To draw a tangent to a circle construction (Fig. a and b)

(a) At any point P on the circle.

1. With 0 as centre, draw the given circle. P is any point on the circle at which tangent to be drawn (Fig .a)
2. Join 0 with P and produce it to p^{\prime} so that $O P=p p^{\prime}$
3. With 0 and p^{\prime} as centres and a length greater than $O P$ as radius, draw arcs intersecting each other at Q.
4. Draw a line through P and Q. This line is the required tangent that will be perpendicular to $O P$ at P.

(a)
(b) From any point outside the circle.
5. With 0 as centre, draw the given circle. P is the point outside the circle from which tangent is to be drawn to the circle (F ig. b).
6. Join 0 with P. With OP as diameter, draw a semi-circle intersecting the given circle at M.
3.Then, the line drawn through P and M is the required tangent.
7. If the semi-circle is drawn on the other side, it will cut the given circle at MI. Then the line through P and MI will also be a tangent to/ the circle from P.

(b)

1- Circular Arc Connections
a-Construct the tangents to a circle having a diameter of 40 mm !.The tangents have to pass through the common intersection A. The distance $A M$ is 55 mm . Connect A with B and A with $C . A B$ and $A C$ are the tangents.

Solution:

1-Find the centre M.
2-Draw circle with M as the centre and a radius of 20 mm . Find $A(A M=55 \mathrm{~mm})$.
$3-A M$ Bisect $A M$, thus obtaining $M^{\prime}\left(A M^{\prime}=M^{\prime} M\right)$.
4-Draw arcs with M^{\prime} as the centre and $A M^{\prime}$ as the radius,
 5-thus obtaining B and C.
b-The two legs of a right angle have to be connected by a circular arc with a radius of 30 mm.

Solution:

1-Draw a right angle, thus obtaining S.
2-Draw two parallels within the angle at a distance of 30 mm in any case.
3-The intersection of the parallels is the centre M . 4 -The perpendiculars ($A M$ and $B M$) are the points of connection.

Constructing arcs tangent to two lines

(A)

Right Angle

Step 1

Step 2

Step 3
(B)

(C)

c-The two legs of an angle of 120° have to be connected by a circular arc with a radius of 36 mm .

Solution:

1-Draw the angle ($90^{\circ}+30^{\circ}$!), thus obtaining S .
2-Draw two parallels at a distance of 36 mm each, thus obtaining M.
3-Draw circle with M as the centre and a radius of 36 mm .
4-The perpendiculars ($A M$ and $B M$) are the points of connection.
d-Two adjacent circles have the following diameters:
$\mathrm{d} 1=50 \mathrm{~mm}$
$\mathrm{d} 2=30 \mathrm{~mm}$

The distance between their centres is 70 mm . The two circles have to be connected with a transition radius(Rtr) of 25 mm !

Solution:

1-Draw the two circles, thus obtaining M1 and M2. 2-Draw a circular arc with M1 as the centre and the radius of $\mathrm{R} 1+\mathrm{Rtr}(30 \mathrm{~mm}+25 \mathrm{~mm})$.
3-Draw a circular arc with M2 as the centre and the radius of $\mathrm{R} 2+\mathrm{Rtr}(15 \mathrm{~mm}+25 \mathrm{~mm})$.
The intersection is M .
4 -Connect M with $M 1$ and $M 2$, thus obtaining A and B. A and B are the points of connection

e-Two circles, an inner circle and an outer circle, have to be connected by a circular arc. The circles have the following diameters:
outer circle $=\mathrm{d} 1=60 \mathrm{~mm}$, inner circle $=\mathrm{d} 2=25 \mathrm{~mm}$
Solution:
1-Draw the two circles, thus obtaining M1 and M2.
2-Connect the centres and extend to the circles, thus obtaining A and B. Bisect $A B$, thus obtaining M as the centre for the circular arc.
3-Two adjacent circles have to be connected by a tangent. Their diameters are:

$=8 \mathrm{~d} 10 \mathrm{~mm}$
$\mathrm{d} 2=34 \mathrm{~mm}$
The distance between the centres of the two circles is 85 mm .

Case : Draw an arc of given radius R touching two given arcs of of radius R_{1} and R_{2} (internally) |Fig. 1.J

1. Draw an arc with O_{1} as contre and radius equal to $\left(R-R_{1}\right)$.
2. With O_{2} as the centre and radias equal to $\left(R-R_{2}\right)$ slraw an are louching the previous arc at point C.
3. Draw the required arc, C as centre and maius equal to R
[|i| | : : To draw a continuous curve of circular arcs passing through any number of given points. (Fig,).

1111: Let A, B, C, D, and E be the location of the given points.

1. Join the points A with B, B with C, C with D and D with E, etc.
2. Draw perpendicular bisecter of tines $A B$ and $B C$ to intersect at O.
3. Draw an arc $A B C, O$ as centre and radius equal to $O A$.
4. Draw a line through the points O and C.
5. Draw the perpendicular bisector of $C D$ to intersect $O C$ or $O C$ produced at P.
6. Draw an are CD, P as the contre and radists equal to $P C$,
7. Draw the line through the points P and D.

30-Dalvalbuspectiondicular bisector of DE to intervect PD producedeyt Q.
9. Draw an arc $D E, Q$ as centre and radius equal to $D Q$.

To join two circles of centres O_{1} and O_{2} with two fillet arcs of radius R_{3} and R_{4} (Fig.).

1. Draw an are with O_{1} as centre and radius $\left(R_{1}+R_{3}\right)$
2. With O_{2} as centre and $\left(R_{2}+R_{3}\right)$ radius draw an arc to intersect the previous arc at A, join $O_{1} A$ and $O_{2} A$ to intersect circles at C and D.
3. Draw the recuired fillet of radius R, with A as centre and $R=$ radius. between C and D.
4. Draw an are with O_{1} as centre and $\left(R_{+}-R_{3}\right)$ radius.
5. With O_{2} as centre and $\left(R_{4}-R_{2}\right)$ radius draw an are to intersect the previous arc at B. Join $O_{1} B$ and $O_{2} B$ and produce to meet circles at E and F.
6. Draw the required fillet of radius K_{4} with \bar{B} as centre and R_{4} radius, ketween E and F.

Fig. 1 Tangents to two circles
Solution:
1-Draw the two circles, thus obtaining M1 and M2
(M1 M2 = 85 mm).
2-Draw circle with the centre M1 and the radius of R1 - R2 ($40 \mathrm{~mm}-17 \mathrm{~mm}$).
3-Bisect M1 M2. Thus obtaining M3.
4-Draw a circle with M3 as the centre and M1M3 as the radius, thus obtaining A.
5-Extend M1A over A, thus obtaining B.

9-Ellipse

Given: Major axis AB, Minor axis CD
Solution: CONCENTRIC CIRCLESMETHOD
1-Draw the major axis and the minor axis, thus also obtaining, A, B, C, D and M.
2-Draw a circle with M as the centre and the radius equal to the major axis.
3-Draw a circle with M as the centre and the radius equal to the minor axis.
4-Draw any number of radii from M.
5-Mark off the points on the outer circle (F, H, K, N).
6 -Mark off the points on the inner circle (E, G, I, L).
7-Draw further radii (without letter in the illustration).
8-Draw lines parallel to major axis through points provided by the

CONCENTRIC CIRCLESMETHOD intersections.
9-Draw lines parallel to the minor axis through points provided by intersections.
The intersections of the vertical and horizontal lines provide points of the ellipse.

Draw an ellipse with major axis equal to 120 mm and minor axis equal to 80 mm |Arcs of Circles Method] (Fig.).(intersecting arc method)

Solution:

1. Draw major axis $A B=120 \mathrm{~mm}$ and minor axis $D C=80 \mathrm{~mm}$ perpendicularly bisecting each other at O.
2. With centre C or D radius equal to $A O$, draw two ares to intersect $A B$ at F and F^{\prime}.
3. Mark any number of points $1,2,3 \ldots$ etc. (say upto 10) at approximately equal intervals on $A B$ in between F and F.
4. F as centre and $A 1$ as radius draw two arcs on either side of $A B . F^{\circ}$ as centre and $B 1$ as radius draw two arcs to cut the previous arcs at $P_{2}, Q_{1}, R_{1}, S_{1}$.
5. Repeat the above and mark the points $P 2, Q 2, R 2, S 2$ and draw a smooth curve which is the required ellipse.

Rectangle Method (or) Oblong Method

(Fig. \quad A plot of ground is in the shape of a rect $110 \mathrm{~m} \times 50 \mathrm{~m}$. Inscribe an elliptical lawn in it. Take a of 1:1000.

1. Draw the maior axis $A B=110 \mathrm{~mm}$ and minor a: $C D=50 \mathrm{~mm}$. Both axes bisect each other at 0 .
2. Throuch A and B draw lines parallel to $C D$.
3. Throuch C and D draw lines oarallel to $A B$ and construct the rectangle PQRS. Now $\mathrm{PS}=\mathrm{AB}$ and $\mathrm{SR}=\mathrm{CD}$.
4. Divide $A Q$ and $A P$ into any number of equal parts (say 4) and name the points as $1,2,3$ and $11,2^{\prime}, 3^{\prime}$ respectively starting from A on $A Q$ and $A P$. 5. Divide $A O$ into same (4) number of equal parts, and name the points as $1_{1}, 2_{1}, 3_{1}$ starting from A on $A O$.
5. Join 1.2. 3 with C . Join $D 1_{1}$ and extend it to intersect C 1 at P_{1}.
6. Similarly extend $\mathrm{D} 2_{1}$ and DH_{1} to intersect C 2 and C3 at P_{2} nd P_{3} respectively. Join $1^{\prime}, 2^{\prime}, 3 '$ with D.
7. Join Cl_{1} and extend it to intersect $D 1^{\prime}$ at P_{1}^{\prime}.
8. Similariv extend $C 2_{1}$ and $C 3$, to intersect D2'and D3' at P_{2}^{\prime} and P_{3}^{\prime} respectively.
9. Draw a minooth curve through C, P_{3}, P_{2}, R,
 $\mathrm{A}, \mathrm{P}_{1}^{1}, \mathrm{P}_{2}^{\prime}, \mathrm{P}_{1}^{1}, \mathrm{D}$ and obtain
one half (left-half) of the ellipse.
10. Repeat the above and draw the right-haif of the ellipse, which is symmetrical to the left-half.

Construct an ellipse when a pair of Conjugate Diameters $A B$ añ $C D$ are equal to 110 mm and 50 mm respectivety. The angte between the conjugate diameters is 70°. (Fig.')

To construct the ellipse using conjugate diameters :

1. Draw a conjugate diameter $A B=110 \mathrm{~mm}$ and bisect it at O.
2. Angle between the conjugte diameters is 70°. Therefore draw another conjugate diameter $C D$ through O such that the angle $\mathrm{COB}=70^{\circ}$.
3. Through A and B draw lines parallel to CD. Through C and D draw lines parallel to AB and construct a parallelogram PQRS as shown.
4. Repeat the procedure given in step Nos. 4 to 11 in problem 10 and complete the construction of the ellipse inside the parallelogram PQRS.

What are Conjugate Diameters ?

Conjugate Diameters are lines passing through the centre of ellipse and parallel to the tangents on the c̀urve at the points of intersection of the other diameter with the ellipse.

To draw a parabola with the distance of the focus from the directrix at 50 mm .

(Eccentricity method Fig.1).

1. Draw the axis $A B$ and the directrix $C D$ at right angles to it:
2. Mark the focus F on the axis at 50 mm .
3. Locate the vertex V on $A B$ such that $A V=V F$
4. Draw a line VE perpendicular to $A B$ such that $V E=V F$
5. Join A, E and extend. Now, $V E / V A=V F / v A=1$, the eccentricity.
6. Locate number of points $1,2,3$, etc., to the right of V on the axis, which need not be equidistant.
7. Through the points $1,2,3$, etc., draw lines perpendicular to the axis and to meet the line AE extended at $1^{\prime}, 2^{\prime}, 3^{\prime}$ etc. 8. With centre F and radius $1-1^{\prime}$ draw arcs intersecting the line 11^{\prime} through I at $P I$ and P^{\prime}.
8. Similarly, locate the points $P 2, p^{\prime} 2, P 3, P^{\prime} 3$, etc., on either side of the axis. Join the points by smooth curve, forming the required parabola.

To draw a normal and tangent through a point 40 mm from the directrix.

To draw a tangent and normal to the parabola. locate the point M which is at 40 mm from the Directix. Then join M to F and draw a line through F, perpendicular to MF to meet the directrix at T. The line joining T and M and extended is the tangent and a line $N N$, through M and perpendicular to TM is the normal to the curve.

A ball thrown from the ground level reaches (Fig.)

a maximum height of 5 m and travels a horizontal distance of 11 m from the point of projection. Trace the path of the ball (parabola).

1. The balt travels a horizontal distance of 11 m .

Take a scale of 1 ; 100 . Draw PS $=11 \mathrm{~cm}$ to
represent the double ordinate. Bisect PS at O.
2. The ball reaches a maximum height of 5 m . Sofrom O erect vertical and mark the vertex V such that $O V=5 \mathrm{~cm}$. Now OV is the abscissa.
3. Construct the rectangle PQRS such that PS I
is the double ordinate and $P Q=R S=V O$ (abscissa).
4. Divide $P Q$ and $R S$ into any number of (say. B) equal parts as $1,2, \ldots 8$ and $1^{\prime}, 2^{\prime} \ldots 8^{\prime}$ risspectively, starting from P on $P Q$ and S on SR, Join 1, 2,... 8 and $1^{\prime}, 2 ; \ldots$. . . ath $^{\prime}$.
5. Divide $P O$ and $O S$ into 8 equal parts as $1_{1}, 2_{1} ; \ldots B_{1}$ and 1_{1} 2_{1}^{\prime}, . 8_{1}^{\prime} respectively, startingl from P on $P O$ \& from 5 on 50 .
6. From 1_{1} erect vertical to meet the line $V 1$ at P_{2}.
7. Similarly from $2_{1}, \ldots 8_{1}$ erect verticala to meet the lines V2, . . . V8 at $P_{2}, \ldots . P_{8}$ respectively.
B. Also erect verticals from $1_{1}^{\prime}, 2_{i}, \ldots, B_{i}^{\prime}$ to meet the lines V1', V2' ... V8' at $P_{1}^{\prime}, P_{2}^{\prime} \ldots P_{1}^{\prime}$ respectively.
9. Join $P_{1} P_{1}, P_{2} \ldots P_{7}, V, P ; \ldots P_{1}$ and S to represent the path of the ball (parabola).

Construct a parabola within a parallelogram (Fig. J of sides $110 \mathrm{~mm} \times 50 \mathrm{~mm}$. One of the included angle between the sides is 70°. (Parallelogram Method)

1. Construct the parallelogram $P Q R S$ ($P S=110 \mathrm{~mm}$ and $P Q=50 \mathrm{~mm}$ and angle QPS $=-70^{\circ}$). Bisect $P S$ at O and draw VO parallel to $P Q$.
2. Divide $P Q$ and $S R$ into any number of (4) equal parts as 1,2 , 3 and $1^{\prime}, 2^{\prime}, 3^{\prime}$ respectively starting from P on $P Q$ and from S on SR. Join V1, V2 \& V3. Also join V1', V2' \& V3'.
3. Divide $P O$ and $O S$ into 4 equal parts as $1_{1}, 2_{1}, 3_{1}$ and $1_{1}^{\prime}, 2_{j}^{\prime}$, 3_{1}^{1} respectively starting from P on $P O$ and from S on SO.
4. From 1_{1} draw a line parallel to $P Q$ to meet the line $V 1$ at P_{1}. Similarly obtain the points P_{2} and P_{3}.
5. Also from $1_{1}^{\prime}, 2_{1}^{\prime}, 3_{1}^{\prime}$ draw lines parallel to $R S$ to meet the lines V1', V2' and V^{\prime} at $\mathrm{Pl}_{1}^{\prime}, \mathrm{P}_{2}^{\prime}$ and P_{3}^{\prime} respectively and draw a smooth parabola.

THE 5 REGULAR SOLIDS
PYRAMIDS

PRISMS

Problem : A stone is thrown from a building of 7 m high and at its highest flight it just crosses a plam tree 14 m high. Trace the path of the stone, if the distance between the building and the tree measured along the ground is 3.5 m .
solution

1. Draw lines $A B$ and $O T$, representing the building and Palm tree respectively, 3.5 m apart and above the ground level.
2. Locate C and D on the horizontal line through B such that $C D=B C=3.5$ and complete the rectangle BDEF.
3. Inscribe the parabola in the rectangle BDEF, by rectangular method.
4. Draw the path of the stone till it reaches the ground (H) extending the principle of rectangle method.

