Hardy Cross Method for Solving Pipe Network Problems

From previous manipulations of the Hazen Williams Eq.:

$$Q = \frac{0.278 \text{ CD}^{2.63}}{L^{0.54}} \text{ H}^{0.54} = \text{K} \text{ H}^{0.54} \qquad \text{D m, Q m}^{3}/\text{s, H m}$$
$$H = \frac{L}{\left[0.278 \text{ CD}^{2.63}\right]^{1.85}} \text{ Q}^{1.85} = \text{k} \text{ Q}^{1.85} \qquad \text{note: } \text{k} = \left(\frac{1}{\text{K}}\right)^{1.85}$$

The Hardy Cross method is an iterative procedure for analysis for pipe networks in which corrections are applied to initial estimates of flow (or headloss) until a hydraulic "balance" criteria is met.

Derivation for a simple pipe network is shown here. The method is equally valid for complex networks

There are two "balance" criteria

1. flow into a junction (node) = flow out of a junction (node)

i.e. $Q_i = Q_1 + Q_2 = Q_o$

2. Headloss by any pathway between two junctions must be equal

i.e. $H_1 = H_2$

There are two methods of analysis and solution because there are two "balance" criteria:

- i) balancing flows
- ii) balancing headlosses

Method of Balancing Headlosses around Loops

Establish a sign convention for Q's and H's for balancing

clockwise Q's and H's are designated positive

counter clockwise Q's and H's are designated negative

For a balanced network

 $\sum H = H_1 + H_2 = 0$

Note: the sign convention will account for + or - H

Make initial flow estimates for Q₁ and Q₂ observing continuity at each node in the system.

If the initial flow estimates are in error,(i.e. $\sum H \neq 0$) then each flow in the loop must be corrected by an amount q

i.e.
$$Q'_1 = Q_1 + q$$
 ; $Q'_2 = Q_2 + q$

For example, if the actual flows were:

$$Q_i = 0.25 \text{ m}^3/\text{s}; Q_1 = 0.10 \text{ m}^3/\text{s}; Q_2 = -0.15 \text{ m}^3/\text{s}$$

in the directions shown, and the initial estimates were:

$$Q_1 = 0.12 \text{ m}^3/\text{s}; Q_2 = -0.13 \text{ m}^3/\text{s}$$

in the directions shown, then a correction of

$$q = -0.02 \text{ m}^3/\text{s}$$
 is required.

Using the established sign convention

$$Q'_1 = Q_1 + q = 0.12 - 0.02 = 010 \text{ m}^3/\text{s}$$

 $Q'_2 = Q_2 + q = -0.13 - 0.02 = -0.15 \text{ m}^3/\text{s}$

How can we determine the flow correction?

Substitute Hazen Williams Eq. into the balanced headloss equation

i.e.
$$\Sigma H = k_1 (Q_1 + q)^{1.85} + k_2 (Q_2 + q)^{1.85}$$
 note:
replace the exponent with n $k = (1/K)^{1.85}$

$$\Sigma H = k_1 (Q_1 + q)^n + k_2 (Q_2 + q)^n$$

Expand the term $(Q + q)^n$ by means of a Taylor series (see any mathematics handbook)

$$(Q + q)^{n} = Q^{n} + nQ^{n-1}q + \frac{n(n-1)}{2!}Q^{n-2}q^{2} + \frac{n(n-1)(n-2)}{3!}Q^{n-3}q^{3} + \cdots$$
$$= Q^{n} + nQ^{n}(\frac{q}{Q}) + \frac{n(n-1)Q^{n}}{2!}(\frac{q}{Q})^{2} + \frac{n(n-1)(n-2)Q^{n}}{3!}(\frac{q}{Q})^{3} + \cdots$$

as $\frac{q}{Q} \Rightarrow 0$ (i.e. estimates of Q improve) the third term and beyond becomes much smaller than the first two terms because $\frac{q}{Q}$ is raised to a power \therefore neglect the third term and beyond

$$\begin{split} \Sigma H &= k_1 Q_1^n + k_1 n Q_1^n \left(\frac{q}{Q_1}\right) + k_2 Q_2^n + k_2 n Q_2^n \left(\frac{q}{Q_2}\right) = 0 \\ &= k_1 Q_1^n + k_2 Q_2^n + q n \left[\frac{k_1 Q_1^n}{Q_1} + \frac{k_2 Q_2^n}{Q_2}\right] = 0 \\ &\text{but } H = k Q^n \\ \therefore \quad H_1 + H_2 + q n \left[\frac{H_1}{Q_1} + \frac{H_2}{Q_2}\right] = 0 \end{split}$$

solve for q

$$q = \frac{-[H_1 + H_2]}{n[\frac{H_1}{Q_1} + \frac{H_2}{Q_2}]} = \frac{-[H_1 + H_2]}{1.85[\frac{H_1}{Q_1} + \frac{H_2}{Q_2}]}$$

in general

$$q = \frac{-\Sigma H}{1.85 \Sigma \frac{H}{Q}}$$

and more than one correction step is required because of the error associated with truncating the Taylor series term.

Method of Balancing Flows into Junctions

- require a sign convention to designate Q's

flows into a junction are +ve

flows out of a junction are -ve

By a similar procedure to above:

$$\Delta h = \frac{-\sum Q}{0.54 \sum \frac{Q}{H}} = \frac{-1.85 \sum Q}{\sum \frac{Q}{H}}$$

where Δh is the head correction at a node

Hardy Cross Analysis Example

C = 100 for all pipes

Hardy Cross Analysis Example				$(1/K)^{1.85} = \frac{L}{[\beta C D^{2.63}]^{1.85}}, \beta = 278 \text{ for } Q \text{ in } L/s \text{ and } D \text{ in } m$					
1 st Iteration			$H = (1/K)^{1.85}Q^{1.85}$						
Loop	Pipe	Dia (m)	L (m)	$(1/K)^{1.85}$	Q (L/s)	H (m)	H/Q (m/L/s)	Correction L/s	Q' L/s
1	1	0.150	305	0.0187	+24.0	+6.68	0.28	-0.24	+23.76
	2	0.150	305	0.0187	+11.4	+1.69	0.15	-0.24+0.57	+11.73
	3	0.200	610	0.0092	-39.0	-8.09	0.21	-0.24	-39.24
						+0.28	0.64		
2	2	0.150	305	0.0187	-11.4	-1.69	0.15	-0.57+0.24	-11.73
	4	0.150	457	0.0280	+12.6	+3.04	0.24	-0.57	+12.03
	5	0.200	153	0.0023	-25.2	-0.90	0.04	-0.57	-25.77
						+0.45	0.43		
q _{iter2loop1} =	$=\frac{-\sum H}{n\sum H/Q}$	= <u>-0.28</u> 1.85(0.64) =	= -0.24 ;	q _{iter1loop2} =	$=\frac{-\sum H}{n\sum H/Q}=$	= <u>-0.45</u> 1.85(0.43) =	= -0.57		
2 ^{inu} Iteration									
Loop	Pipe	Dia	L	$(1/K)^{1.05}$	Q	H	H/Q	Correction	Q'
1	1	(<u>m</u>)	(m)	0.0107	(L/s)	(m)	(m/L/s)	<u> </u>	L/s
1	1	0.150	305	0.0187	+23.70	+0.50	0.28	-0.15	+23.01
	2	0.130	505 610	0.0187	+11.73	+1./9	0.15	-0.13+0.09	+11.07
	3	0.200	010	0.0092	-39.24	-0.17	0.21	-0.15	-39.39
						+0.18	0.04		
2	2	0.150	305	0.0187	-11.73	-1.78	0.15	-0.09+0.15	-11.67
	4	0.150	457	0.0280	+12.03	+2.79	0.23	-0.09	+11.94
	5	0.200	153	0.0023	-25.77	-0.94	0.04	-0.09	-25.86
						+0.07	0.42		
	H	0.18	0 15 ·	0 -	H	+0.07	0.42		