GIS Data Collection

Introduction

- Data collection is split into *data capture* (direct data input) and *data transfer* (input of data from other systems).
- Two main types of data capture are:
- Primary data sources are those collected in <u>digital</u> format specifically for use in a GIS project.
- Secondary sources are <u>digital</u> and <u>analog</u> datasets that were originally captured for another purpose and need to be converted into a suitable <u>digital</u> format for use in a GIS project.
- This lecture describes the data sources, techniques, and workflows involved in GIS data collection.
- The processes of *data collection* are also variously referred to as data capture, data automation, data conversion, data transfer, data translation, and digitizing.
- Data collection is a time consuming, tedious, and expensive process.
- Typically it accounts for 15–50% of the total cost of a GIS project
- If staff costs are excluded from a GIS budget, then in cash expenditure terms data collection can be as much as 60–85% of costs.

Data Collection Workflow

- Figure 1 shows the stages in data collection projects
- Planning includes establishing user requirements, garnering resources, and developing a project plan.

 Preparation involves obtaining data, redrafting poor-quality map sources, editing scanned map images, removing

Surveying & Geomatics Engineering Department, Faculty of Engineering, Tishk International University Erbil, Kurdistan Region, Iraq. Prof. Dr. Ayad M. Fadhil (<u>ayad.alquraishi@tiu.edu.iq</u>) noise, setting up appropriate GIS hardware and software systems to accept data.

- Digitizing and transfer are the stages where the majority of the effort will be expended.
- Editing and improvement covers many techniques designed to validate data, as well as correct errors and improve quality.
- *Evaluation* is the process of identifying project successes and failures.

Primary Geographic Data Capture

Raster Data Capture

- Remote sensing is a technique used to derive information about the physical, chemical, and biological properties of objects without direct physical contact
- Information is derived from measurements of the amount of electromagnetic radiation reflected, emitted, or scattered from objects.

The Spatial and Temporal Characteristics of Commonly Used Remote Sensing Systems and Their Sensors

- *Resolution* is a key physical characteristic of remote sensing systems.
- **Spatial resolution** refers to the size of object that can be resolved and the most usual measure is the pixel size.
- **Spectral resolution** refers to the parts of the electromagnetic spectrum that are measured.
- **Temporal resolution**, or repeat cycle, describes the frequency with which images are collected for the same area.
- Aerial photography is equally important in medium- to large-scale projects
- Photographs are normally collected by analog optical cameras and later scanned
- Aerial Photographs are usually collected on an ad hoc basis.
- Can provide stereo imagery for the extraction of digital elevation models.

Space Born Remote Sensing

Advantages are

Surveying & Geomatics Engineering Department, Faculty of Engineering, Tishk International University Erbil, Kurdistan Region, Iraq. Prof. Dr. Ayad M. Fadhil (<u>ayad.alquraishi@tiu.edu.iq</u>)

- Consistency of the data.
- Availability of systematic global coverage.
- Regular repeat cycles.
- Disadvantages are
- Resolution is often too coarse.
- Many sensors are restricted by cloud cover.

Vector Data Capture

• Two main branches are ground surveying and GPS

Surveying

- Ground surveying is based on the principle that the 3-D location of any point can be determined by measuring <u>angles</u> and <u>distances</u> from other known points.
- Traditional equipment like transits and theodolites have been replaced by total stations that can measure both angles and distances to an accuracy of 1 mm
- Ground survey is a very time-consuming and expensive activity, but it is still the best way to obtain highly accurate point locations.
- Typically used for capturing buildings, land and property boundaries, manholes, and other objects that need to be located accurately.
- Also employed to obtain reference marks for use in other data capture projects.

Lidar

- Relatively new technology that employs a scanning laser rangefinder to produce accurate topographic surveys
- Typically carried on a low-altitude aircraft that also has an inertial navigation system and a differential GPS to provide location.

Secondary Geographic Data Capture

Raster Data Capture Using Scanners

Three main reasons to scan hardcopy media are:

1 Documents are scanned to reduce wear and tear, improve access, provide integrated database storage, and to index them geographically.

- 2 Film and paper maps, aerial photographs, and images are scanned and georeferenced so that they provide geographic context for other data.
- 3 Maps, aerial photographs and images are scanned prior to vectorization.

Vector Data Capture

Secondary vector data capture involves digitizing vector objects from maps and other geographic data sources.

Heads-Up Digitizing and Vectorization

- Vectorization is the process of converting raster data into vector data.
- The simplest way to create vectors from raster layers is to digitize vector objects manually straight off a computer screen using a mouse or digitizing cursor.
- Describes how automated vectorization is performed.

Measurement Error

 Figure 2 presents some examples of human errors that are commonly introduced in the digitizing procedure including overshoots, undershoots, invalid polygons, and sliver polygons

Photogrammetry

- Is the science and technology of making measurements from pictures, aerial photographs, and images.
- Measurements are captured from overlapping pairs of photographs using stereo plotters.
- Orientation and triangulation are fundamental photogrammetry processing tasks.
- Orientation is the process of creating a stereo model suitable for viewing and

Surveying & Geomatics Engineering Department, Faculty of Engineering, Tishk International University Erbil, Kurdistan Region, Iraq. Prof. Dr. Ayad M. Fadhil (<u>ayad.alquraishi@tiu.edu.iq</u>)

extracting 3-D vector coordinates that describe geographic objects.

- Triangulation (also called _block adjustment') is used to assemble a collection of images into a single model so that accurate and consistent information can be obtained from large areas. Orthoimages are images corrected for variations in terrain using a DEM.
- **Photogrammetry** is a very cost-effective data capture technique that is sometimes the only practical method of obtaining detailed topographic data.

COGO Data Entry

- **COGO** is a contraction of the term coordinate geometry, a methodology for capturing and representing geographic data.
- COGO uses survey-style bearings and distances to define each part of an object
- COGO data are very precise measurements and are often regarded as the only legally acceptable definition of land parcels.

Obtaining Data from External Sources (Data Transfer)

• The best way to find geographic data is to search the Internet.

Capturing attribute data •

 Attributes can be entered by direct data loggers, manual keyboard entry, optical character recognition (OCR) or, increasingly, voice recognition.
An essential requirement for separate data entry is a common identifier (also called a key) that can be used to relate object geometry and attributes together following data capture