Tishk International University
Engineering Faculty
Petroleum and Mining Engineering Department

Petroleum Reservoir Engineering II

Calculation of STOIIP (Volumetric Method, MBE)

Third Grade- Spring Semester 2021-2022

Instructor: Nabaz Ali Abdulrahman

Content:

- STOIIP
- Estimation of OIIP:
- √ Volumetric Method (Calculation)
- ✓ Material Balance Equation (Mbal)

ERBIL

2008

STOIIP

The volume of oil in a reservoir prior to production.

ERBIL

STOIIP is a method of estimating how much oil in a reservoir can be economically brought to the surface.

2008

- Volumetric Method:
- Consider a reservoir with an areal extent of A acres and an average thickness of h feet. The total bulk volume of the reservoir can be determined from the following expressions:

$$Bulk\ Volume = 43,560Ah, ft^3 --- (1)$$

Or

$$Bulk\ Volume = 7,758Ah, bbl --- (2)$$

Where A= areal extent, acres

h= average thickness

- Volumetric Method:
- Expressing the reservoir pore volume in cubic feet gives:

$$PV = 43,560Ah\phi, ft^3 --- -(3)$$

Expressing the reservoir pore volume in barrels gives:

$$ERPV = 7,758Ah\phi, bbl ----(4)$$

- Volumetric Method:
- The initial oil in place:

Initial oil in place =
$$\frac{PV(1 - S_{wc})}{B_o} = --(5)$$

ERBIL

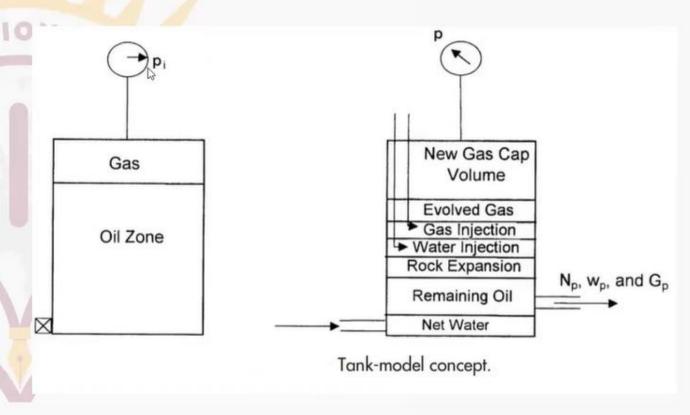
2008

Volumetric Method:

Example:

$$S_{wc} = 0.25$$

$$B_o = 1.3$$



- Volumetric Method:
- The initial oil in place:

Initial oil in place =
$$\frac{430(1-0.25)}{1.3}$$

Initial oil in place = 248.076 MMSTB

Treating the reservoir pore as an idealized container as illustrated below, volumetric balance expressions can be derived to account for all volumetric changes which occur during the natural productive life of the reservoir.

The MBE can be written in a generalized form as follows:

Pore volume occupied by the oil initially in place at p_i + Pore volume occupied by the gas in the gas cap at p_i =

Pore volume occupied by the remaining oil at p + Pore volume occupied by the gas in the gas cap at p + Pore volume occupied by the evolved solution gas at p + Pore volume occupied by the net water influx at p + Change in pore volume due to connate-water expansion and pore volume reduction due to rock expansion + Pore volume occupied by the injected gas at p + Pore volume occupied by the injected water at p _ _ _ _ (2)

Combining equations (3) through (12) with equation (2) and rearranging gives:

$$N = \frac{N_p B_o + (G_p - N_p R_s) B_g - (W_e - W_p B_w) - G_{inj} B_{ginj} - W_{inj} B_w}{(B_o - B_{oi}) + (R_{si} - R_s) B_g + m B_{oi} \left[\frac{B_g}{B_{gi}} - 1 \right] + B_{oi} (1 + m) \left[\frac{S_{wi} c_w + c_f}{1 - S_{wi}} \right] \Delta p} - - - (13)$$

2008

Where N = initial oil-in-place, STB

 G_p = cumulative gas produced, scf

 N_p = cumulative oil produced, STB

 R_{si} = gas solubility at initial pressure, scf/STB

m= ratio of gas-cap gas volume to oil volume, bbl/bbl

 B_{gi} = gas formation volume factor at p_i , bbl/scf

 B_{ginj} = gas formation volume factor of the injected gas, bbl/scf

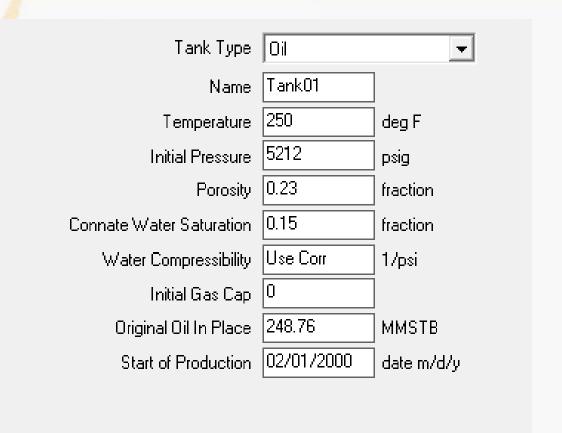
The cumulative gas produced G_p can be expressed in terms of the cumulative gas-oil ratio R_p and cumulative oil produced N_p by:

$$G_p = R_p N_p -- -(14)$$

Combining equation (14) with equation (13) gives:

$$N = \frac{N_p \left[B_o + \left(R_p - R_s \right) B_g \right] - \left(W_e - W_p B_w \right) - G_{inj} B_{ginj} - W_{inj} B_w}{\left(B_o - B_{oi} \right) + \left(R_{si} - R_s \right) B_g + m B_{oi} \left[\frac{B_g}{B_{gi}} - 1 \right] + B_{oi} (1 + m) \left[\frac{S_{wi} c_w + c_f}{1 - S_{wi}} \right] \Delta p} - - - (15)$$

The above relationship is referred to as the material balance equation (MBE).

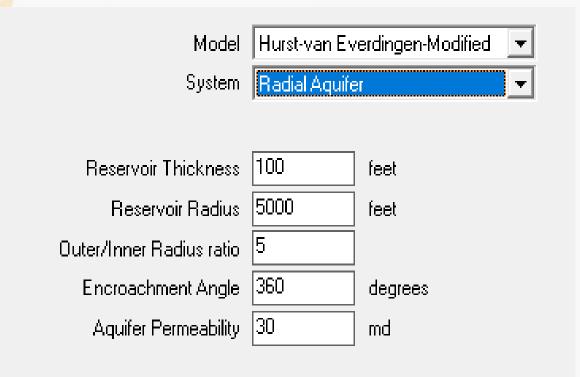


Material Balance Equation:

Example: Reservoir Thickness: 100 feet

Verify that the volume which is found by volumetric method is logic based on production history?

ERBIL



Material Balance Equation:

Example: Reservoir Thickness: 100 feet

Verify that the volume which is found by volumetric method is logic based on production history?

ERBIL

Material Balance Equation:

Example: Reservoir Thickness: 100 feet

Verify that the volume which is found by volumetric method is logic based on production history?

	Residual Saturation	End Point	Exponent
	fraction	fraction	
Krw	0.15	0.5	2
Kro	0.15	1	2
Krg	0.05	0.5	2