcy’s equation (1): 

𝑣 =
𝑞

𝐴
= −

𝑘

𝜇

𝑑𝑝

𝑑𝑥
−− − 1



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

𝑣 =
𝑞

𝐴
= −

𝑘

𝜇

𝑑𝑝

𝑑𝑥
−− − 1

▪ Separating the variables of equation (1) and integrating over the length of the linear system gives: 

𝑞

𝐴
න

0

𝐿

𝑑𝑥 = −
𝑘

𝜇
න

𝑝1

𝑝2

𝑑𝑝

Or: 

𝑞 =
𝑘𝐴 (𝑝1 − 𝑝2)

𝜇𝐿



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

■ It is desirable to express the above relationship in customary field units, or:

𝑞 =
0.001127 𝑘𝐴 (𝑝1 − 𝑝2)

𝜇𝐿
−− −(2)

Where q= flow rate, bbl/day

k= absolute permeability, md

p= pressure, psia

𝜇= viscosity, cp

L= distance, ft

A= cross-sectional area, 𝑓𝑡2



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

Example 1: An incompressible fluid flows in a linear porous media with the following properties: 

L= 2000 ft                    h=20′                     width=300′ 

k= 100 md                    ɸ= 15%                  𝝻= 2cp

p1= 2000 psi                  p2=1990 psi

Calculate: 

a. Flow rate in bbl/day

b. Apparent fluid velocity in ft/day

c. Actual fluid velocity in ft/day



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

Solution: 

a. Flow rate in bbl/day:

𝑞 =
0.001127 𝑘𝐴 (𝑝1 − 𝑝2)

𝜇𝐿

𝐴 = ℎ ∗ 𝑤

𝐴 = 20 ∗ 300 = 6000 𝑓𝑡

𝑞 =
0.001127 ∗ 100 ∗ 6000 ∗ (2000 − 1990)

2 ∗ 2000

𝑞 =
6,762

4000
= 1.6905 𝑏𝑏𝑙/𝑑𝑎𝑦



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

Solution: 

b. Apparent fluid velocity in ft/day: 

𝑣 =
𝑞

𝐴

𝑣 =
(1.6905)(5.615)

6000
= 0.0016 𝑓𝑡/𝑑𝑎𝑦



Steady-state Flow

• Linear Flow of Incompressible Fluids: 

Solution: 

c. Actual fluid velocity in ft/day: 

𝑣 =
𝑞

𝜑 𝐴
=

(1.6905)(5.615)

(0.15)(6000)

𝑣 = 0.0105 𝑓𝑡/𝑑𝑎𝑦



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ In a radial flow system, all fluids move toward the producing well from all directions. 

▪ Before flow can take place, however, a pressure differential must exist. 

▪ Thus, if a well is to produce oil, which implies a flow of fluids through the formation to the 

wellbore, the pressure in the formation at the wellbore must be less than the pressure in the 

formation at some distance from the well. 

▪ The pressure in the formation at the wellbore of a producing well is known as the bottom-

hole flowing pressure (flowing BHP, 𝑝𝑤𝑓). 



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ Consider the following figure, which 

schematically illustrates the radial flow of an 

incompressible fluid toward a vertical well.

▪ The formation is considered to a uniform 

thickness h and a constant permeability k. 

▪ Because the fluid is incompressible, the flow 

rate q must be constant at all radii. 

▪ Due to the steady-state flowing condition, the 

pressure profile around the wellbore is 

maintained constant with time.  



Steady-state Flow
• Radial Flow of Incompressible Fluids: 

▪ Let 𝑝𝑤𝑓 represent the maintained bottom-hole flowing 

pressure at the wellbore radius 𝑟𝑤 and 𝑝𝑒 denote the 

external pressure at the external or drainage radius. 

▪ Darcy’s equation as described by following equation 

can be used to determine the flow rate at any radius r:

𝑣 =
𝑞

𝐴𝑟
= 0.001127

𝑘

𝜇

𝑑𝑝

𝑑𝑟
−− − 1

Where v= apparent fluid velocity, 𝑏𝑏𝑙/𝑑𝑎𝑦-𝑓𝑡2

q= flow rate at radius r, bbl/day

k= permeability, md

𝝻= viscosity, cp

0.001127= conversion factor to express the                   
equation in field units 

𝐴𝑟= cross-sectional area at radius r



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ At any point in the reservoir the cross-sectional area across which flow occurs will be the 

surface area of a cylinder, which is 2𝜋𝑟ℎ, or:

𝑣 =
𝑞

𝐴𝑟
=

𝑞

2𝜋𝑟ℎ
= 0.001127

𝑘

𝜇

𝑑𝑝

𝑑𝑟



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ The flow rate for a crude oil system is customarily expressed in surface units, i.e., stock-tank 

barrels (STB), rather than reservoir units. 

▪ Using the symbol 𝑄𝑜 to represent the oil flow as expressed in STB/day, then:

𝑞 = 𝐵𝑜 𝑄𝑜

Where 𝐵𝑜 is the oil formation volume factor bbl/STB. 

▪ The flow rate in Darcy’s equation can be expressed in STB/day to give:

𝑄𝑜 𝐵𝑜

2𝜋𝑟ℎ
= 0.001127

𝑘

𝜇𝑜

𝑑𝑝

𝑑𝑟



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ Integrating the above equation between two radii, 𝑟1 and 𝑟2, when the pressures are 𝑝1 and 𝑝2

yields: 

න

𝑟1

𝑟2
𝑄𝑜

2𝜋ℎ

𝑑𝑟

𝑟
= 0.001127 න

𝑝1

𝑝2
𝑘

𝜇𝑜 𝐵𝑜
𝑑𝑝

▪ For an incompressible system in a uniform formation, above equation can be simplified to:

𝑄𝑜

2𝜋ℎ
න

𝑟1

𝑟2
𝑑𝑟

𝑟
= 0.001127

𝑘

𝜇𝑜 𝐵𝑜
න

𝑝1

𝑝2

𝑑𝑝



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ Performing the integration gives: 

𝑄𝑜 =
0.00708 𝑘 ℎ (𝑝2 − 𝑝1)

𝜇𝑜𝐵𝑜 ln( Τ𝑟2 𝑟1)

▪ Frequently the two radii of interest are the wellbore radius 𝑟𝑤 and the external or drainage

radius 𝑟𝑒 . Then: 

𝑄𝑜 =
0.00708 𝑘ℎ (𝑝𝑒 − 𝑝𝑤)

𝜇𝑜𝐵𝑜 ln( Τ𝑟𝑒 𝑟𝑤)



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

𝑄𝑜 =
0.00708 𝑘ℎ (𝑝𝑒 − 𝑝𝑤)

𝜇𝑜𝐵𝑜 ln( Τ𝑟𝑒 𝑟𝑤)
−− − 2

Where 𝑄𝑜= oil flow rate, STB/day

𝑝𝑒= external pressure, psi

𝑝𝑤𝑓= bottom-hole flowing pressure, psi

k= permeability, md

𝜇𝑜= oil viscosity, cp

𝐵𝑜= oil formation volume factor, bbl/STB

h= thickness, ft

𝑟𝑒= external or drainage radius, ft

𝑟𝑤= wellbore radius, ft



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ The external (drainage) radius 𝑟𝑒 is usually determined from the well spacing by equating the 

area of the well spacing wit that of a circle, i.e., 

𝜋𝑟𝑒
2 = 43,560 𝐴

Or

𝑟𝑒 =
43,560 𝐴

𝜋
−− −(3)

Where A is the well spacing in acres. 



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

▪ Equation (2) can be rearranged to solve for the pressure p at any radius r to give:

𝑝 = 𝑝𝑤𝑓 +
𝑄𝑜𝐵𝑜𝜇𝑜

0.00708𝑘ℎ
ln

𝑟

𝑟𝑤
−− −(4)



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

Example 2: An oil well in the x Field is producing at a stabilized rate of 600 STB/day at a 

stabilized bottom-hole flowing pressure of 1,800 psi. Analysis of the pressure buildup test data 

indicates that the pay zone is characterized by a permeability of 120 md and a uniform 

thickness of 25 ft. The well drains an area of approximately 40 acres. The following additional 

data are available: 

𝑟𝑤= 0.25 ft                     A= 40 acres

𝐵𝑜= 1.25 bbl/STB          𝜇𝑜= 2.5 cp

Calculate the pressure profile (distribution) and list the pressure drop across 1 ft intervals from 

𝑟𝑤 to 1.25 ft, 4 to 5 ft, 19 to 20 ft, 99 to 100 ft, and 744 to 745 ft.  



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

Solution:

Step 1: 

𝑝 = 𝑝𝑤𝑓 +
𝑄𝑜𝐵𝑜𝜇𝑜

0.00708𝑘ℎ
ln

𝑟

𝑟𝑤

𝑝 = 1800 +
(2.5)(1.25)(600)

(0.00708)(120)(25)
ln

𝑟

0.25



Steady-state Flow

• Radial Flow of Incompressible Fluids: 

Solution:

Step 2: Calculate the pressure at the designated radii:



Homework


