Tishk International University Department of Information Technology Fall 2022-2023

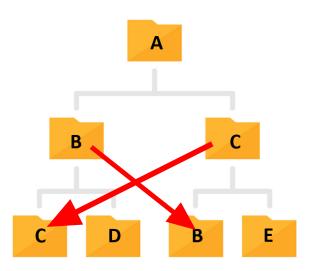
Database Systems I

Lecture 2

Data Models & Database Schema

Wisam Abdulaziz Qadir Wisam.abdulaziz@tiu.edu.iq

- Drawbacks of using File System
- Advantages of DBMS
- Levels of Abstraction
- Data Models
- Relational Database & Relational DBMS
- Database Schema

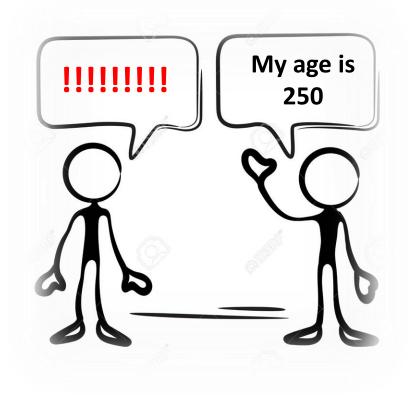

Drawbacks of using File Systems

1. Data redundancy: Duplication of data in different files, this leads to memory wastage.

2. Data Inconsistency: Data is not in consistent state, because of data redundancy.

Ex.: When you duplicate a file and you make some modification on only one of them, after that when you want to read the file which one should be read.

3. Difficulty in accessing data: It Needs to write a new program to carry out each new task.


Drawbacks of using File Systems (cont.)

ERBIL 2008

4. Limited Data Sharing: It is difficult for applications to retrieve data that are stored in files with different formats (e.g.: .txt, .docs, .pdf,. .xml, etc.).

5. Integrity problems: Hard to add new constraints or change existing ones.

(Data integrity means the data should be both correct and accurate.)

Drawbacks of using File Systems (cont.)

6. Atomicity of update problems: Failures may leave data in an inconsistent state when only partial updates carried out.

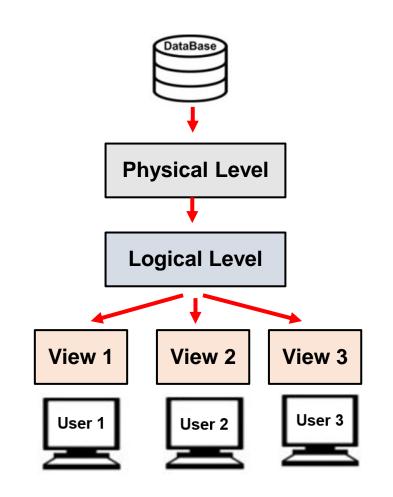
- **7. Concurrent access problem by multiple users:** It cannot guarantee of the correctness of operations by different users at the same time.
- 8. Security problems: Hard to provide user access to some, but not all the data.

Advantages of DBMS over File Systems

- All the mentioned points about drawbacks of File Systems are advantages of DBMS as comparison to File Systems.
- Advantages of DBMS are:
 - No data redundancy
 - Data consistency
 - Simplicity in accessing data
 - Flexibility of Data Sharing
 - Fixing Integrity problems
 - No problems for atomicity of updates
 - Concurrent access by multiple users
 - High Security

Levels of Abstraction

• Database systems are composed of complex data-structures. In order to make the system efficient in terms of retrieval of data, and reduce complexity in terms of usability of users, developers use **abstraction**.


• E.g.: Hide irrelevant details from the users. This approach simplifies database design.

Levels of Abstraction (cont.)

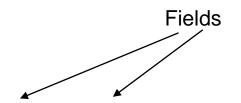
• **Physical level :** Describes how a record (e.g., customer names) is stored in memory.

• Logical level : Describes data stored in database in the form of tables, and the relationships among the data.

• View level : Only part of the actual database is viewed by the users.

- Are used to show how data in the systems are:
 - Stored
 - Connected
 - Accessed
 - updated.

Data Model Types in DBMS



- Relational model
 (is the most widely used model)
- Hierarchical Model
- Network Model
- Entity-Relationship Model
- Relational Model
- Object-Oriented Data Model
- Object-Relational Data Model
- Flat Data Model
- Semi-Structured Data Model
- Associative Data Model
- Context Data Model

Relational Model

- Stores data in a structured format, using fields and records.
- Table \rightarrow Relation
- Column \rightarrow Field
- Row \rightarrow Record

ID -	student_name -	grade -	subject -	mark -	_
1	Dara	2	Database 1	78	Records
2	Zara	2	Database 1	76	K
3	Nasrin	2	Database 1	98	
4	Azad	2	Database 1	96	
5	Hawre	2	Database 1	67	_

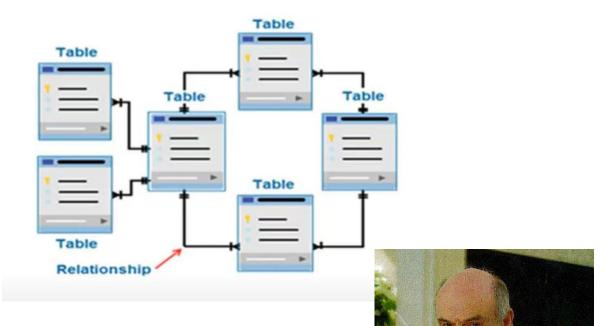
Student table

Sample Relational Database

ID	<pre>student_name</pre>	- dept_name -	mark -
1	Dara	IT	78
2	Zara	Computer Eng.	76
3	Nasrin	Architecture	98
4	Azad	IT	96
5	Hawre	Dentistry	67

Student table

dept_name +	building -	no_of_students -
IT	Main Building	80
Computer Eng.	Main Building	60
Architecture	Main Building	85
Dentistry	Dentistry Building	110
Mathematics	Education Building	40
Mathematics	Education Building	0


Department table

Relational DBMS

ERBIL 2008

• Is designed specifically for Relational Databases.

- Stores data in tabular form.
- Edgar F. Codd at IBM invented the relational database in 1970.

Microsoft Access

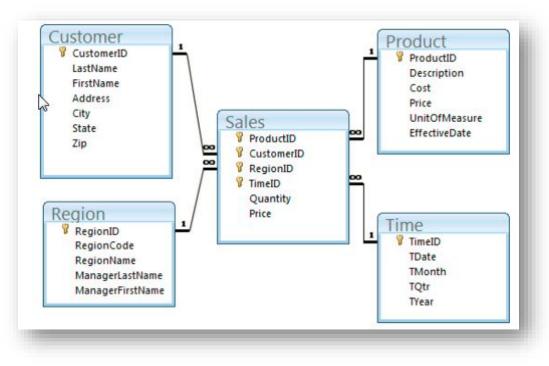
Typical RDBMS

- MySQL
- Microsoft SQL Server
- Sybase
- IBM DB2
- Oracle
- php MyAdmin
- PostgreSQL
- etc.

An SAP Company

ORACLE®

DATABASE


phpMyAdmin

Database Schema (Database Diagram)

ERBIL 2008

 It is the skeleton structure that represents the logical view of the entire database.

• It defines how the data is **organized** and how the **relations** are associated.

