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CHAPTER OBJECTIVES

■ Apply the basic laws and rules of Boolean algebra

■ Apply DeMorgan’s theorems to Boolean expressions

■ Describe gate combinations with Boolean 

expressions

■ Evaluate Boolean expressions

■ Simplify expressions by using the laws and rules of 

Boolean algebra

■ Convert any Boolean expression into a sum- 

of-products (SOP) form

■ Convert any Boolean expression into a product  

of-sums (POS) form

■ Relate a Boolean expression to a truth table

■ Use a Karnaugh map to simplify Boolean expressions

■ Use a Karnaugh map to simplify truth table functions

■ Utilize “don’t care” conditions to simplify logic functions

■ Use the Quine-McCluskey method to simplify 

Boolean expressions

■ Write a VHDL program for simple logic

VISIT THE WEBSITE

Study aids for this chapter are available at  

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In 1854, George Boole published a work titled An 
Investigation of the Laws of Thought, on Which Are 
Founded the Mathematical Theories of Logic and 
Probabilities. It was in this publication that a “logi-

cal algebra,” known today as Boolean algebra, was 

formulated. Boolean algebra is a convenient and 

systematic way of expressing and analyzing the 

operation of logic circuits. Claude Shannon was 

the first to apply Boole’s work to the analysis and 

design of logic circuits. In 1938, Shannon wrote a 

thesis at MIT titled A Symbolic Analysis of Relay 
and Switching Circuits.

This chapter covers the laws, rules, and theorems 

of Boolean algebra and their application to digital cir-

cuits. You will learn how to define a given circuit with 

a Boolean expression and then evaluate its operation. 

You will also learn how to simplify logic circuits using 

the methods of Boolean algebra, Karnaugh maps, 

and the Quine-McCluskey method.

Boolean expressions using the hardware descrip-

tion language VHDL are also covered.

■ Variable

■ Complement

■ Sum term

■ Product term

■ Sum-of-products (SOP)

■ Product-of-sums 

(POS)

■ Karnaugh map

■ Minimization

■ “Don’t care”

■ Apply Boolean algebra and the Karnaugh map 

method in an application

KEY TERMS

Key terms are in order of appearance in the chapter.

Boolean Algebra and 
Logic Simplification

 4CHAPTER
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4–1 Boolean Operations and Expressions

Boolean algebra is the mathematics of digital logic. A basic knowledge of Boolean algebra 

is indispensable to the study and analysis of logic circuits. In the last chapter, Boolean 

operations and expressions in terms of their relationship to NOT, AND, OR, NAND, and 

NOR gates were introduced.

After completing this section, you should be able to

u Define variable

u Define literal

u Identify a sum term

u Evaluate a sum term

u Identify a product term

u Evaluate a product term

u Explain Boolean addition

u Explain Boolean multiplication

Variable, complement, and literal are terms used in Boolean algebra. A variable is a sym-

bol (usually an italic uppercase letter or word) used to represent an action, a condition, or 

data. Any single variable can have only a 1 or a 0 value. The complement is the inverse of a 

variable and is indicated by a bar over the variable (overbar). For example, the complement 

of the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1. The complement of the 

variable A is read as “not A” or “A bar.” Sometimes a prime symbol rather than an overbar is 

used to denote the complement of a variable; for example, B9 indicates the complement of B. 

In this book, only the overbar is used. A literal is a variable or the complement of a variable.

Boolean Addition

Recall from Chapter 3 that Boolean addition is equivalent to the OR operation. The basic 

rules are illustrated with their relation to the OR gate in Figure 4–1.

InfoNote

In a microprocessor, the 

arithmetic logic unit (ALU) 

performs arithmetic and Boolean 

logic operations on digital 

data as directed by program 

instructions. Logical operations 

are equivalent to the basic gate 

operations that you are familiar 

with but deal with a minimum 

of 8 bits at a time. Examples 

of Boolean logic instructions 

are AND, OR, NOT, and XOR, 

which are called mnemonics. 

An assembly language program 

uses the mnemonics to specify 

an operation. Another program 

called an assembler translates the 

mnemonics into a binary code 

that can be understood by the 

microprocessor.

 0 + 0 = 0  0 + 1 = 1 1 + 0 = 1 1 + 1 = 1

FIGURE 4–1 

In Boolean algebra, a sum term is a sum of literals. In logic circuits, a sum term is pro-

duced by an OR operation with no AND operations involved. Some examples of sum terms 

are A + B, A + B, A + B + C, and A + B + C + D.

A sum term is equal to 1 when one or more of the literals in the term are 1. A sum term 

is equal to 0 only if each of the literals is 0.
The OR operation is the Boolean 
equivalent of addition.

EXAMPLE 4–1

Determine the values of A, B, C, and D that make the sum term A + B + C + D equal to 0.

Solution

For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0, 

B = 1 so that B = 0, C = 0, and D = 1 so that D = 0.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0
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Related Problem*

Determine the values of A and B that make the sum term A + B equal to 0.

*Answers are at the end of the chapter.

Boolean Multiplication

Also recall from Chapter 3 that Boolean multiplication is equivalent to the AND operation. 

The basic rules are illustrated with their relation to the AND gate in Figure 4–2.
The AND operation is the Boolean 
equivalent of multiplication.

 0 • 0 = 0  0 • 1 = 0 1 • 0 = 0  1 • 1 = 1

FIGURE 4–2 

In Boolean algebra, a product term is the product of literals. In logic circuits, a product 

term is produced by an AND operation with no OR operations involved. Some examples of 

product terms are AB, AB, ABC, and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A product term 

is equal to 0 when one or more of the literals are 0.

EXAMPLE 4–2

Determine the values of A, B, C, and D that make the product term ABCD equal to 1.

Solution

For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1, 

B = 0 so that B = 1, C = 1, and D = 0 so that D = 1.

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

Related Problem

Determine the values of A and B that make the product term A B equal to 1.

SECTION 4–1 CHECKUP

Answers are at the end of the chapter.

 1. If A = 0, what does A equal?

 2. Determine the values of A, B, and C that make the sum term A + B + C equal to 0.

 3. Determine the values of A, B, and C that make the product term ABC equal to 1.

4–2 Laws and Rules of Boolean Algebra

As in other areas of mathematics, there are certain well-developed rules and laws that must 

be followed in order to properly apply Boolean algebra. The most important of these are 

presented in this section.

After completing this section, you should be able to

u Apply the commutative laws of addition and multiplication

u Apply the associative laws of addition and multiplication

u Apply the distributive law

u Apply twelve basic rules of Boolean algebra
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Laws of Boolean Algebra

The basic laws of Boolean algebra—the commutative laws for addition and multiplication, 

the associative laws for addition and multiplication, and the distributive law—are the same 

as in ordinary algebra. Each of the laws is illustrated with two or three variables, but the 

number of variables is not limited to this.

Commutative Laws

The commutative law of addition for two variables is written as

 A � B � B � A Equation 4–1

This law states that the order in which the variables are ORed makes no difference. Remember, 

in Boolean algebra as applied to logic circuits, addition and the OR operation are the same. 

Figure 4–3 illustrates the commutative law as applied to the OR gate and shows that it doesn’t 

matter to which input each variable is applied. (The symbol K means “equivalent to.”)

A

B
 B + A

B
 A + B

A

FIGURE 4–3 Application of commutative law of addition.

The commutative law of multiplication for two variables is

 AB � BA Equation 4–2

This law states that the order in which the variables are ANDed makes no difference. 

 Figure 4–4 illustrates this law as applied to the AND gate. Remember, in Boolean algebra 

as applied to logic circuits, multiplication and the AND function are the same.

A

B
BA

B
AB

A

FIGURE 4–4 Application of commutative law of multiplication.

Associative Laws

The associative law of addition is written as follows for three variables:

 A � (B � C) � (A � B) � C Equation 4–3

This law states that when ORing more than two variables, the result is the same regardless of 

the grouping of the variables. Figure 4–5 illustrates this law as applied to 2-input OR gates.

B + C
B

C

A + (B + C)
A

A + B
B

C
(A + B) + C

A

FIGURE 4–5 Application of associative law of addition. Open file F04-05 to verify. 

A Multisim tutorial is available on the website.

The associative law of multiplication is written as follows for three variables:

 A(BC) � (AB)C Equation 4–4

This law states that it makes no difference in what order the variables are grouped when AND-

ing more than two variables. Figure 4–6 illustrates this law as applied to 2-input AND gates.
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Distributive Law

The distributive law is written for three variables as follows:

 A(B � C) � AB � AC Equation 4–5

This law states that ORing two or more variables and then ANDing the result with a single 

variable is equivalent to ANDing the single variable with each of the two or more variables 

and then ORing the products. The distributive law also expresses the process of factoring in 

which the common variable A is factored out of the product terms, for example, AB + AC =

A(B + C). Figure 4–7 illustrates the distributive law in terms of gate implementation.

BC
B

C

A(BC)
A

AB
B

C
(AB)C

A

FIGURE 4–6 Application of associative law of multiplication. Open file F04-06 to verify.

B + C
C

A
X

B

 X = A(B + C)

AB
B

X

A

C

A
AC

 X = AB + AC

FIGURE 4–7 Application of distributive law. Open file F04-07 to verify.

Rules of Boolean Algebra

Table 4–1 lists 12 basic rules that are useful in manipulating and simplifying Boolean 

expressions. Rules 1 through 9 will be viewed in terms of their application to logic gates. 

Rules 10 through 12 will be derived in terms of the simpler rules and the laws previously 

discussed.

TABLE 4–1

Basic rules of Boolean algebra.

1. A + 0 = A  7. A # A = A

2. A + 1 = 1  8. A # A = 0

3. A # 0 = 0  9. A = A

4. A # 1 = A 10. A + AB = A

5. A + A = A 11. A + AB = A + B

6. A + A = 1 12. (A + B)(A + C) = A + BC

A, B, or C can represent a single variable or a combination of variables.

Rule 1: A 1 0 5 A  A variable ORed with 0 is always equal to the variable. If the input 

variable A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 0, which 

is also equal to A. This rule is illustrated in Figure 4–8, where the lower input is fixed at 0.

 X = A + 0 = A

X = 0
 A = 0

 0
X = 1

 A = 1

 0

FIGURE 4–8 
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Rule 2: A 1 1 5 1  A variable ORed with 1 is always equal to 1. A 1 on an input to an 

OR gate produces a 1 on the output, regardless of the value of the variable on the other 

input. This rule is illustrated in Figure 4–9, where the lower input is fixed at 1.

 X = A + 1 = 1

X = 1
 A = 0

 1
X = 1

 A = 1

 1

FIGURE 4–9 

 X = A • 0 = 0

X = 0
 A = 1

 0
X = 0

 A = 0

 0

FIGURE 4–10 

Rule 3: A ~ 0 5 0  A variable ANDed with 0 is always equal to 0. Any time one input to 

an AND gate is 0, the output is 0, regardless of the value of the variable on the other input. 

This rule is illustrated in Figure 4–10, where the lower input is fixed at 0.

Rule 4: A ~ 1 5 A  A variable ANDed with 1 is always equal to the variable. If A is 0, the 

output of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both inputs 

are now 1s. This rule is shown in Figure 4–11, where the lower input is fixed at 1.

 X = A • 1 = A

X = 0
 A = 0

 1
X = 1

 A = 1

 1

FIGURE 4–11 

Rule 5: A 1 A 5 A  A variable ORed with itself is always equal to the variable. If A is 0, 

then 0 + 0 = 0; and if A is 1, then 1 + 1 = 1. This is shown in Figure 4–12, where both 

inputs are the same variable.

 X = A + A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

FIGURE 4–12 

Rule 6: A 1 A
–
 5 1  A variable ORed with its complement is always equal to 1. If A is 

0, then 0 + 0 = 0 + 1 = 1. If A is 1, then 1 + 1 = 1 + 0 = 1. See Figure 4–13, where 

one input is the complement of the other.

 X = A + A = 1

X = 1
 A = 1

 A = 0
X = 1

 A = 0

 A = 1

FIGURE 4–13 
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Rule 7: A ~ A 5 A  A variable ANDed with itself is always equal to the variable. If 

A = 0, then 0 #0 = 0; and if A = 1, then 1 #1 = 1. Figure 4–14 illustrates this rule.

 X = A • A = A

X = 1
 A = 1

 A = 1
X = 0

 A = 0

 A = 0

FIGURE 4–14 

Rule 8: A ~ A
–
 5 0  A variable ANDed with its complement is always equal to 0. Either A 

or A will always be 0; and when a 0 is applied to the input of an AND gate, the output will 

be 0 also. Figure 4–15 illustrates this rule.

 A = 1
A = 0

A = 1 A = 0
A = 1

A = 0

A = A

FIGURE 4–16 

X = 0
 A = 1

 A = 0
X = 0

 A = 0

 A = 1

 X = A • A = 0

FIGURE 4–15 

Rule 9: A
––
 5 A  The double complement of a variable is always equal to the variable. If 

you start with the variable A and complement (invert) it once, you get A. If you then take 

A and complement (invert) it, you get A, which is the original variable. This rule is shown 

in Figure 4–16 using inverters.

Rule 10: A 1 AB 5 A  This rule can be proved by applying the distributive law, rule 2, 

and rule 4 as follows:

 A + AB = A # 1 + AB = A(1 + B)  Factoring (distributive law)

 = A # 1  Rule 2: (1 + B) = 1

 = A  Rule 4: A # 1 = A

The proof is shown in Table 4–2, which shows the truth table and the resulting logic circuit 

simplification.

B

A

A
straight connection

A

0

0

1

1

B

0

1

0

1

AB

0

0

0

1

A � AB

0

0

1

1

equal

TABLE 4–2

Rule 10: A + AB = A. Open file T04-02 to verify.
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Rule 11: A 1 A
–
B 5 A 1 B  This rule can be proved as follows:

 A + AB = (A + AB) + AB  Rule 10: A = A + AB

 = (AA + AB) + AB  Rule 7: A = AA

 = AA + AB + AA + AB  Rule 8: adding AA = 0

 = (A + A)(A + B)  Factoring

 = 1 # (A + B)  Rule 6: A + A = 1

 = A + B  Rule 4: drop the 1

The proof is shown in Table 4–3, which shows the truth table and the resulting logic 

circuit simplification.

Rule 12: (A 1 B)(A 1 C) 5 A 1 BC  This rule can be proved as follows:

 (A + B)(A + C) = AA + AC + AB + BC  Distributive law

 = A + AC + AB + BC  Rule 7: AA = A

 = A(1 + C) + AB + BC  Factoring (distributive law)

 = A # 1 + AB + BC  Rule 2: 1 + C = 1

 = A(1 + B) + BC  Factoring (distributive law)

 = A # 1 + BC  Rule 2: 1 + B = 1

 = A + BC  Rule 4: A # 1 = A

The proof is shown in Table 4–4, which shows the truth table and the resulting logic circuit 

simplification.

B

A

A

B

A

0

0

1

1

B

0

1

0

1

A + B

0

1

1

1

equal

AB

0

1

0

0

A + AB

0

1

1

1

TABLE 4–3

Rule 11: A + AB = A + B. Open file T04-03 to verify.

B

A

C

C

B

A

equal

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

1

0

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

A B C (A + B)(A + C)A + B A + C BC A + BC

TABLE 4–4

Rule 12: (A + B)(A + C) = A + BC. Open file T04-04 to verify.
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SECTION 4–2 CHECKUP

 1. Apply the associative law of addition to the expression A + (B + C + D).

 2. Apply the distributive law to the expression A(B + C + D).

4–3 DeMorgan’s Theorems

DeMorgan, a mathematician who knew Boole, proposed two theorems that are an important 

part of Boolean algebra. In practical terms, DeMorgan’s theorems provide mathematical 

verification of the equivalency of the NAND and negative-OR gates and the equivalency of 

the NOR and negative-AND gates, which were discussed in Chapter 3.

After completing this section, you should be able to

u State DeMorgan’s theorems

u Relate DeMorgan’s theorems to the equivalency of the NAND and negative-OR 

gates and to the equivalency of the NOR and negative-AND gates

u Apply DeMorgan’s theorems to the simplification of Boolean expressions

DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements 

of the variables.

Stated another way,

The complement of two or more ANDed variables is equivalent to the OR of the 

complements of the individual variables.

The formula for expressing this theorem for two variables is

 XY � X � Y Equation 4–6

DeMorgan’s second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the complements 

of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the 

complements of the individual variables.

The formula for expressing this theorem for two variables is

 X � Y � X Y Equation 4–7

Figure 4–17 shows the gate equivalencies and truth tables for Equations 4–6 

and 4–7.

As stated, DeMorgan’s theorems also apply to expressions in which there are more than 

two variables. The following examples illustrate the application of DeMorgan’s theorems 

to 3-variable and 4-variable expressions.

To apply DeMorgan’s theorem, break 
the bar over the product of variables 
and change the sign from AND to 
OR.
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Each variable in DeMorgan’s theorems as stated in Equations 4–6 and 4–7 can also repre-

sent a combination of other variables. For example, X can be equal to the term AB + C, and Y 

can be equal to the term A + BC. So if you can apply DeMorgan’s theorem for two variables 

as stated by XY = X + Y to the expression (AB + C)(A + BC), you get the following result:

(AB + C)(A + BC) = (AB + C) + (A + BC)

Notice that in the preceding result you have two terms, AB + C and A + BC, to each of 

which you can again apply DeMorgan’s theorem X + Y = X Y  individually, as follows:

(AB + C) + (A + BC) = (AB)C + A(BC)

fg04_01500

X + Y
X

Y
XY

X

Y

NAND Negative-OR

XY
X

Y
X + Y

X

Y

NOR Negative-AND

Output

XY X + Y

0

0

1

1

0

1

0

1

1

1

1

0

1

1

1

0

Inputs

X Y

0

0

1

1

0

1

0

1

Output

X YX + Y

1

0

0

0

1

0

0

0

Inputs

X Y

FIGURE 4–17 Gate equivalencies and the corresponding truth tables that illustrate 

DeMorgan’s theorems. Notice the equality of the two output columns in each table. This 

shows that the equivalent gates perform the same logic function.

EXAMPLE 4–3

Apply DeMorgan’s theorems to the expressions XYZ and X + Y + Z.

Solution

 XYZ = X + Y + Z

 X + Y + Z = X Y Z

Related Problem

Apply DeMorgan’s theorem to the expression X + Y + Z.

EXAMPLE 4–4

Apply DeMorgan’s theorems to the expressions WXYZ and W + X + Y + Z.

Solution

 WXYZ = W + X + Y + Z

 W + X + Y + Z = W X Y Z

Related Problem

Apply DeMorgan’s theorem to the expression W X Y Z.
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Notice that you still have two terms in the expression to which DeMorgan’s theorem can 

again be applied. These terms are AB and BC. A final application of DeMorgan’s theorem 

gives the following result:

(AB)C + A(BC) = (A + B)C + A(B + C)

Although this result can be simplified further by the use of Boolean rules and laws, 

 DeMorgan’s theorems cannot be used any more.

Applying DeMorgan’s Theorems

The following procedure illustrates the application of DeMorgan’s theorems and Boolean 

algebra to the specific expression

A + BC + D(E + F)

Step 1: Identify the terms to which you can apply DeMorgan’s theorems, and think of 

each term as a single variable. Let A + BC = X and D(E + F) = Y.

Step 2: Since X + Y = X Y,

(A + BC) + (D(E + F)) = (A + BC)(D(E + F))

Step 3: Use rule 9 (A = A) to cancel the double bars over the left term (this is not part 

of DeMorgan’s theorem).

(A + BC)(D(E + F)) = (A + BC)(D(E + F))

Step 4: Apply DeMorgan’s theorem to the second term.

(A + BC)(D(E + F)) = (A + BC)(D + (E + F))

Step 5: Use rule 9 (A = A) to cancel the double bars over the E + F part of the term.

(A + BC)(D + E + F) = (A + BC)(D + E + F)

The following three examples will further illustrate how to use DeMorgan’s theorems.

EXAMPLE 4–5

Apply DeMorgan’s theorems to each of the following expressions:

(a) (A + B + C)D

(b) ABC + DEF

(c) AB + CD + EF

Solution

(a) Let A + B + C = X and D = Y. The expression (A + B + C)D is of the form 

XY = X + Y  and can be rewritten as

(A + B + C)D = A + B + C + D

 Next, apply DeMorgan’s theorem to the term A + B + C.

A + B + C + D = A B C + D

(b) Let ABC = X and DEF = Y. The expression ABC + DEF is of the form 

X + Y = X Y  and can be rewritten as

ABC + DEF = (ABC)(DEF)

 Next, apply DeMorgan’s theorem to each of the terms ABC and DEF.

(ABC)(DEF) = (A + B + C)(D + E + F)
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(c) Let AB = X, CD = Y, and EF = Z. The expression AB + CD + EF is of the 

form X + Y + Z = X Y Z and can be rewritten as

AB + CD + EF = (AB)(CD)(EF)

 Next, apply DeMorgan’s theorem to each of the terms AB, CD, and EF.

(AB)(CD)(EF) = (A + B)(C + D)(E + F)

Related Problem

Apply DeMorgan’s theorems to the expression ABC + D + E.

EXAMPLE 4–6

Apply DeMorgan’s theorems to each expression:

(a) (A + B) + C

(b) (A + B) + CD

(c) (A + B)C D + E + F

Solution

(a) (A + B) + C = (A + B)C = (A + B)C

(b) (A + B) + CD = (A + B)CD = (A B)(C + D) = AB(C + D)

(c) (A + B)C D + E + F = ((A + B)C D)(E + F) = (A B + C + D)EF

Related Problem

Apply DeMorgan’s theorems to the expression AB(C + D) + E.

EXAMPLE 4–7

The Boolean expression for an exclusive-OR gate is AB + AB. With this as a starting 

point, use DeMorgan’s theorems and any other rules or laws that are applicable to 

develop an expression for the exclusive-NOR gate.

Solution

Start by complementing the exclusive-OR expression and then applying DeMorgan’s 

theorems as follows:

AB + AB = (AB)(AB) = (A + B)(A + B) = (A + B)(A + B)

Next, apply the distributive law and rule 8 (A # A = 0).

(A + B)(A + B) = AA + A B + AB + BB = A B + AB

The final expression for the XNOR is A B + AB. Note that this expression equals 1 any 

time both variables are 0s or both variables are 1s.

Related Problem

Starting with the expression for a 4-input NAND gate, use DeMorgan’s theorems to 

develop an expression for a 4-input negative-OR gate.
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Constructing a Truth Table for a Logic Circuit

Once the Boolean expression for a given logic circuit has been determined, a truth table that 

shows the output for all possible values of the input variables can be developed. The proce-

dure requires that you evaluate the Boolean expression for all possible combinations of values 

for the input variables. In the case of the circuit in Figure 4–18, there are four input variables 

(A, B, C, and D) and therefore sixteen (24
= 16) combinations of values are possible.

Evaluating the Expression

To evaluate the expression A(B + CD), first find the values of the variables that make the 

expression equal to 1, using the rules for Boolean addition and multiplication. In this case, 

the expression equals 1 only if A = 1 and B + CD = 1 because

A(B + CD) = 1 # 1 = 1

SECTION 4–3 CHECKUP

 1. Apply DeMorgan’s theorems to the following expressions:

(a) ABC + (D + E)  (b) (A + B)C  (c) A + B + C + DE

4–4 Boolean Analysis of Logic Circuits

Boolean algebra provides a concise way to express the operation of a logic circuit formed 

by a combination of logic gates so that the output can be determined for various combina-

tions of input values.

After completing this section, you should be able to

u Determine the Boolean expression for a combination of gates

u Evaluate the logic operation of a circuit from the Boolean expression

u Construct a truth table

Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given combinational logic circuit, begin at the left-most 

inputs and work toward the final output, writing the expression for each gate. For the example 

circuit in Figure 4–18, the Boolean expression is determined in the following three steps:

 1. The expression for the left-most AND gate with inputs C and D is CD.

 2. The output of the left-most AND gate is one of the inputs to the OR gate and B is the 

other input. Therefore, the expression for the OR gate is B + CD.

 3. The output of the OR gate is one of the inputs to the right-most AND gate and A is the 

other input. Therefore, the expression for this AND gate is A(B + CD), which is the 

final output expression for the entire circuit.

A combinational logic circuit can be 
described by a Boolean equation.

CD
D

B
B + CD

C

A
A(B + CD)

FIGURE 4–18 A combinational logic circuit showing the development of the Boolean 

expression for the output.

A combinational logic circuit can be 
described by a truth table.
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Now determine when the B + CD term equals 1. The term B + CD = 1 if either B = 1 

or CD = 1 or if both B and CD equal 1 because

 B + CD = 1 + 0 = 1

 B + CD = 0 + 1 = 1

 B + CD = 1 + 1 = 1

The term CD = 1 only if C = 1 and D = 1.

To summarize, the expression A(B + CD) = 1 when A = 1 and B = 1 regardless of 

the values of C and D or when A = 1 and C = 1 and D = 1 regardless of the value of B. 

The expression A(B + CD) = 0 for all other value combinations of the variables.

Putting the Results in Truth Table Format

The first step is to list the sixteen input variable combinations of 1s and 0s in a binary 

sequence as shown in Table 4–5. Next, place a 1 in the output column for each combination 

of input variables that was determined in the evaluation. Finally, place a 0 in the output 

column for all other combinations of input variables. These results are shown in the truth 

table in Table 4–5.

TABLE 4–5

Truth table for the logic circuit in Figure 4–18.

Inputs Output

A B C D A(B � CD)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

EXAMPLE 4–8

Use Multisim to generate the truth table for the logic circuit in Figure 4–18.

Solution

Construct the circuit in Multisim and connect the Multisim Logic Converter to the inputs and output, as shown in Figure 4–19. 

Click on the  conversion bar, and the truth table appears in the display as shown.

You can also generate the simplified Boolean expression from the truth table by clicking on .
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SECTION 4–4 CHECKUP

 1. Replace the AND gates with OR gates and the OR gate with an AND gate in Figure 4–18. 

Determine the Boolean expression for the output.

 2. Construct a truth table for the circuit in Question 1.

4–5 Logic Simplification Using Boolean Algebra

A logic expression can be reduced to its simplest form or changed to a more convenient form 

to implement the expression most efficiently using Boolean algebra. The approach taken in 

this section is to use the basic laws, rules, and theorems of Boolean algebra to manipulate and 

simplify an expression. This method depends on a thorough knowledge of Boolean algebra 

and considerable practice in its application, not to mention a little ingenuity and cleverness.

After completing this section, you should be able to

u Apply the laws, rules, and theorems of Boolean algebra to simplify general 

 expressions

A simplified Boolean expression uses the fewest gates possible to implement a given 

expression. Examples 4–9 through 4–12 illustrate Boolean simplification.

 

Truth table

Boolean expression

FIGURE 4–19 

Related Problem

Open Multisim. Create the setup and do the conversions shown in this example.

EXAMPLE 4–9

Using Boolean algebra techniques, simplify this expression:

AB + A(B + C) + B(B + C)
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Solution

The following is not necessarily the only approach.

Step 1: Apply the distributive law to the second and third terms in the expression, as 

follows:

AB + AB + AC + BB + BC

Step 2: Apply rule 7 (BB = B) to the fourth term.

AB + AB + AC + B + BC

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.

AB + AC + B + BC

Step 4: Apply rule 10 (B + BC = B) to the last two terms.

AB + AC + B

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.

B + AC

At this point the expression is simplified as much as possible. Once you gain experience 

in applying Boolean algebra, you can often combine many individual steps.

Related Problem

Simplify the Boolean expression AB + A(B + C) + B(B + C).

Figure 4–20 shows that the simplification process in Example 4–9 has significantly 

reduced the number of logic gates required to implement the expression. Part (a) shows that 

five gates are required to implement the expression in its original form; however, only two 

gates are needed for the simplified expression, shown in part (b). It is important to realize 

that these two gate circuits are equivalent. That is, for any combination of levels on the A, 

B, and C inputs, you get the same output from either circuit.

Simplification means fewer gates for 
the same function.

B

C

A

AB + A(B + C) + B(B + C)

C

B + AC

A

B

(a) (b)
These two circuits are equivalent.

FIGURE 4–20 Gate circuits for Example 4–9. Open file F04-20 to verify equivalency.

EXAMPLE 4–10

Simplify the following Boolean expression:

[AB(C + BD) + A B]C

Note that brackets and parentheses mean the same thing: the term inside is multiplied 

(ANDed) with the term outside.
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Solution

Step 1: Apply the distributive law to the terms within the brackets.

(ABC + ABBD + A B)C

Step 2: Apply rule 8 (BB = 0) to the second term within the parentheses.

(ABC + A # 0 # D + A B)C

Step 3: Apply rule 3 (A # 0 # D = 0) to the second term within the parentheses.

(ABC + 0 + A B)C

Step 4: Apply rule 1 (drop the 0) within the parentheses.

(ABC + A B)C

Step 5: Apply the distributive law.

ABCC + A BC

Step 6: Apply rule 7 (CC = C) to the first term.

ABC + A BC

Step 7: Factor out BC.

BC(A + A)

Step 8: Apply rule 6 (A + A = 1).

BC # 1

Step 9: Apply rule 4 (drop the 1).

BC

Related Problem

Simplify the Boolean expression [AB(C + BD) + AB]CD.

EXAMPLE 4–11

Simplify the following Boolean expression:

ABC + AB C + A B C + ABC + ABC

Solution

Step 1: Factor BC out of the first and last terms.

BC(A + A) + AB C + A B C + ABC

Step 2: Apply rule 6 (A + A = 1) to the term in parentheses, and factor AB from the 

second and last terms.

BC # 1 + AB(C + C) + A B C

Step 3: Apply rule 4 (drop the 1) to the first term and rule 6 (C + C = 1) to the term 

in parentheses.

BC + AB # 1 + A B C

Step 4: Apply rule 4 (drop the 1) to the second term.

BC + AB + A B C
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Step 5: Factor B from the second and third terms.

BC + B(A + A C)

Step 6: Apply rule 11 (A + A C = A + C) to the term in parentheses.

BC + B(A + C)

Step 7: Use the distributive and commutative laws to get the following expression:

BC + AB + B C

Related Problem

Simplify the Boolean expression ABC + A BC + ABC + A B C.

EXAMPLE 4–12

Simplify the following Boolean expression:

AB + AC + A BC

Solution

Step 1: Apply DeMorgan’s theorem to the first term.

(AB)(AC) + A BC

Step 2: Apply DeMorgan’s theorem to each term in parentheses.

(A + B)(A + C) + A BC

Step 3: Apply the distributive law to the two terms in parentheses.

A A + A C + A B + B C + A BC

Step 4: Apply rule 7 (A A = A) to the first term, and apply rule 10 

[A B + A BC = A B(1 + C) = A B] to the third and last terms.

A + A C + A B + B C

Step 5: Apply rule 10 [A + A C = A(1 + C) = A] to the first and second terms.

A + A B + B C

Step 6: Apply rule 10 [A + A B = A(1 + B) = A] to the first and second terms.

A + B C

Related Problem

Simplify the Boolean expression AB + AC + A B C.

EXAMPLE 4–13

Use Multisim to perform the logic simplification shown in Figure 4–20.

Solution

Step 1: Connect the Multisim Logic Converter to the circuit as shown in Figure 4–21.

Step 2: Generate the truth table by clicking on .

Step 3: Generate the simplified Boolean expression by clicking on .

Step 4: Generate the simplified logic circuit by clicking on .



 Standard Forms of Boolean Expressions 209

SECTION 4–5 CHECKUP

 1. Simplify the following Boolean expressions:

(a) A + AB + ABC  (b) (A + B)C + ABC  (c) ABC(BD + CDE) + AC

 2. Implement each expression in Question 1 as originally stated with the appropriate logic 

gates. Then implement the simplified expression, and compare the number of gates.

4–6 Standard Forms of Boolean Expressions

All Boolean expressions, regardless of their form, can be converted into either of two stan-

dard forms: the sum-of-products form or the product-of-sums form. Standardization makes 

the evaluation, simplification, and implementation of Boolean expressions much more sys-

tematic and easier.

After completing this section, you should be able to

u Identify a sum-of-products expression

u Determine the domain of a Boolean expression

u Convert any sum-of-products expression to a standard form

u Evaluate a standard sum-of-products expression in terms of binary values

u Identify a product-of-sums expression

FIGURE 4–21 

Related Problem

Open Multisim. Create the setup and perform the logic simplification illustrated in this 

example.
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u Convert any product-of-sums expression to a standard form

u Evaluate a standard product-of-sums expression in terms of binary values

u Convert from one standard form to the other

The Sum-of-Products (SOP) Form

A product term was defined in Section 4–1 as a term consisting of the product (Boolean 

multiplication) of literals (variables or their complements). When two or more product 

terms are summed by Boolean addition, the resulting expression is a sum-of-products 

(SOP). Some examples are

AB + ABC

ABC + CDE + BCD

AB + ABC + AC

Also, an SOP expression can contain a single-variable term, as in A + A BC + BCD. 

Refer to the simplification examples in the last section, and you will see that each of the 

final expressions was either a single product term or in SOP form. In an SOP expression, a 

single overbar cannot extend over more than one variable; however, more than one variable 

in a term can have an overbar. For example, an SOP expression can have the term A B C 

but not ABC.

Domain of a Boolean Expression

The domain of a general Boolean expression is the set of variables contained in the expres-

sion in either complemented or uncomplemented form. For example, the domain of the 

expression AB + ABC is the set of variables A, B, C and the domain of the expression 

ABC + CDE + BCD is the set of variables A, B, C, D, E.

AND/OR Implementation of an SOP Expression

Implementing an SOP expression simply requires ORing the outputs of two or more AND 

gates. A product term is produced by an AND operation, and the sum (addition) of two or 

more product terms is produced by an OR operation. Therefore, an SOP expression can 

be implemented by AND-OR logic in which the outputs of a number (equal to the number 

of product terms in the expression) of AND gates connect to the inputs of an OR gate, as 

shown in Figure 4–22 for the expression AB + BCD + AC. The output X of the OR gate 

equals the SOP expression.

An SOP expression can be 
implemented with one OR gate and 
two or more AND gates.

A

B

X = AB + BCD + AC
B

D

A

C

C

FIGURE 4–22 Implementation of the SOP expression AB + BCD + AC.

NAND/NAND Implementation of an SOP Expression

NAND gates can be used to implement an SOP expression. By using only NAND gates, 

an AND/OR function can be accomplished, as illustrated in Figure 4–23. The first level 

of NAND gates feed into a NAND gate that acts as a negative-OR gate. The NAND and 

negative-OR inversions cancel and the result is effectively an AND/OR circuit.
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Conversion of a General Expression to SOP Form

Any logic expression can be changed into SOP form by applying Boolean algebra tech-

niques. For example, the expression A(B + CD) can be converted to SOP form by applying 

the distributive law:

A(B + CD) = AB + ACD

A

B

X = AB + BCD + AC
B

D

A

C

C

FIGURE 4–23 This NAND/NAND implementation is equivalent to the AND/OR in 

Figure 4–22.

EXAMPLE 4–14

Convert each of the following Boolean expressions to SOP form:

(a) AB + B(CD + EF)  (b)  (A + B)(B + C + D)  (c)  (A + B) + C

Solution

(a) AB + B(CD + EF) = AB + BCD + BEF

(b) (A + B)(B + C + D) = AB + AC + AD + BB + BC + BD

(c) (A + B) + C = (A + B)C = (A + B)C = AC + BC

Related Problem

Convert ABC + (A + B)(B + C + AB) to SOP form.

The Standard SOP Form

So far, you have seen SOP expressions in which some of the product terms do not con-

tain all of the variables in the domain of the expression. For example, the expression 

ABC + ABD + ABCD has a domain made up of the variables A, B, C, and D. However, 

notice that the complete set of variables in the domain is not represented in the first two 

terms of the expression; that is, D or D is missing from the first term and C or C is missing 

from the second term.

A standard SOP expression is one in which all the variables in the domain appear in 

each product term in the expression. For example, ABCD + A BCD + ABC D is a stan-

dard SOP expression. Standard SOP expressions are important in constructing truth tables, 

covered in Section 4–7, and in the Karnaugh map simplification method, which is covered 

in Section 4–8. Any nonstandard SOP expression (referred to simply as SOP) can be con-

verted to the standard form using Boolean algebra.

Converting Product Terms to Standard SOP

Each product term in an SOP expression that does not contain all the variables in the 

domain can be expanded to standard form to include all variables in the domain and their 

complements. As stated in the following steps, a nonstandard SOP expression is converted 

into standard form using Boolean algebra rule 6 (A + A = 1) from Table 4–1: A variable 

added to its complement equals 1.

Step 1: Multiply each nonstandard product term by a term made up of the sum of a 

missing variable and its complement. This results in two product terms. As you 

know, you can multiply anything by 1 without changing its value.
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Step 2: Repeat Step 1 until all resulting product terms contain all variables in the 

domain in either complemented or uncomplemented form. In converting a 

product term to standard form, the number of product terms is doubled for each 

missing variable, as Example 4–15 shows.

EXAMPLE 4–15

Convert the following Boolean expression into standard SOP form:

ABC + A B + ABCD

Solution

The domain of this SOP expression is A, B, C, D. Take one term at a time. The first term, ABC, is missing variable D or D, 

so multiply the first term by D + D as follows:

ABC = ABC(D + D) = ABCD + ABCD

In this case, two standard product terms are the result.

The second term, A B, is missing variables C or C and D or D, so first multiply the second term by C + C as follows:

A B = A B(C + C) = A BC + A B C

The two resulting terms are missing variable D or D, so multiply both terms by D + D as follows:

 A B = A BC + A B C = A BC(D + D) + A B C(D + D)

 = A BCD + A BCD + A B CD + A B C D

In this case, four standard product terms are the result.

The third term, ABCD, is already in standard form. The complete standard SOP form of the original expression is as follows:

ABC + A B + ABCD = ABCD + ABCD + A BCD + A BCD + A B CD + A B C D + ABCD

Related Problem

Convert the expression WXY + XYZ + WXY  to standard SOP form.

Binary Representation of a Standard Product Term

A standard product term is equal to 1 for only one combination of variable values. For 

example, the product term ABCD is equal to 1 when A = 1, B = 0, C = 1, D = 0, as 

shown below, and is 0 for all other combinations of values for the variables.

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

In this case, the product term has a binary value of 1010 (decimal ten).

Remember, a product term is implemented with an AND gate whose output is 1 only if each 

of its inputs is 1. Inverters are used to produce the complements of the variables as required.

An SOP expression is equal to 1 only if one or more of the product terms in the 

expression is equal to 1.

EXAMPLE 4–16

Determine the binary values for which the following standard SOP expression is equal to 1:

ABCD + AB CD + A B C D

Solution

The term ABCD is equal to 1 when A = 1, B = 1, C = 1, and D = 1.

ABCD = 1 # 1 # 1 # 1 = 1



 Standard Forms of Boolean Expressions 213

The term AB CD is equal to 1 when A = 1, B = 0, C = 0, and D = 1.

AB CD = 1 # 0 # 0 # 1 = 1 # 1 # 1 # 1 = 1

The term A B C D is equal to 1 when A = 0, B = 0, C = 0, and D = 0.

A B C D = 0 # 0 # 0 # 0 = 1 # 1 # 1 # 1 = 1

The SOP expression equals 1 when any or all of the three product terms is 1.

Related Problem

Determine the binary values for which the following SOP expression is equal to 1:

XYZ + XYZ + XYZ + XYZ + XYZ

Is this a standard SOP expression?

The Product-of-Sums (POS) Form

A sum term was defined in Section 4–1 as a term consisting of the sum (Boolean addition) 

of literals (variables or their complements). When two or more sum terms are multiplied, 

the resulting expression is a product-of-sums (POS). Some examples are

 (A + B)(A + B + C)

 (A + B + C)(C + D + E)(B + C + D)

 (A + B)(A + B + C)(A + C)

A POS expression can contain a single-variable term, as in A(A + B + C)(B + C + D). 

In a POS expression, a single overbar cannot extend over more than one variable; however, 

more than one variable in a term can have an overbar. For example, a POS expression can 

have the term A + B + C but not A + B + C.

Implementation of a POS Expression

Implementing a POS expression simply requires ANDing the outputs of two or more OR 

gates. A sum term is produced by an OR operation, and the product of two or more sum 

terms is produced by an AND operation. Therefore, a POS expression can be implemented by 

logic in which the outputs of a number (equal to the number of sum terms in the expression) 

of OR gates connect to the inputs of an AND gate, as Figure 4–24 shows for the expression  

(A + B)(B + C + D)(A + C). The output X of the AND gate equals the POS expression.

A

B

X = (A + B)(B + C + D)(A + C)
B

D

A

C

C

FIGURE 4–24 Implementation of the POS expression (A + B)(B + C + D)(A + C).

The Standard POS Form

So far, you have seen POS expressions in which some of the sum terms do not contain all 

of the variables in the domain of the expression. For example, the expression

(A + B + C)(A + B + D)(A + B + C + D)

has a domain made up of the variables A, B, C, and D. Notice that the complete set of vari-

ables in the domain is not represented in the first two terms of the expression; that is, D or 

D is missing from the first term and C or C is missing from the second term.
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A standard POS expression is one in which all the variables in the domain appear in 

each sum term in the expression. For example,

(A + B + C + D)(A + B + C + D)(A + B + C + D)

is a standard POS expression. Any nonstandard POS expression (referred to simply as 

POS) can be converted to the standard form using Boolean algebra.

Converting a Sum Term to Standard POS

Each sum term in a POS expression that does not contain all the variables in the domain can 

be expanded to standard form to include all variables in the domain and their complements. 

As stated in the following steps, a nonstandard POS expression is converted into standard 

form using Boolean algebra rule 8 (A # A = 0) from Table 4–1: A variable multiplied by 

its complement equals 0.

Step 1: Add to each nonstandard product term a term made up of the product of the 

missing variable and its complement. This results in two sum terms. As you 

know, you can add 0 to anything without changing its value.

Step 2: Apply rule 12 from Table 4–1: A + BC = (A + B)(A + C)

Step 3: Repeat Step 1 until all resulting sum terms contain all variables in the domain 

in either complemented or uncomplemented form.

EXAMPLE 4–17

Convert the following Boolean expression into standard POS form:

(A + B + C)(B + C + D)(A + B + C + D)

Solution

The domain of this POS expression is A, B, C, D. Take one term at a time. The first term, A + B + C, is missing variable 

D or D, so add DD and apply rule 12 as follows:

A + B + C = A + B + C + DD = (A + B + C + D)(A + B + C + D)

The second term, B + C + D, is missing variable A or A, so add AA and apply rule 12 as follows:

B + C + D = B + C + D + AA = (A + B + C + D)(A + B + C + D)

The third term, A + B + C + D, is already in standard form. The standard POS form of the original expression is as follows:

(A + B + C)(B + C + D)(A + B + C + D) =

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Related Problem

Convert the expression (A + B)(B + C) to standard POS form.

Binary Representation of a Standard Sum Term

A standard sum term is equal to 0 for only one combination of variable values. For exam-

ple, the sum term A + B + C + D is 0 when A = 0, B = 1, C = 0, and D = 1, as 

shown below, and is 1 for all other combinations of values for the variables.

A + B + C + D = 0 + 1 + 0 + 1 = 0 + 0 + 0 + 0 = 0

In this case, the sum term has a binary value of 0101 (decimal 5). Remember, a sum term 

is implemented with an OR gate whose output is 0 only if each of its inputs is 0. Inverters 

are used to produce the complements of the variables as required.

A POS expression is equal to 0 only if one or more of the sum terms in the expres-

sion is equal to 0.
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Converting Standard SOP to Standard POS

The binary values of the product terms in a given standard SOP expression are not present 

in the equivalent standard POS expression. Also, the binary values that are not represented 

in the SOP expression are present in the equivalent POS expression. Therefore, to convert 

from standard SOP to standard POS, the following steps are taken:

Step 1: Evaluate each product term in the SOP expression. That is, determine the 

binary numbers that represent the product terms.

Step 2: Determine all of the binary numbers not included in the evaluation in Step 1.

Step 3: Write the equivalent sum term for each binary number from Step 2 and express 

in POS form.

Using a similar procedure, you can go from POS to SOP.

EXAMPLE 4–18

Determine the binary values of the variables for which the following standard POS 

expression is equal to 0:

(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The term A + B + C + D is equal to 0 when A = 0, B = 0, C = 0, and D = 0.

A + B + C + D = 0 + 0 + 0 + 0 = 0

The term A + B + C + D is equal to 0 when A = 0, B = 1, C = 1, and D = 0.

A + B + C + D = 0 + 1 + 1 + 0 = 0 + 0 + 0 + 0 = 0

The term A + B + C + D is equal to 0 when A = 1, B = 1, C = 1, and D = 1.

A + B + C + D = 1 + 1 + 1 + 1 = 0 + 0 + 0 + 0 = 0

The POS expression equals 0 when any of the three sum terms equals 0.

Related Problem

Determine the binary values for which the following POS expression is equal to 0:

(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

Is this a standard POS expression?

EXAMPLE 4–19

Convert the following SOP expression to an equivalent POS expression:

A B C + ABC + ABC + ABC + ABC

Solution

The evaluation is as follows:

000 + 010 + 011 + 101 + 111

Since there are three variables in the domain of this expression, there are a total of eight 

(23) possible combinations. The SOP expression contains five of these combinations, so 

the POS must contain the other three which are 001, 100, and 110. Remember, these are 

the binary values that make the sum term 0. The equivalent POS expression is

(A + B + C)(A + B + C)(A + B + C)
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Related Problem

Verify that the SOP and POS expressions in this example are equivalent by substituting 

binary values into each.

SECTION 4–6 CHECKUP

 1. Identify each of the following expressions as SOP, standard SOP, POS, or standard 

POS:

(a) AB + ABD + ACD (b) (A + B + C)(A + B + C)

(c) ABC + ABC (d) (A + C)(A + B)

 2. Convert each SOP expression in Question 1 to standard form.

 3. Convert each POS expression in Question 1 to standard form.

4–7 Boolean Expressions and Truth Tables

All standard Boolean expressions can be easily converted into truth table format using 

binary values for each term in the expression. The truth table is a common way of present-

ing, in a concise format, the logical operation of a circuit. Also, standard SOP or POS 

expressions can be determined from a truth table. You will find truth tables in data sheets 

and other literature related to the operation of digital circuits.

After completing this section, you should be able to

u Convert a standard SOP expression into truth table format

u Convert a standard POS expression into truth table format

u Derive a standard expression from a truth table

u Properly interpret truth table data

Converting SOP Expressions to Truth Table Format

Recall from Section 4–6 that an SOP expression is equal to 1 only if at least one of the 

product terms is equal to 1. A truth table is simply a list of the possible combinations of 

input variable values and the corresponding output values (1 or 0). For an expression with a 

domain of two variables, there are four different combinations of those variables (22
= 4). 

For an expression with a domain of three variables, there are eight different combinations 

of those variables (23
= 8). For an expression with a domain of four variables, there are 

sixteen different combinations of those variables (24
= 16), and so on.

The first step in constructing a truth table is to list all possible combinations of binary 

values of the variables in the expression. Next, convert the SOP expression to standard 

form if it is not already. Finally, place a 1 in the output column (X) for each binary value 

that makes the standard SOP expression a 1 and place a 0 for all the remaining binary values. 

This procedure is illustrated in Example 4–20.

EXAMPLE 4–20

Develop a truth table for the standard SOP expression A BC + AB C + ABC.

Solution

There are three variables in the domain, so there are eight possible combinations of 

binary values of the variables as listed in the left three columns of Table 4–6. The 

binary values that make the product terms in the expressions equal to 1 are 
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Converting POS Expressions to Truth Table Format

Recall that a POS expression is equal to 0 only if at least one of the sum terms is equal to 

0. To construct a truth table from a POS expression, list all the possible combinations of 

binary values of the variables just as was done for the SOP expression. Next, convert the 

POS expression to standard form if it is not already. Finally, place a 0 in the output column 

(X) for each binary value that makes the expression a 0 and place a 1 for all the remaining 

binary values. This procedure is illustrated in Example 4–21.

A BC: 001; AB C: 100; and ABC: 111. For each of these binary values, place a 1 in the 

output column as shown in the table. For each of the remaining binary combinations, 

place a 0 in the output column.

Related Problem

Create a truth table for the standard SOP expression ABC + ABC.

Inputs Output

Product TermA B C X

0 0 0 0

0 0 1 1 A BC

0 1 0 0

0 1 1 0

1 0 0 1 AB C

1 0 1 0

1 1 0 0

1 1 1 1 ABC

TABLE 4–6

EXAMPLE 4–21

Determine the truth table for the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

Solution

There are three variables in the domain and the eight possible binary values are listed in 

the left three columns of Table 4–7. The binary values that make the sum terms in the 

expression equal to 0 are A + B + C: 000; A + B + C: 010; A + B + C: 011;

A + B + C: 101; and A + B + C: 110. For each of these binary values, place a 0 in 

the output column as shown in the table. For each of the remaining binary combina-

tions, place a 1 in the output column.

Inputs Output

Sum TermA B C X

0 0 0 0 (A + B + C)

0 0 1 1

0 1 0 0 (A + B + C)

0 1 1 0 (A + B + C)

1 0 0 1

1 0 1 0 (A + B + C)

1 1 0 0 (A + B + C)

1 1 1 1

TABLE 4–7
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Notice that the truth table in this example is the same as the one in Example 4–20. 

This means that the SOP expression in the previous example and the POS expression in 

this example are equivalent.

Related Problem

Develop a truth table for the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)

Determining Standard Expressions from a Truth Table

To determine the standard SOP expression represented by a truth table, list the binary val-

ues of the input variables for which the output is 1. Convert each binary value to the corre-

sponding product term by replacing each 1 with the corresponding variable and each 0 with 

the corresponding variable complement. For example, the binary value 1010 is converted 

to a product term as follows:

1010 h ABCD

If you substitute, you can see that the product term is 1:

ABCD = 1 # 0 # 1 # 0 = 1 # 1 # 1 # 1 = 1

To determine the standard POS expression represented by a truth table, list the binary 

values for which the output is 0. Convert each binary value to the corresponding sum term 

by replacing each 1 with the corresponding variable complement and each 0 with the cor-

responding variable. For example, the binary value 1001 is converted to a sum term as 

follows:

1001 h A + B + C + D

If you substitute, you can see that the sum term is 0:

A + B + C + D = 1 + 0 + 0 + 1 = 0 + 0 + 0 + 0 = 0

EXAMPLE 4–22

From the truth table in Table 4–8, determine the standard SOP expression and the 

equivalent standard POS expression.

Inputs Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

TABLE 4–8
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Solution

There are four 1s in the output column and the corresponding binary values are 011, 

100, 110, and 111. Convert these binary values to product terms as follows:

011 h ABC

100 h AB C

110 h ABC

111 h ABC

The resulting standard SOP expression for the output X is

X = ABC + AB C + ABC + ABC

For the POS expression, the output is 0 for binary values 000, 001, 010, and 101. 

Convert these binary values to sum terms as follows:

000 h A + B + C

001 h A + B + C

010 h A + B + C

101 h A + B + C

The resulting standard POS expression for the output X is

X = (A + B + C)(A + B + C)(A + B + C)(A + B + C)

Related Problem

By substitution of binary values, show that the SOP and the POS expressions derived in 

this example are equivalent; that is, for any binary value each SOP and POS term should 

either both be 1 or both be 0, depending on the binary value.

SECTION 4–7 CHECKUP

 1. If a certain Boolean expression has a domain of five variables, how many binary 

values will be in its truth table?

 2. In a certain truth table, the output is a 1 for the binary value 0110. Convert this binary 

value to the corresponding product term using variables W, X, Y, and Z.

 3. In a certain truth table, the output is a 0 for the binary value 1100. Convert this binary 

value to the corresponding sum term using variables W, X, Y, and Z.

4–8 The Karnaugh Map

A Karnaugh map provides a systematic method for simplifying Boolean expressions and, 

if properly used, will produce the simplest SOP or POS expression possible, known as 

the minimum expression. As you have seen, the effectiveness of algebraic simplification 

depends on your familiarity with all the laws, rules, and theorems of Boolean algebra and on 

your ability to apply them. The Karnaugh map, on the other hand, provides a “cookbook” 

method for simplification. Other simplification techniques include the Quine-McCluskey 

method and the Espresso algorithm.

After completing this section, you should be able to

u Construct a Karnaugh map for three or four variables

u Determine the binary value of each cell in a Karnaugh map

u Determine the standard product term represented by each cell in a Karnaugh map

u Explain cell adjacency and identify adjacent cells
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A Karnaugh map is similar to a truth table because it presents all of the possible values 

of input variables and the resulting output for each value. Instead of being organized into 

columns and rows like a truth table, the Karnaugh map is an array of cells in which each 

cell represents a binary value of the input variables. The cells are arranged in a way so 

that simplification of a given expression is simply a matter of properly grouping the cells. 

Karnaugh maps can be used for expressions with two, three, four, and five variables, but we 

will discuss only 3-variable and 4-variable situations to illustrate the principles. A discus-

sion of 5-variable Karnaugh maps is available on the website.

The number of cells in a Karnaugh map, as well as the number of rows in a truth table, 

is equal to the total number of possible input variable combinations. For three variables, the 

number of cells is 23
= 8. For four variables, the number of cells is 24

= 16.

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells, as shown in Figure 4–25(a). In this 

case, A, B, and C are used for the variables although other letters could be used. Binary 

values of A and B are along the left side (notice the sequence) and the values of C are across 

the top. The value of a given cell is the binary values of A and B at the left in the same row 

combined with the value of C at the top in the same column. For example, the cell in the 

upper left corner has a binary value of 000 and the cell in the lower right corner has a binary 

value of 101. Figure 4–25(b) shows the standard product terms that are represented by each 

cell in the Karnaugh map.

The purpose of a Karnaugh map is to 
simplify a Boolean expression.
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C

AB
C

ABC ABC

ABC ABC

ABC ABC

ABC ABC

FIGURE 4–25 A 3-variable Karnaugh map showing Boolean product terms for each cell.

The 4-Variable Karnaugh Map

The 4-variable Karnaugh map is an array of sixteen cells, as shown in Figure 4–26(a). 

Binary values of A and B are along the left side and the values of C and D are across the 

top. The value of a given cell is the binary values of A and B at the left in the same row 

combined with the binary values of C and D at the top in the same column. For example, 

the cell in the upper right corner has a binary value of 0010 and the cell in the lower right 

corner has a binary value of 1010. Figure 4–26(b) shows the standard product terms that 

are represented by each cell in the 4-variable Karnaugh map.

Cell Adjacency

The cells in a Karnaugh map are arranged so that there is only a single-variable change 

between adjacent cells. Adjacency is defined by a single-variable change. In the 3-variable 

map the 010 cell is adjacent to the 000 cell, the 011 cell, and the 110 cell. The 010 cell is 

not adjacent to the 001 cell, the 111 cell, the 100 cell, or the 101 cell.

Physically, each cell is adjacent to the cells that are immediately next to it on any of 

its four sides. A cell is not adjacent to the cells that diagonally touch any of its corners. 

Also, the cells in the top row are adjacent to the corresponding cells in the bottom row and 

Cells that differ by only one variable 
are adjacent.

Cells with values that differ by more 
than one variable are not adjacent.
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the cells in the outer left column are adjacent to the corresponding cells in the outer right 

column. This is called “wrap-around” adjacency because you can think of the map as wrap-

ping around from top to bottom to form a cylinder or from left to right to form a cylinder. 

Figure 4–27 illustrates the cell adjacencies with a 4-variable map, although the same rules 

for adjacency apply to Karnaugh maps with any number of cells.
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ABCD ABCD

ABCD ABCD

ABCD ABCD

FIGURE 4–26 A 4-variable Karnaugh map.
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10

CD
AB

FIGURE 4–27 Adjacent cells on a Karnaugh map are those that differ by only one 

variable. Arrows point between adjacent cells.

The Quine-McCluskey Method

Minimizing Boolean functions using Karnaugh maps is practical only for up to four or five 

variables. Also, the Karnaugh map method does not lend itself to be automated in the form 

of a computer program.

The Quine-McCluskey method is more practical for logic simplification of functions 

with more than four or five variables. It also has the advantage of being easily implemented 

with a computer or programmable calculator.

The Quine-McCluskey method is functionally similar to Karnaugh mapping, but the 

tabular form makes it more efficient for use in computer algorithms, and it also gives a way 

to check that the minimal form of a Boolean function has been reached. This method is 

sometimes referred to as the tabulation method. An introduction to the Quine-McCluskey 

method is provided in Section 4–11.

Espresso Algorithm

Although the Quine-McCluskey method is well suited to be implemented in a computer 

program and can handle more variables than the Karnaugh map method, the result is still 

far from efficient in terms of processing time and memory usage. Adding a variable to 

the function will roughly double both of these parameters because the truth table length 

increases exponentially with the number of variables. Functions with a large number of 
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variables have to be minimized with other methods such as the Espresso logic minimizer, 

which has become the de facto world standard. An Espresso algorithm tutorial is available 

on the website.

Compared to the other methods, Espresso is essentially more efficient in terms of reduc-

ing memory usage and computation time by several orders of magnitude. There is essen-

tially no restrictions to the number of variables, output functions, and product terms of a 

combinational logic function. In general, tens of variables with tens of output functions can 

be handled by Espresso.

The Espresso algorithm has been incorporated as a standard logic function minimiza-

tion step in most logic synthesis tools for programmable logic devices. For implementing 

a function in multilevel logic, the minimization result is optimized by factorization and 

mapped onto the available basic logic cells in the target device, such as an FPGA (Field-

Programmable Gate Array).

SECTION 4–8 CHECKUP

 1. In a 3-variable Karnaugh map, what is the binary value for the cell in each of the fol-

lowing locations:

(a) upper left corner (b) lower right corner

(c) lower left corner (d) upper right corner

 2. What is the standard product term for each cell in Question 1 for variables X, Y, and Z?

 3. Repeat Question 1 for a 4-variable map.

 4. Repeat Question 2 for a 4-variable map using variables W, X, Y, and Z.

4–9 Karnaugh Map SOP Minimization

As stated in the last section, the Karnaugh map is used for simplifying Boolean expressions 

to their minimum form. A minimized SOP expression contains the fewest possible terms 

with the fewest possible variables per term. Generally, a minimum SOP expression can be 

implemented with fewer logic gates than a standard expression. In this section, Karnaugh 

maps with up to four variables are covered.

After completing this section, you should be able to

u Map a standard SOP expression on a Karnaugh map

u Combine the 1s on the map into maximum groups

u Determine the minimum product term for each group on the map

u Combine the minimum product terms to form a minimum SOP expression

u Convert a truth table into a Karnaugh map for simplification of the represented 

expression

u Use “don’t care” conditions on a Karnaugh map

Mapping a Standard SOP Expression

For an SOP expression in standard form, a 1 is placed on the Karnaugh map for each 

product term in the expression. Each 1 is placed in a cell corresponding to the value of 

a product term. For example, for the product term ABC, a 1 goes in the 101 cell on a 

3-variable map.
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When an SOP expression is completely mapped, there will be a number of 1s on the 

Karnaugh map equal to the number of product terms in the standard SOP expression. The 

cells that do not have a 1 are the cells for which the expression is 0. Usually, when working 

with SOP expressions, the 0s are left off the map. The following steps and the illustration 

in Figure 4–28 show the mapping process.

Step 1: Determine the binary value of each product term in the standard SOP expres-

sion. After some practice, you can usually do the evaluation of terms mentally.

Step 2: As each product term is evaluated, place a 1 on the Karnaugh map in the cell 

having the same value as the product term.

0 1

00

01

11
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AB
C

ABC  +  ABC  +  ABC  +  ABC

1

1

1 1
000 001 110 100

FIGURE 4–28 Example of mapping a standard SOP expression.

EXAMPLE 4–23

Map the following standard SOP expression on a Karnaugh map:

A BC + ABC + ABC + ABC

Solution

Evaluate the expression as shown below. Place a 1 on the 3-variable Karnaugh map in 

Figure 4–29 for each standard product term in the expression.

A BC + ABC + ABC + ABC

0 0 1 0 1 0 1 1 0 1 1 1

0 1

00

01

11

10

AB
C

1

1

1

1

ABC

ABC

ABC

ABC

FIGURE 4–29 

Related Problem

Map the standard SOP expression ABC + ABC + AB C on a Karnaugh map.
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Mapping a Nonstandard SOP Expression

A Boolean expression must first be in standard form before you use a Karnaugh map. If an 

expression is not in standard form, then it must be converted to standard form by the proce-

dure covered in Section 4–6 or by numerical expansion. Since an expression should be eval-

uated before mapping anyway, numerical expansion is probably the most efficient approach.

Numerical Expansion of a Nonstandard Product Term

Recall that a nonstandard product term has one or more missing variables. For example, 

assume that one of the product terms in a certain 3-variable SOP expression is AB. This 

term can be expanded numerically to standard form as follows. First, write the binary value 

of the two variables and attach a 0 for the missing variable C: 100. Next, write the binary 

value of the two variables and attach a 1 for the missing variable C: 101. The two resulting 

binary numbers are the values of the standard SOP terms AB C and ABC.

As another example, assume that one of the product terms in a 3-variable expression is 

B (remember that a single variable counts as a product term in an SOP expression). This 

term can be expanded numerically to standard form as follows. Write the binary value of 

the variable; then attach all possible values for the missing variables A and C as follows:

B

010

011

110

111

EXAMPLE 4–24

Map the following standard SOP expression on a Karnaugh map:

A BCD + ABC D + ABCD + ABCD + ABC D + A B CD + ABCD

Solution

Evaluate the expression as shown below. Place a 1 on the 4-variable Karnaugh map in 

Figure 4–30 for each standard product term in the expression.

A BCD + ABC D + ABCD + ABCD + ABC D + A B CD + ABCD

0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0
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1 1
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1

ABCD
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ABCDABCD

ABCD
ABCD

ABCD

FIGURE 4–30 

Related Problem

Map the following standard SOP expression on a Karnaugh map:

ABCD + ABCD + ABC D + ABCD
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The four resulting binary numbers are the values of the standard SOP terms ABC, 

 ABC, ABC, and ABC.

EXAMPLE 4–25

Map the following SOP expression on a Karnaugh map: A + AB + ABC.

Solution

The SOP expression is obviously not in standard form because each product term does not 

have three variables. The first term is missing two variables, the second term is missing 

one variable, and the third term is standard. First expand the terms numerically as follows:

A + AB + ABC

000 100 110

001 101

010

011

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 

3-variable Karnaugh map in Figure 4–31.
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FIGURE 4–31 

Related Problem

Map the SOP expression BC + A C on a Karnaugh map.

EXAMPLE 4–26

Map the following SOP expression on a Karnaugh map:

B C + AB + ABC + ABCD + A B CD + ABCD

Solution

The SOP expression is obviously not in standard form because each product term does 

not have four variables. The first and second terms are both missing two variables, the 

third term is missing one variable, and the rest of the terms are standard. First expand the 

terms by including all combinations of the missing variables numerically as follows:

B C  + AB  +   ABC  +  ABCD +  A B CD +  ABCD

0 0 0 0   1 0 0 0  1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1

0 0 0 1  1 0 0 1  1 1 0 1

1 0 0 0  1 0 1 0

1 0 0 1  1 0 1 1
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Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the few-

est possible variables is called minimization. After an SOP expression has been mapped, 

a minimum SOP expression is obtained by grouping the 1s and determining the minimum 

SOP expression from the map.

Grouping the 1s

You can group 1s on the Karnaugh map according to the following rules by enclosing those 

adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize 

the number of groups.

 1. A group must contain either 1, 2, 4, 8, or 16 cells, which are all powers of two. In the 

case of a 3-variable map, 23
= 8 cells is the maximum group.

 2. Each cell in a group must be adjacent to one or more cells in that same group, but all 

cells in the group do not have to be adjacent to each other.

 3. Always include the largest possible number of 1s in a group in accordance with rule 1.

 4. Each 1 on the map must be included in at least one group. The 1s already in a group can 

be included in another group as long as the overlapping groups include noncommon 1s.

Map each of the resulting binary values by placing a 1 in the appropriate cell of the 

4-variable Karnaugh map in Figure 4–32. Notice that some of the values in the expanded 

expression are redundant.
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FIGURE 4–32 

Related Problem

Map the expression A + CD + ACD + ABCD on a Karnaugh map.

EXAMPLE 4–27

Group the 1s in each of the Karnaugh maps in Figure 4–33.
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FIGURE 4–33 
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Solution

The groupings are shown in Figure 4–34. In some cases, there may be more than one way to group the 1s to form maximum 

groupings.

Wrap-around adjacency
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FIGURE 4–34 

Related Problem

Determine if there are other ways to group the 1s in Figure 4–34 to obtain a minimum number of maximum 

 groupings.

Determining the Minimum SOP Expression from the Map

When all the 1s representing the standard product terms in an expression are properly 

mapped and grouped, the process of determining the resulting minimum SOP expression 

begins. The following rules are applied to find the minimum product terms and the mini-

mum SOP expression:

 1. Group the cells that have 1s. Each group of cells containing 1s creates one product 

term composed of all variables that occur in only one form (either uncomple-

mented or complemented) within the group. Variables that occur both uncomple-

mented and complemented within the group are eliminated. These are called 

contradictory variables.

 2. Determine the minimum product term for each group.

(a) For a 3-variable map:

 (1) A 1-cell group yields a 3-variable product term

 (2) A 2-cell group yields a 2-variable product term

 (3) A 4-cell group yields a 1-variable term

 (4) An 8-cell group yields a value of 1 for the expression

(b) For a 4-variable map:

 (1) A 1-cell group yields a 4-variable product term

 (2) A 2-cell group yields a 3-variable product term

 (3) A 4-cell group yields a 2-variable product term

 (4) An 8-cell group yields a 1-variable term

 (5) A 16-cell group yields a value of 1 for the expression

 3. When all the minimum product terms are derived from the Karnaugh map, they are 

summed to form the minimum SOP expression.
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EXAMPLE 4–28

Determine the product terms for the Karnaugh map in Figure 4–35 and write the result-

ing minimum SOP expression.
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FIGURE 4–35 

Solution

Eliminate variables that are in a grouping in both complemented and uncomplemented 

forms. In Figure 4–35, the product term for the 8-cell group is B because the cells 

within that group contain both A and A, C and C, and D and D, which are eliminated. 

The 4-cell group contains B, B, D, and D, leaving the variables A and C, which form the 

product term AC. The 2-cell group contains B and B, leaving variables A, C, and D 

which form the product term ACD. Notice how overlapping is used to maximize the 

size of the groups. The resulting minimum SOP expression is the sum of these product 

terms:

B + AC + ACD

Related Problem

For the Karnaugh map in Figure 4–35, add a 1 in the lower right cell (1010) and deter-

mine the resulting SOP expression.

EXAMPLE 4–29

Determine the product terms for each of the Karnaugh maps in Figure 4–36 and write the resulting minimum SOP expression.
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FIGURE 4–36 
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Solution

The resulting minimum product term for each group is shown in Figure 4–36. The minimum SOP expressions for each of 

the Karnaugh maps in the figure are

(a) AB + BC + A B C

(b) B + A C + AC

(c) AB + A C + ABD

(d) D + ABC + BC

Related Problem

For the Karnaugh map in Figure 4–36(d), add a 1 in the 0111 cell and determine the resulting SOP expression.

EXAMPLE 4–30

Use a Karnaugh map to minimize the following standard SOP expression:

ABC + ABC + A BC + A B C + AB C

Solution

The binary values of the expression are

101 + 011 + 001 + 000 + 100

Map the standard SOP expression and group the cells as shown in Figure 4–37.
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FIGURE 4–37 

Notice the “wrap around” 4-cell group that includes the top row and the bottom row 

of 1s. The remaining 1 is absorbed in an overlapping group of two cells. The group of 

four 1s produces a single variable term, B. This is determined by observing that within 

the group, B is the only variable that does not change from cell to cell. The group of two 

1s produces a 2-variable term AC. This is determined by observing that within the 

group, A and C do not change from one cell to the next. The product term for each 

group is shown. The resulting minimum SOP expression is

B + AC

Keep in mind that this minimum expression is equivalent to the original standard  expression.

Related Problem

Use a Karnaugh map to simplify the following standard SOP expression:

XYZ + XYZ + XYZ + XYZ + XY Z + XYZ
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Mapping Directly from a Truth Table

You have seen how to map a Boolean expression; now you will learn how to go directly 

from a truth table to a Karnaugh map. Recall that a truth table gives the output of a Boolean 

expression for all possible input variable combinations. An example of a Boolean expres-

sion and its truth table representation is shown in Figure 4–39. Notice in the truth table that 

the output X is 1 for four different input variable combinations. The 1s in the output column 

of the truth table are mapped directly onto a Karnaugh map into the cells corresponding to 

the values of the associated input variable combinations, as shown in Figure 4–39. In the 

figure you can see that the Boolean expression, the truth table, and the Karnaugh map are 

simply different ways to represent a logic function.

“Don’t Care” Conditions

Sometimes a situation arises in which some input variable combinations are not allowed. 

For example, recall that in the BCD code covered in Chapter 2, there are six invalid 

combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states 

EXAMPLE 4–31

Use a Karnaugh map to minimize the following SOP expression:

B C D + ABC D + ABC D + A BCD + ABCD + A BCD + ABCD + ABCD + ABCD

Solution

The first term B C D must be expanded into AB C D and A B C D to get the standard 

SOP expression, which is then mapped; the cells are grouped as shown in Figure 4–38.
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FIGURE 4–38 

Notice that both groups exhibit “wrap around” adjacency. The group of eight is 

formed because the cells in the outer columns are adjacent. The group of four is formed 

to pick up the remaining two 1s because the top and bottom cells are adjacent. The 

product term for each group is shown. The resulting minimum SOP expression is

D + BC

Keep in mind that this minimum expression is equivalent to the original standard 

expression.

Related Problem

Use a Karnaugh map to simplify the following SOP expression:

W X Y Z + WXYZ + WX YZ + WYZ + WX Y Z
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FIGURE 4–39 Example of mapping directly from a truth table to a Karnaugh map.

will never occur in an application involving the BCD code, they can be treated as “don’t 

care” terms with respect to their effect on the output. That is, for these “don’t care” terms 

either a 1 or a 0 may be assigned to the output; it really does not matter since they will 

never occur.

The “don’t care” terms can be used to advantage on the Karnaugh map. Figure 4–40 

shows that for each “don’t care” term, an X is placed in the cell. When grouping the 1s, the 

Xs can be treated as 1s to make a larger grouping or as 0s if they cannot be used to advan-

tage. The larger a group, the simpler the resulting term will be.
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FIGURE 4–40 Example of the use of “don’t care” conditions to simplify an expression.

The truth table in Figure 4–40(a) describes a logic function that has a 1 output only 

when the BCD code for 7, 8, or 9 is present on the inputs. If the “don’t cares” are used as 

1s, the resulting expression for the function is A + BCD, as indicated in part (b). If the 

“don’t cares” are not used as 1s, the resulting expression is AB C + ABCD; so you can see 

the advantage of using “don’t care” terms to get the simplest expression.
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EXAMPLE 4–32

In a 7-segment display, each of the seven segments is activated for various digits. For 

example, segment a is activated for the digits 0, 2, 3, 5, 6, 7, 8, and 9, as illustrated in 

Figure 4–41. Since each digit can be represented by a BCD code, derive an SOP expres-

sion for segment a using the variables ABCD and then minimize the expression using a 

Karnaugh map.

Segment a

b

c

f

e

d

g

FIGURE 4–41 7-segment display.

Solution

The expression for segment a is

a = A B C D + A BCD + A BCD + ABCD + ABCD + ABCD + AB C D + AB CD

Each term in the expression represents one of the digits in which segment a is used. The 

Karnaugh map minimization is shown in Figure 4–42. X’s (don’t cares) are entered for 

those states that do not occur in the BCD code.

00 01 11 10

00
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11

10

CD

AB

C

A

BD

1

111

11 1

XX X X

1 XX

BD

FIGURE 4–42 

From the Karnaugh map, the minimized expression for segment a is

a = A + C + BD + B  D

Related Problem

Draw the logic diagram for the segment-a logic.

SECTION 4–9  CHECKUP

 1. Lay out Karnaugh maps for three and four variables.

 2. Group the 1s and write the simplified SOP expression for the Karnaugh map in 

Figure 4–29.

 3. Write the original standard SOP expressions for each of the Karnaugh maps in Fig-

ure 4–36.
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4–10 Karnaugh Map POS Minimization

In the last section, you studied the minimization of an SOP expression using a Karnaugh 

map. In this section, we focus on POS expressions. The approaches are much the same 

except that with POS expressions, 0s representing the standard sum terms are placed on the 

Karnaugh map instead of 1s.

After completing this section, you should be able to

u Map a standard POS expression on a Karnaugh map

u Combine the 0s on the map into maximum groups

u Determine the minimum sum term for each group on the map

u Combine the minimum sum terms to form a minimum POS expression

u Use the Karnaugh map to convert between POS and SOP

Mapping a Standard POS Expression

For a POS expression in standard form, a 0 is placed on the Karnaugh map for each sum 

term in the expression. Each 0 is placed in a cell corresponding to the value of a sum term. 

For example, for the sum term A + B + C, a 0 goes in the 010 cell on a 3-variable map.

When a POS expression is completely mapped, there will be a number of 0s on the 

Karnaugh map equal to the number of sum terms in the standard POS expression. The cells 

that do not have a 0 are the cells for which the expression is 1. Usually, when working with 

POS expressions, the 1s are left off. The following steps and the illustration in Figure 4–43 

show the mapping process.

Step 1: Determine the binary value of each sum term in the standard POS expression. 

This is the binary value that makes the term equal to 0.

Step 2: As each sum term is evaluated, place a 0 on the Karnaugh map in the corre-

sponding cell.

0 1

00

01

11

10

AB

C
(A + B + C)(A + B + C)(A + B + C)(A + B + C)

000 010 110 101

0

0

0

0

FIGURE 4–43 Example of mapping a standard POS expression.

EXAMPLE 4–33

Map the following standard POS expression on a Karnaugh map:

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

Evaluate the expression as shown below and place a 0 on the 4-variable Karnaugh map in Figure 4–44 for each standard 

sum term in the expression.

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

1100 1011 0010 1111 0011
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Karnaugh Map Simplification of POS Expressions

The process for minimizing a POS expression is basically the same as for an SOP expres-

sion except that you group 0s to produce minimum sum terms instead of grouping 1s to 

produce minimum product terms. The rules for grouping the 0s are the same as those for 

grouping the 1s that you learned in Section 4–9.

00 01 11 10

00

01

11

10

CD

AB

0

0

0

0

0

A + B + C + D

A + B + C + D

A + B + C + D

A + B + C + DA + B + C + D

FIGURE 4–44 

Related Problem

Map the following standard POS expression on a Karnaugh map:

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

EXAMPLE 4–34

Use a Karnaugh map to minimize the following standard POS expression:

(A + B + C)(A + B + C)(A + B + C)(A + B + C)(A + B + C)

Also, derive the equivalent SOP expression.

Solution

The combinations of binary values of the expression are

(0 + 0 + 0)(0 + 0 + 1)(0 + 1 + 0)(0 + 1 + 1)(1 + 1 + 0)

Map the standard POS expression and group the cells as shown in Figure 4–45.

0 1

00

01

11

10

AB

C

A

B + C

0

0

0

0

0

1

1 1

AC

AB

FIGURE 4–45 
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Notice how the 0 in the 110 cell is included into a 2-cell group by utilizing the 0 in 

the 4-cell group. The sum term for each blue group is shown in the figure and the result-

ing minimum POS expression is

A(B + C)

Keep in mind that this minimum POS expression is equivalent to the original standard 

POS expression.

Grouping the 1s as shown by the gray areas yields an SOP expression that is equiva-

lent to grouping the 0s.

AC + AB = A(B + C)

Related Problem

Use a Karnaugh map to simplify the following standard POS expression:

(X + Y + Z)(X + Y + Z)(X + Y + Z)(X + Y + Z)

EXAMPLE 4–35

Use a Karnaugh map to minimize the following POS expression:

(B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The first term must be expanded into A + B + C + D and A + B + C + D to get a standard POS expression, which is 

then mapped; and the cells are grouped as shown in Figure 4–46. The sum term for each group is shown and the resulting 

minimum POS expression is

(C + D)(A + B + D)(A + B + C)

Keep in mind that this minimum POS expression is equivalent to the original standard POS expression.

00 01 11 10
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CD
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A + B + D
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0

0

0

0

0

0

FIGURE 4–46 

Related Problem

Use a Karnaugh map to simplify the following POS expression:

(W + X + Y + Z )(W + X + Y + Z )(W + X + Y + Z )(W + X + Z )

Converting Between POS and SOP Using the Karnaugh Map

When a POS expression is mapped, it can easily be converted to the equivalent SOP form 

directly from the Karnaugh map. Also, given a mapped SOP expression, an equivalent POS 

expression can be derived directly from the map. This provides a good way to compare 
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both minimum forms of an expression to determine if one of them can be implemented 

with fewer gates than the other.

For a POS expression, all the cells that do not contain 0s contain 1s, from which the SOP 

expression is derived. Likewise, for an SOP expression, all the cells that do not contain 

1s contain 0s, from which the POS expression is derived. Example 4–36 illustrates this 

conversion.

EXAMPLE 4–36

Using a Karnaugh map, convert the following standard POS expression into a minimum POS expression, a standard SOP 

expression, and a minimum SOP expression.

(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)

Solution

The 0s for the standard POS expression are mapped and grouped to obtain the minimum POS expression in Figure 4–47(a). 

In Figure 4–47(b), 1s are added to the cells that do not contain 0s. From each cell containing a 1, a standard product term is 

obtained as indicated. These product terms form the standard SOP expression. In Figure 4–47(c), the 1s are grouped and a 

minimum SOP expression is obtained.
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(a)  Minimum POS: (A + B + C)(B + C + D)(B + C + D)
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(c)  Minimum SOP: AC + BC + BD + BCD
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FIGURE 4–47 

Related Problem

Use a Karnaugh map to convert the following expression to minimum SOP form:

(W + X + Y + Z )(W + X + Y + Z )(W + X + Y + Z )(W + X + Z )
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SECTION 4–10  CHECKUP

 1. What is the difference in mapping a POS expression and an SOP expression?

 2. What is the standard sum term for a 0 in cell 1011?

 3. What is the standard product term for a 1 in cell 0010?

4–11 The Quine-McCluskey Method

For Boolean functions up to four variables, the Karnaugh map method is a powerful minimi-

zation method. When there are five variables, the Karnaugh map method is difficult to apply 

and completely impractical beyond five. The Quine-McCluskey method is a formal tabular 

method for applying the Boolean distributive law to various terms to find the minimum sum 

of products by eliminating literals that appear in two terms as complements. (For example, 

ABCD + ABC D = ABC). A Quine-McCluskey method tutorial is available on the website.

After completing this section, you should be able to

u Describe the Quine-McCluskey method

u Reduce a Boolean expression using the Quine-McCluskey method

Unlike the Karnaugh mapping method, Quine-McCluskey lends itself to the computer-

ized reduction of Boolean expressions, which is its principal use. For simple expressions, 

with up to four or perhaps even five variables, the Karnaugh map is easier for most people 

because it is a graphic method.

To apply the Quine-McCluskey method, first write the function in standard minterm 

(SOP) form. To illustrate, we will use the expression

X = A B CD + A BCD + AB C D + A B CD +  ABC D + AB C D + AB CD + ABCD

and represent it as binary numbers on the truth table shown in Table 4–9. The minterms that 

appear in the function are listed in the right column.

TABLE 4–9

ABCD X Minterm

0000 0

0001 1 m1

0010 0

0011 1 m3

0100 1 m4

0101 1 m5

0110 0

0111 0

1000 0

1001 0

1010 1 m10

1011 0

1100 1 m12

1101 1 m13

1110 0

1111 1 m15

The second step in applying the Quine-McCluskey method is to arrange the minterms in 

the original expression in groups according to the number of 1s in each minterm, as shown 

in Table 4–10. In this example, there are four groups of minterms. (Note that if m0 had been 

in the original expression, there would be five groups.)
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In Table 4–11, minterm m4 and minterm m12 are identical except for the A position. Both 

minterms are checked and x100 is entered in the First Level column . Follow this proce-

dure for groups 2 and 3. In these groups, m5 and m13 are combined and so are m12 and m13 

(notice that m12 was previously used with m4 and is used again). For groups 3 and 4, both 

m13 and m15 are added to the list in the First Level column .

In this example, minterm m10 does not have a check mark because no other minterm 

meets the requirement of being identical except for one position. This term is called an 

essential prime implicant, and it must be included in our final reduced expression.

The terms listed in the First Level have been used to form a reduced table (Table 4–12) 

with one less group than before. The number of 1s remaining in the First Level are counted 

and used to form three new groups.

Terms in the new groups are compared against terms in the adjacent group down. You 

need to compare these terms only if the x is in the same relative position in adjacent groups; 

otherwise go on. If the two expressions differ by exactly one position, a check mark is 

Third, compare adjacent groups, looking to see if any minterms are the same in every 

position except one. If they are, place a check mark by those two minterms, as shown in 

Table 4–11. You should check each minterm against all others in the following group, but 

it is not necessary to check any groups that are not adjacent. In the column labeled First 

Level, you will have a list of the minterm names and the binary equivalent with an x as the 

placeholder for the literal that differs. In the example, minterm m1 in Group 1 (0001) is 

identical to m3 in Group 2 (0011) except for the C position, so place a check mark by these 

two minterms and enter 00x1 in the column labeled First Level. Minterm m4 (0100) is iden-

tical to m5 (0101) except for the D position, so check these two minterms and enter 010x in 

the last column. If a given term can be used more than once, it should be. In this case, notice 

that m1 can be used again with m5 in the second row with the x now placed in the B position.

TABLE 4–10

Number of 1s Minterm ABCD

1 m1 0001

m4 0100

2 m3 0011

m5 0101

m10 1010

m12 1100

3 m13 1101

4 m15 1111

TABLE 4–11

Number of 1s  

in Minterm Minterm ABCD First Level

1 m1 0001 ✓ (m1, m3) 00x1

m4 0100 ✓ (m1, m5) 0x01

2 m3 0011 ✓ (m4, m5) 010x

m5 0101 ✓ (m4, m12) x100

m10 1010 (m5, m13) x101

m12 1100 ✓ (m12, m13) 110x

3 m13 1101 ✓ (m13, m15) 11x1

4 m15 1111 ✓
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TABLE 4–12

First Level Number of 1s in First Level Second Level

(m1, m3) 00x1 1 (m4, m5, m12, m13) x10x

(m1, m5) 0x01 (m4, m5, m12, m13) x10x

(m4, m5) 010x ✓

(m4, m12) x100 ✓

(m5, m13) x101 ✓ 2

(m12, m13) 110x ✓

(m13, m15) 11x1 3

placed next to both terms as before and all of the minterms are listed in the Second Level 

list. As before, the one position that has changed is entered as an x in the Second Level.

For our example, notice that the third term in Group 1 and the second term in Group 2 

meet this requirement, differing only with the A literal. The fourth term in Group 1 also can 

be combined with the first term in Group 2, forming a redundant set of minterms. One of 

these can be crossed off the list and will not be used in the final expression.

With complicated expressions, the process described can be continued. For our exam-

ple, we can read the Second Level expression as BC. The terms that are unchecked will 

form other terms in the final reduced expression. The first unchecked term is read as A BD. 

The next one is read as A CD. The last unchecked term is ABD. Recall that m10 was an 

essential prime implicant, so is picked up in the final expression. The reduced expression 

using the unchecked terms is:

X = BC + A BD + A CD + ABD + ABCD

Although this expression is correct, it may not be the minimum possible expression. 

There is a final check that can eliminate any unnecessary terms. The terms for the expres-

sion are written into a prime implicant table, with minterms for each prime implicant 

checked, as shown in Table 4–13.

TABLE 4–13

Minterms

Prime Implicants m1 m3 m4 m5 m10 m12 m13 m15

B C (m4, m5, m12, m13) ✓ ✓ ✓ ✓

A B D (m1, m3) ✓ ✓

A  C   D (m1, m5) ✓ ✓

ABD (m13, m15) ✓ ✓

ABC  D (m10) ✓

If a minterm has a single check mark, then the prime implicant is essential and must 

be included in the final expression. The term ABD must be included because m15 is only 

covered by it. Likewise m10 is only covered by ABCD, so it must be in the final expression. 

Notice that the two minterms in A CD are covered by the prime implicants in the first two 

rows, so this term is unnecessary. The final reduced expression is, therefore,

X = BC + A BD + ABD + ABCD

SECTION 4–11 CHECKUP

 1. What is a minterm?

 2. What is an essential prime implicant?
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4–12 Boolean Expressions with VHDL

The ability to create simple and compact code is important in a VHDL program. By 

simplifying a Boolean expression for a given logic function, it is easier to write and 

debug the VHDL code; in addition, the result is a clearer and more concise program. 

Many VHDL development software packages contain tools that automatically optimize 

a program when it is compiled and converted to a downloadable file. However, this does 

not relieve you from creating program code that is clear and concise. You should not 

only be concerned with the number of lines of code, but you should also be concerned 

with the complexity of each line of code. In this section, you will see the difference in 

VHDL code when simplification methods are applied. Also, three levels of abstraction 

used in the description of a logic function are examined. A VHDL tutorial is available 

on the website.

After completing this section, you should be able to

u Write VHDL code to represent a simplified logic expression and compare it to the 

code for the original expression

u Relate the advantages of optimized Boolean expressions as applied to a target device

u Understand how a logic function can be described at three levels of abstraction

u Relate VHDL approaches to the description of a logic function to the three levels 

of abstraction

Boolean Algebra in VHDL Programming

The basic rules of Boolean algebra that you have learned in this chapter should be applied 

to any applicable VHDL code. Eliminating unnecessary gate logic allows you to create 

compact code that is easier to understand, especially when someone has to go back later 

and update or modify the program.

In Example 4–37, DeMorgan’s theorems are used to simplify a Boolean expression, 

and VHDL programs for both the original expression and the simplified expression are 

compared.

EXAMPLE 4–37

First, write a VHDL program for the logic described by the following Boolean expres-

sion. Next, apply DeMorgan’s theorems and Boolean rules to simplify the expression. 

Then write a program to reflect the simplified expression.

X = (AC + BC + D) + BC

Solution

The VHDL program for the logic represented by the original expression is

entity OriginalLogic is

 port (A, B, C, D: in bit; X: out bit);

end entity OriginalLogic;

architecture Expression1 of OriginalLogic is

begin

  X ,5 not((A and C) or not(B and not C) or D)  or not(not(B and C));

end architecture Expression1;

Four inputs and one output are 

described.

The original logic contains four 

inputs, 3 AND gates, 2 OR 

gates, and 3 inverters.
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By selectively applying DeMorgan’s theorem and the laws of Boolean algebra, you 

can reduce the Boolean expression to its simplest form.

 (AC + BC + D) + BC = (AC)(BC)D + BC Apply DeMorgan

 = (AC)(BC)D + BC Cancel double complements

 = (A + C )BC D + BC Apply DeMorgan and factor

 = ABC D + BC D + BC Distributive law

 = BC D(1 + A) + BC Factor

 = BC D + BC Rule: 1 + A = 1

The VHDL program for the logic represented by the reduced expression is

entity ReducedLogic is

 port (B, C, D: in bit; X: out bit);

end entity ReducedLogic;

architecture Expression2 of ReducedLogic is

begin

 X ,5 (B and not C and not D) or ( B and C);

end architecture Expression2;

3 inputs and 1 output are described.

The simplified logic contains 

three inputs, 3 AND gates,  

1 OR gate, and 2 inverters.

As you can see, Boolean simplification is applicable to even simple VHDL programs.

Related Problem

Write the VHDL architecture statement for the expression X = (A + B + C)D as 

stated. Apply any applicable Boolean rules and rewrite the VHDL statement.

Example 4–38 demonstrates a more significant reduction in VHDL code complexity, 

using a Karnaugh map to reduce an expression.

EXAMPLE 4–38

(a) Write a VHDL program to describe the following SOP expression.

(b) Minimize the expression and show how much the VHDL program is simplified.

X = A B C D + A B C D + A B C D + ABC D + A BC D + AB C D

+ A BC D + ABC D + ABC D + AB C D + AB CD + AB CD

Solution

(a) The VHDL program for the SOP expression without minimization is large and 

hard to follow as you can see in the following VHDL code. Code such as this is 

subject to error. The VHDL program for the original SOP expression is as follows:

entity OriginalSOP is

 port (A, B, C, D: in bit; X: out bit);

end entity OriginalSOP; 

architecture Equation1 of OriginalSOP is

begin

X ,5 (not A and not B and not C and not D) or

     (not A and not B and not C and D) or

     (not A and B and not C and not D) or

     (not A and B and C and not D) or

     (not A and not B and C and not D) or

     (A and not B and not C and not D) or

     (A and not B and C and not D) or

     (A and B and C and not D) or

     (A and B and not C and not D) or
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As you have seen, the simplification of Boolean logic is important in the design of 

any logic function described in VHDL. Target devices have finite capacity and therefore 

require the creation of compact and efficient program code. Throughout this chapter, you 

have learned that the simplification of complex Boolean logic can lead to the elimination 

of unnecessary logic as well as the simplification of VHDL code.

Levels of Abstraction

A given logic function can be described at three different levels. It can be described by a 

truth table or a state diagram, by a Boolean expression, or by its logic diagram (schematic). 

     (A and not B and not C and D) or

     (not A and B and not C and D) or

     (A and B and not C and D);

end architecture Equation1;

(b) Now, use a four-variable Karnaugh map to reduce the original SOP expression to a 

minimum form. The original SOP expression is mapped in Figure 4–48.
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FIGURE 4–48 

The original SOP Boolean expression that is plotted on the Karnaugh map in Figure 

4–48 contains twelve 4-variable terms as indicated by the twelve 1s on the map. Recall 

that only the variables that do not change within a group remain in the expression for 

that group. The simplified expression taken from the map is developed next.

Combining the terms from the Karnaugh map, you get the following simplified 

expression, which is equivalent to the original SOP expression.

X = C + D

Using the simplified expression, the VHDL code can be rewitten with fewer terms, 

making the code more readable and easier to modify. Also, the logic implemented in a 

target device by the reduced code consumes much less space in the PLD. The VHDL 

program for the simplified SOP expression is as follows:

entity SimplifiedSOP is

 port (A, B, C, D: in bit; X: out bit);

end entity SimplifiedSOP;

architecture Equation2 of SimplifiedSOP is

begin

X ,5 not C or not D

end architecture Equation2;

Related Problem

Write a VHDL architecture statement to describe the logic for the expression

X = A(BC + D)
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The truth table and state diagram are the most abstract ways to describe a logic function. 

A Boolean expression is the next level of abstraction, and a schematic is the lowest level 

of abstraction. This concept is illustrated in Figure 4–49 for a simple logic circuit. VHDL 

provides three approaches for describing functions that correspond to the three levels of 

abstraction.

• ThedatalowapproachisanalogoustodescribingalogicfunctionwithaBoolean
expression. The data flow approach specifies each of the logic gates and how the data 

flows through them. This approach was applied in Examples 4–37 and 4–38.

• The structural approach is analogous to using a logic diagram or schematic to
describe a logic function. It specifies the gates and how they are connected, rather 

than how signals (data) flow through them. The structural approach is used to develop 

VHDL code for describing logic circuits in Chapter 5.

• Thebehavioralapproachisanalogoustodescribingalogicfunctionusingastate
diagram or truth table. However, this approach is the most complex; it is usually 

restricted to logic functions whose operations are time dependent and normally 

require some type of memory.

SECTION 4–12  CHECKUP

 1. What are the advantages of Boolean logic simplification in terms of writing a VHDL 

program?

 2. How does Boolean logic simplification benefit a VHDL program in terms of the 

target device?

 3. Name the three levels of abstraction for a combinational logic function and state the 

corresponding VHDL approaches for describing a logic function.      

Logic function

0

0

0

0

0

0

0

0

0

1

A B C XD

1 1 1 11

The truth table or state diagramHighest level:

The Boolean expression, which can be

derived from a truth table or schematic

Middle level:

A

B

X

C

D

X = AB + CD

The logic diagram (schematic)Lowest level:

000

010

110101

001

100

FIGURE 4–49 Illustration of the three levels of abstraction for describing a logic function.
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Applied Logic

Seven-Segment Display

Seven-segment displays are used in many types of products that you see every day. A 

7-segment display was used in the tablet-bottling system that was introduced in Chap-

ter 1. The display in the bottling system is driven by logic circuits that decode a binary 

coded decimal (BCD) number and activate the appropriate digits on the display. BCD-

to-7-segment decoder/drivers are readily available as single IC packages for activating 

the ten decimal digits.

In addition to the numbers from 0 to 9, the 7-segment display can show certain letters. 

For the tablet-bottling system, a requirement has been added to display the letters A, b, C, 

d, and E on a separate common-anode 7-segment display that uses a hexadecimal keypad 

for both the numerical inputs and the letters. These letters will be used to identify the type 

of vitamin tablet that is being bottled at any given time. In this application, the decoding 

logic for displaying the five letters is developed.

The 7-Segment Display

Two types of 7-segment displays are the LED and the LCD. Each of the seven segments in 

an LED display uses a light-emitting diode to produce a colored light when there is current 

through it and can be seen in the dark. An LCD or liquid-crystal display operates by polar-

izing light so that when a segment is not activated by a voltage, it reflects incident light and 

appears invisible against its background; however, when a segment is activated, it does not 

reflect light and appears black. LCD displays cannot be seen in the dark.

The seven segments in both LED and LCD displays are arranged as shown in Figure 4–50 

and labeled a, b, c, d, e, f, and g as indicated in part (a). Selected segments are activated to 

create each of the ten decimal digits as well as certain letters of the alphabet, as shown in part 

(b). The letter b is shown as lowercase because a capital B would be the same as the digit 8. 

Similarly, for d, a capital letter would appear as a 0.

9:00

(b) Formation of the ten digits

     and certain letters

(a) Segment arrangement

b

c

f

e

d

g

a

FIGURE 4–50 Seven-segment display.

Exercise

1. List the segments used to form the digit 2.

2. List the segments used to form the digit 5.

3. List the segments used to form the letter A.

4. List the segments used to form the letter E.

5. Is there any one segment that is common to all digits?

6. Is there any one segment that is common to all letters?
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Display Logic

The segments in a 7-segment display can be used in the formation of various letters as 

shown in Figure 4–50(b). Each segment must be activated by its own decoding circuit that 

detects the code for any of the letters in which that segment is used. Because a common-

anode display is used, the segments are turned on with a LOW (0) logic level and turned 

off with a HIGH (1) logic level. The active segments are shown for each of the letters re-

quired for the tablet-bottling system in Table 4–14. Even though the active level is LOW 

(lighting the LED), the logic expressions are developed exactly the same way as discussed 

in this chapter, by mapping the desired output (1, 0, or X) for every possible input, group-

ing the 1s on the map, and reading the SOP expression from the map. In effect, the reduced 

logic expression is the logic for keeping a given segment OFF. At first, this may sound 

confusing, but it is simple in practice and it avoids an output current capability issue with 

bipolar (TTL) logic (discussed in Chapter 15 on the website).

TABLE 4–14

Active segments for each of the five 
letters used in the system display.

Letter Segments Activated

A a, b, c, e, f, g

b c, d, e, f, g

C a, d, e, f

d b, c, d, e, g

E a, d, e, f, g

A block diagram of a 7-segment logic and display for generating the five letters is 

shown in Figure 4–51(a), and the truth table is shown in part (b). The logic has four hexa-

decimal inputs and seven outputs, one for each segment. Because the letter F is not used as 

an input, we will show it on the truth table with all outputs set to 1 (OFF).

Hexadecimal-

to-7-segment

decoder

(a) (b)

a
b
c
d
e
f
g

H3

H2

H1

H0

Hexadecimal Inputs

Letter

A

b

C

d

E

F

1

1

1

1

1

1

H3

0

0

1

1

1

1

H2

1

1

0

0

1

1

H1

0

1

0

1

0

1

H0

Segment Ouputs

0

1

0

1

0

1

a

0

1

1

0

1

1

b

0

0

1

0

1

1

c

1

0

0

0

0

1

d

0

0

0

0

0

1

e

0

0

0

1

0

1

f

0

0

1

0

0

1

g

FIGURE 4–51 Hexadecimal-to-7-segment decoder for letters A through E, used in the 

system.

Karnaugh Maps and the Invalid BCD Code Detector

To develop the simplified logic for each segment, the truth table information in Figure 

4–51 is mapped onto Karnaugh maps. Recall that the BCD numbers will not be shown on 

the letter display. For this reason, an entry that represents a BCD number will be entered 

as an “X” (“don’t care”) on the K-maps. This makes the logic much simpler but would put 

some strange outputs on the display unless steps are taken to eliminate that possibility. 

Because all of the letters are invalid BCD characters, the display is activated only when 

an invalid BCD code is entered into the keypad, thus allowing only letters to be displayed.
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Expressions for the Segment Logic

Using the table in 4–51(b), a standard SOP expression can be written for each segment and 

then minimized using a K-map. The desired outputs from the truth table are entered in the 

appropriate cells representing the hex inputs. To obtain the minimum SOP expressions for 

the display logic, the 1s and Xs are grouped.

Segment a  Segment a is used for the letters A, C, and E. For the letter A, the hexadecimal 

code is 1010 or, in terms of variables, H3H2H1H0. For the letter C, the hexadecimal code is 

1100 or H3H2H1H0. For the letter E, the code is 1110 or H3H2H1H0. The complete standard 

SOP expression for segment a is

a = H3H2H1H0 + H3H2H1H0 + H3H2H1H0

Because a LOW is the active output state for each segment logic circuit, a 0 is entered on 

the Karnaugh map in each cell that represents the code for the letters in which the segment 

is on. The simplification of the expression for segment a is shown in Figure 4–52(a) after 

grouping the 1s and Xs.

Segment b  Segment b is used for the letters A and d. The complete standard SOP expres-

sion for segment b is

b = H3H2H1H0 + H3H2H1H0

The simplification of the expression for segment b is shown in Figure 4–52(b).

Segment c  Segment c is used for the letters A, b, and d. The complete standard SOP ex-

pression for segment c is

c = H3H2H1H0 + H3H2H1H0 + H3H2H1H0

The simplification of the expression for segment c is shown in Figure 4–52(c).

(a) (b) (c)

H3H2

H1H0

H0

a = H0

00 01 11 10

00

01

11

10

X

X

0

X

X

X

1

X

X

X

1

1

X

X

0

0

01 11 10

X

X

0

X

X

0

H3H2

H1H0

H1H0 H2H1H1H0

00

00

01

11

10

X

X

1

X

X

1

X

1

X

1

b = H1H0 + H1H0  + H2H1

01 11 10

X

X

0

X

X

0

H3H2

H1H0

H1H0 H2H1

00

00

01

11

10

X

X

1

X

X

0

c = H1H0 + H2H1

X

1

X

1

FIGURE 4–52 Minimization of the expressions for segments a, b, and c.

Exercise

 7. Develop the minimum expression for segment d.

 8. Develop the minimum expression for segment e.

 9. Develop the minimum expression for segment f.

10. Develop the minimum expression for segment g.

The Logic Circuits

From the minimum expressions, the logic circuits for each segment can be implemented. 

For segment a, connect the H0 input directly (no gate) to the a segment on the display. The 

segment b and segment c logic are shown in Figure 4–53 using AND or OR gates. Notice 

that two of the terms (H2H1 and H1H0) appear in the expressions for both b and c logic so 

two of the AND gates can be used in both, as indicated.
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Exercise

11. Show the logic for segment d.

12. Show the logic for segment e.

13. Show the logic for segment f.

14. Show the logic for segment g.

cb

H2

H1

H0

FIGURE 4–53 Segment-b and 

segment-c logic circuits.

Describing the Decoding Logic with VHDL

The 7-segment decoding logic can be described using VHDL for implementation in a pro-

grammable logic device (PLD). The logic expressions for segments a, b, and c of the 

display are as follows:

 a = H0

 b = H1H0 + H1H0 + H2H1

 c = H1H0 + H2H1

u The VHDL code for segment a is

entity SEGLOGIC is

 port (H0: in bit; SEGa: out bit);

end entity SEGLOGIC;

architecture LogicFunction of SEGLOGIC is

begin

 SEGa ,5 H0;

end architecture LogicFunction;

u The VHDL code for segment b is

entity SEGLOGIC is

 port (H0, H1, H2: in bit; SEGb: out bit);

end entity SEGLOGIC;

architecture LogicFunction of SEGLOGIC is

begin

 SEGb ,5 (not H1 and not H0) or (H1 and H0) or (H2 and H1);

end architecture LogicFunction;

u The VHDL code for segment c is

entity SEGLOGIC is

 port (H0, H1, H2: in bit; SEGc: out bit);

end entity SEGLOGIC;

architecture LogicFunction of SEGLOGIC is

begin

 SEGc ,5 (not H1 and not H0) or (H2 and H1);

end architecture LogicFunction;
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FIGURE 4–54 Multisim circuit screen for decoder and display.

Exercise

15. Write the VHDL code for segments d, e, f, and g.

Simulation

The decoder simulation using Multisim is shown in Figure 4–54 with the letter E selected. 

Subcircuits are used for the segment logic to be developed as activities or in the lab. The 

purpose of simulation is to verify proper operation of the circuit.

Open file AL04 in the Applied Logic folder on the website. Run the simulation of 

the decoder and display using your Multisim software. Observe the operation for the 

specified letters.

SUMMARY

• GatesymbolsandBooleanexpressionsfortheoutputsofaninverterand2-inputgatesare
shown in Figure 4–55.

A A
A

B
AB

A

B
AB

A

B
A + B

A

B
A + B

FIGURE 4–55 

Putting Your Knowledge to Work

How would you modify the decoder for a common-cathode 7-segment display?
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• Commutativelaws: A + B = B + A

  AB = BA

• Associativelaws: A + (B + C) = (A + B) + C

  A(BC) = (AB)C

• Distributivelaw: A(B + C) = AB + AC

• Booleanrules: 1. A + 0 = A

2. A + 1 = 1

3. A #0 = 0

4. A #1 = A

5. A + A = A

6. A + A = 1

 7. A #A = A

 8. A # A = 0

 9. A = A

10. A + AB = A

11. A + AB = A + B

12. (A + B)(A + C) = A + BC

• DeMorgan’stheorems:

1. The complement of a product is equal to the sum of the complements of the terms in the product.

XY = X + Y

2. The complement of a sum is equal to the product of the complements of the terms in the sum.

X + Y = X Y

• Karnaughmapsfor3variableshave8cellsandfor4variableshave16cells.

• Quinn-McCluskeyisamethodforsimplificationofBooleanexpressions.

• ThethreelevelsofabstractioninVHDLaredataflow,structural,andbehavioral.

KEY TERMS

Key terms and other bold terms in the chapter are defined in the end-of-book glossary.

Complement The inverse or opposite of a number. In Boolean algebra, the inverse function, 

 expressed with a bar over a variable. The complement of a 1 is 0, and vice versa.

“Don’t care” A combination of input literals that cannot occur and can be used as a 1 or a 0 on 

a Karnaugh map for simplification.

Karnaugh map An arrangement of cells representing the combinations of literals in a Boolean 

expression and used for a systematic simplification of the expression.

Minimization The process that results in an SOP or POS Boolean expression that contains the 

fewest possible literals per term.

Product-of-sums (POS) A form of Boolean expression that is basically the ANDing of ORed terms.

Product term The Boolean product of two or more literals equivalent to an AND operation.

Sum-of-products (SOP) A form of Boolean expression that is basically the ORing of ANDed terms.

Sum term The Boolean sum of two or more literals equivalent to an OR operation.

Variable A symbol used to represent an action, a condition, or data that can have a value of 

1 or 0, usually designated by an italic letter or word.

TRUE/FALSE QUIZ

Answers are at the end of the chapter.

 1. Variable, complement, and literal are all terms used in Boolean algebra.

 2. Addition in Boolean algebra is equivalent to the NOR function.

 3. Multiplication in Boolean algebra is equivalent to the AND function.

 4. The commutative law, associative law, and distributive law are all laws in Boolean algebra.

 5. The complement of 0 is 0 itself.

 6. When a Boolean variable is multiplied by its complement, the result is the variable.
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 7. “The complement of a product of variables is equal to the sum of the complements of each 

variable” is a statement of DeMorgan’s theorem.

 8. SOP means sum-of-products.

 9. Karnaugh maps can be used to simplify Boolean expressions.

 10. A 3-variable Karnaugh map has six cells.

 11. VHDL is a type of hardware definition language.

 12. A VHDL program consists of an entity and an architecture.

SELF-TEST

Answers are at the end of the chapter.

 1. A variable is a symbol in Boolean algebra used to represent

(a) data (b) a condition

(c) an action (d) answers (a), (b), and (c)

 2. The Boolean expression A + B + C is

(a) a sum term (b) a literal term

(c) an inverse term (d) a product term

 3. The Boolean expression ABCD is

(a) a sum term (b) a literal term

(c) an inverse term (d) a product term

 4. The domain of the expression ABCD + AB + CD + B is

(a) A and D (b) B only

(c) A, B, C, and D (d) none of these

 5. According to the associative law of addition,

(a) A + B = B + A (b) A = A + A

(c) (A + B) + C = A + (B + C ) (d) A + 0 = A

 6. According to commutative law of multiplication,

(a) AB = BA (b) A = AA

(c) (AB)C = A(BC ) (d) A0 = A

 7. According to the distributive law,

(a) A(B + C) = AB + AC (b) A(BC) = ABC

(c) A(A + 1) = A (d) A + AB = A

 8. Which one of the following is not a valid rule of Boolean algebra?

(a) A + 1 = 1 (b) A = A

(c) AA = A (d) A + 0 = A

 9. Which of the following rules states that if one input of an AND gate is always 1, the output is 

equal to the other input?

(a) A + 1 = 1 (b) A + A = A

(c) A #A = A (d) A #1 = A

 10. According to DeMorgan’s theorems, the complement of a product of variables is equal to

(a) the complement of the sum (b) the sum of the complements

(c) the product of the complements (d) answers (a), (b), and (c)

 11. The Boolean expression X = (A + B)(C + D) represents

(a) two ORs ANDed together (b) two ANDs ORed together

(c) A 4-input AND gate (d) a 4-input OR gate

 12. An example of a sum-of-products expression is

(a) A + B(C + D) (b) AB + AC + ABC

(c) (A + B + C)(A + B + C) (d) both answers (a) and (b)

 13. An example of a product-of-sums expression is

(a) A(B + C) + AC (b) (A + B)(A + B + C)

(c) A + B + BC (d) both answers (a) and (b)

 14. An example of a standard SOP expression is

(a) AB + ABC + ABD (b) ABC + ACD

(c) AB + AB + AB (d) ABCD + AB + A



 Problems 251

 15. A 4-variable Karnaugh map has 

(a) four cells (b) eight cells

(c) sixteen cells (d) thirty-two cells

 16. In a 4-variable Karnaugh map, a 2-variable product term is produced by

(a) a 2-cell group of 1s (b) an 8-cell group of 1s

(c) a 4-cell group of 1s (d) a 4-cell group of 0s

 17. The Quine-McCluskey method can be used to

(a) replace the Karnaugh map method (b) simplify expressions with 5 or more variables

(c) both (a) and (b) (d) none of the above

 18. VHDL is a type of

(a) programmable logic (b) hardware description language

(c) programmable array (d) logical mathematics

 19. In VHDL, a port is

(a) a type of entity (b) a type of architecture

(c) an input or output (d) a type of variable

 20. Using VDHL, a logic circuit’s inputs and outputs are described in the

(a) architecture (b) component

(c) entity (d) data flow

PROBLEMS

Answers to odd-numbered problems are at the end of the book.

Section 4–1 Boolean Operations and Expressions

 1. Using Boolean notation, write an expression that is a 0 only when all of its variables (A, B, C, 

and D) are 0s.

 2. Write an expression that is a 1 when one or more of its variables (A, B, C, D, and E) are 0s.

 3. Write an expression that is a 0 when one or more of its variables (A, B, and C) are 0s.

 4. Evaluate the following operations:

(a) 0 + 0 + 0 + 0 (b) 0 + 0 + 0 + 1 (c) 1 + 1 + 1 + 1

(d) 1 # 1 + 0 # 0 + 1 (e) 1 # 0 # 1 # 0 (f) 1 # 0 + 1 # 0 + 0 # 1 + 0 # 1

 5. Find the values of the variables that make each product term 1 and each sum term 0.

(a) ABC (b) A + B + C (c) A B C (d) A + B + C

(e) A + B + C (f) A + B + C 

 6. Find the value of X for all possible values of the variables.

(a) X = A + B + C (b) X = (A + B)C (c) X = (A + B)(B + C )

(d) X = (A + B) + (AB + BC ) (e) X = ( A + B )(A + B)

Section 4–2 Laws and Rules of Boolean Algebra

 7. Identify the law of Boolean algebra upon which each of the following equalities is based:

(a) A + AB + ABC + ABCD = ABCD + ABC + AB + A

(b) A + AB + ABC + ABCD = DCBA + CBA + BA + A

(c) AB(CD + CD + EF + EF ) = ABCD + ABCD + ABEF + ABEF

 8. Identify the Boolean rule(s) on which each of the following equalities is based:

(a) AB + CD + EF = AB + CD + EF (b) AAB + ABC + ABB = ABC

(c) A(BC + BC) + AC = A(BC) + AC (d) AB(C + C) + AC = AB + AC

(e) AB + ABC = AB (f) ABC + AB + ABCD = ABC + AB + D

Section 4–3 DeMorgan’s Theorems

 9. Apply DeMorgan’s theorems to each expression:

(a) A + B (b) AB (c) A + B + C (d) ABC

(e) A(B + C) (f) AB + CD (g) AB + CD (h) (A + B)(C + D)
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 10. Apply DeMorgan’s theorems to each expression:

(a) AB(C + D) (b) AB(CD + EF)

(c) (A + B + C + D) + ABCD (d) (A + B + C + D)(AB CD)

(e) AB(CD + EF)(AB + CD)

 11. Apply DeMorgan’s theorems to the following:

(a) (ABC)(EFG) + (HIJ)(KLM) (b) (A + BC + CD) + BC

(c) (A + B)(C + D)(E + F)(G + H)

Section 4–4 Boolean Analysis of Logic Circuits

 12. Write the Boolean expression for each of the logic gates in Figure 4–56.

A

C
B

(d)

X X
A

B

(c)

XA

(b)

X
A

B

(a)

FIGURE 4–56 

 13. Write the Boolean expression for each of the logic circuits in Figure 4–57.

B

C
X

A

 (d)

A

D

B
C

B

X

A

C

 (b) (a)

X

(c)

A

B

X

FIGURE 4–57 

 14. Draw the logic circuit represented by each of the following expressions:

(a) A + B + C + D (b) ABCD

(c) A + BC (d) ABC + D

 15. Draw the logic circuit represented by each expression:

(a) AB + AB (b) ABCD

(c) A + BC (d) ABC + D

 16. (a)  Draw a logic circuit for the case where the output, ENABLE, is HIGH only if the inputs, 

ASSERT and READY, are both LOW.

(b) Draw a logic circuit for the case where the output, HOLD, is HIGH only if the input, 

LOAD, is LOW and the input, READY, is HIGH.

 17. Develop the truth table for each of the circuits in Figure 4–58.

(a) (b)

CAMI

VCR

Record

RDY

ENABLE

RTS

SEND

BUSY

FIGURE 4–58 

 18. Construct a truth table for each of the following Boolean expressions:

(a) A + B + C (b) ABC (c) AB + BC + CA

(d) (A + B)(B + C)(C + A) (e) AB + BC + CA

Section 4–5 Logic Simplification Using Boolean Algebra

 19. Using Boolean algebra techniques, simplify the following expressions as much as possible:

(a) A(A + B) (b) A(A + AB) (c) BC + BC

(d) A(A + AB) (e) ABC + ABC + A BC
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 20. Using Boolean algebra, simplify the following expressions:

(a) (A + B)(A + C) (b) AB + ABC + ABCD + ABCDE

(c) BC + BCD + B (d) (B + B)(BC + BCD)

(e) BC + (B + C)D + BC

 21. Using Boolean algebra, simplify the following expressions:

(a) CE + C(E + F ) + E(E + G ) (b)  B CD + (B + C + D) + B C DE

(c) (C + CD)(C + CD)(C + E ) (d) BCDE + BC(DE) + (BC)DE

(e) BCD[BC + D(CD + BD)]

 22. Determine which of the logic circuits in Figure 4–59 are equivalent.
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A

(c)
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A

C

X
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A

A

C

A

X

(b)

X

D

B

A
B

B

D

B

FIGURE 4–59 

Section 4–6 Standard Forms of Boolean Expressions

 23. Convert the following expressions to sum-of-product (SOP) forms:

(a) (C + D)(A + D) (b) A (AD + C ) (c) (A + C)(CD + AC )

 24. Convert the following expressions to sum-of-product (SOP) forms:

(a) BC + DE(BC + DE) (b) BC(C D + CE ) (c) B + C[BD + (C + D )E ]

 25. Define the domain of each SOP expression in Problem 23 and convert the expression to stand-

ard SOP form.

 26. Convert each SOP expression in Problem 24 to standard SOP form.

 27. Determine the binary value of each term in the standard SOP expressions from Problem 25.

 28. Determine the binary value of each term in the standard SOP expressions from Problem 26.

 29. Convert each standard SOP expression in Problem 25 to standard POS form.

 30. Convert each standard SOP expression in Problem 26 to standard POS form.

Section 4–7 Boolean Expressions and Truth Tables

 31. Develop a truth table for each of the following standard SOP expressions:

(a) ABC + A BC + ABC  (b) X Y Z + X Y  Z + X YZ + XYZ + XYZ

 32. Develop a truth table for each of the following standard SOP expressions:

(a) A BCD + ABC D + A B  CD + A   B  C   D

(b) WXYZ + WXYZ + W XYZ + W XYZ + WXY Z

 33. Develop a truth table for each of the SOP expressions:

(a) AB + ABC + A C + ABC  (b) X + YZ + WZ + XYZ
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 34. Develop a truth table for each of the standard POS expressions:

(a) (A + B + C )(A + B + C )(A + B + C )

(b) (A + B + C + D )( A + B + C + D)(A + B + C + D )(  A + B + C + D)

 35. Develop a truth table for each of the standard POS expressions:

(a) (A + B)(A + C)(A + B + C)

(b) (A + B)(A + B + C)(B + C + D)(A + B + C + D)

 36. For each truth table in Table 4–15, derive a standard SOP and a standard POS expression.

Section 4–8 The Karnaugh Map

 37. Draw a 3-variable Karnaugh map and label each cell according to its binary value.

 38. Draw a 4-variable Karnaugh map and label each cell according to its binary value.

 39. Write the standard product term for each cell in a 3-variable Karnaugh map.

Section 4–9 Karnaugh Map SOP Minimization

 40. Use a Karnaugh map to find the minimum SOP form for each expression:

(a) A B C + A BC + ABC (b) AC(B + C)

(c) A(BC + BC) + A(BC + BC) (d) A B C + AB C + ABC + ABC

 41. Use a Karnaugh map to simplify each expression to a minimum SOP form:

(a) A B C + ABC + ABC + ABC (b) AC[B + B(B + C)]

(c) DEF + DEF + D E F

 42. Expand each expression to a standard SOP form:

(a) AB + ABC + ABC (b) A + BC

(c) AB CD + ACD + BCD + ABCD (d) AB + AB CD + CD + BCD + ABCD

 43. Minimize each expression in Problem 42 with a Karnaugh map.

 44. Use a Karnaugh map to reduce each expression to a minimum SOP form:

(a) A + BC + CD

(b) A B C D + A B CD + ABCD + ABCD

(c) AB(C D + CD) + AB(C D + CD) + AB CD

(d) (A B + AB)(CD + CD)

(e) A B + AB + C D + CD

X

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

0

1

0

1

1

0

1

0

0

0

1

1

0

0

1

(d)

A B C DX

(c)

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1

1

0

1

0

1

1

0

0

1

0

0

1

0

0

0

(a)

A B C     X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

0

0

1

1

0

1

(b)

A B C     X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

0

0

0

0

1

1

1

TABLE 4–15 
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 45. Reduce the function specified in truth Table 4–16 to its minimum SOP form by using a 

 Karnaugh map.

 46. Use the Karnaugh map method to implement the minimum SOP expression for the logic 

 function specified in truth Table 4–17.

 47. Solve Problem 46 for a situation in which the last six binary combinations are not allowed.

0

0

0

0

1

1

1

1

Inputs

0

0

1

1

0

0

1

1

A B C

0

1

0

1

0

1

0

1

X

1

1

0

1

1

1

0

1

Output

TABLE 4–16 

Inputs Output

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

A B C D

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

X

0

1

1

0

0

0

1

1

1

0

1

0

1

1

0

1

TABLE 4–17 

Section 4–10 Karnaugh Map POS Minimization

 48. Use a Karnaugh map to find the minimum POS for each expression:

(a) (A + B + C)(A + B + C)(A + B + C)

(b) (X + Y)(X + Z)(X + Y + Z)(X + Y + Z)

(c) A(B + C)(A + C)(A + B + C)(A + B + C)

 49. Use a Karnaugh map to simplify each expression to minimum POS form:

(a) (A + B + C + D)(A + B + C + D)(A + B + C + D)

(b) (X + Y)(W + Z)(X + Y + Z)(W + X + Y + Z)

 50. For the function specified in Table 4–16, determine the minimum POS expression using a 

Karnaugh map.

 51. Determine the minimum POS expression for the function in Table 4–17.

 52. Convert each of the following POS expressions to minimum SOP expressions using a 

 Karnaugh map:

(a) (A + B)(A + C)(A + B + C)

(b) (A + B)(A + B + C)(B + C + D)(A + B + C + D)

Section 4–11 The Quine-McCluskey Method

 53. List the minterms in the expression

X = ABC + A BC + ABC + ABC + ABC

 54. List the minterms in the expression

X = A B C D + A B CD + AB CD + ABC D + ABCD + ABCD + AB CD

 55. Create a table for the number of 1s in the minterms for the expression in Problem 54 (similar to 

Table 4–10).

 56. Create a table of first level minterms for the expression in Problem 54 (similar to Table 4–11).
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 57. Create a table of second level minterms for the expression in Problem 54 (similar to Table 4–12).

 58. Create a table of prime implicants for the expression in Problem 54 (similar to Table 4–13).

 59. Determine the final reduced expression for the expression in Problem 54.

Section 4–12 Boolean Expressions with VHDL

 60. Write a VHDL program for the logic circuit in Figure 4–60.

A

X 

C
B

D

F
E

G

I
H

FIGURE 4–60 

 61. Write a program in VHDL for the expression

Y = ABC + A BC + AB C + ABC

Applied Logic

 62. If you are required to choose a type of digital display for low light conditions, will you select 

LED or LCD 7-segment displays? Why?

 63. Explain the purpose of the invalid code detector.

 64. For segment c, how many fewer gates and inverters does it take to implement the minimum 

SOP expression than the standard SOP expression?

 65. Repeat Problem 64 for the logic for segments d through g.

Special Design Problems

 66. The logic for segments b and c in Figure 4–53 produces LOW outputs to activate the segments. 

If a type of 7-segment display is used that requires a HIGH to activate a segment, modify the 

logic accordingly.

 67. Redesign the logic for segment a in the Applied Logic to include the letter F in the display.

 68. Repeat Problem 67 for segments b through g.

 69. Design the invalid code detector.

Multisim Troubleshooting Practice

 70. Open file P04-70. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

 71. Open file P04-71. For the specified fault, predict the effect on the circuit. Then introduce the 

fault and verify whether your prediction is correct.

 72. Open file P04-72. For the observed behavior indicated, predict the fault in the circuit. Then 

introduce the suspected fault and verify whether your prediction is correct.

ANSWERS

SECTION CHECKUPS

Section 4–1 Boolean Operations and Expressions

 1. A = 0 = 1

 2. A = 1, B = 1, C = 0; A + B + C = 1 + 1 + 0 = 0 + 0 + 0 = 0

 3. A = 1, B = 0, C = 1; ABC = 1 # 0 # 1 = 1 # 1 # 1 =

Section 4–2 Laws and Rules of Boolean Algebra

 1. A + (B + C + D) = (A + B + C) + D

 2. A(B + C + D) = AB + AC + AD
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Section 4–3 DeMorgan’s Theorems

 1. (a) ABC + (D + E) = A + B + C + DE  (b) (A + B)C = A B + C

(c) A + B + C + DE = A B C + D + E

Section 4–4 Boolean Analysis of Logic Circuits

 1. (C + D)B + A

 2. Abbreviated truth table: The expression is a 1 when A is 1 or when B and C are 1s or when B 

and D are 1s. The expression is 0 for all other variable combinations.

Section 4–5 Logic Simplification Using Boolean Algebra

 1. (a) A + AB + ABC = A  (b) (A + B)C + ABC = C(A + B)

(c) ABC(BD + CDE) + AC = A(C + BDE)

 2. (a) Original: 2 AND gates, 1 OR gate, 1 inverter; Simplified: No gates (straight connection)

(b) Original: 2 OR gates, 2 AND gates, 1 inverter; Simplified: 1 OR gate, 1 AND gate, 1 inverter

(c) Original: 5 AND gates, 2 OR gates, 2 inverters; Simplified: 2 AND gates, 1 OR gate, 

2 inverters

Section 4–6 Standard Forms of Boolean Expressions

 1. (a) SOP  (b) standard POS  (c) standard SOP  (d) POS

 2. (a) ABC D + ABCD + ABCD + ABCD + ABCD + ABCD + A BCD + ABCD

(c) Already standard

 3. (b) Already standard

(d) (A + B + C)(A + B + C)(A + B + C)(A + B + C)

Section 4–7 Boolean Expressions and Truth Tables

 1. 25
= 32  2. 0110 h WXYZ  3. 1100 h W + X + Y + Z

Section 4–8 The Karnaugh Map

 1. (a) upper left cell: 000  (b) lower right cell: 101

(c) lower left cell: 100 (d) upper right cell: 001

 2. (a) upper left cell: X Y Z (b) lower right cell: XYZ

(c) lower left cell: XY Z (d) upper right cell: X YZ

 3. (a) upper left cell: 0000 (b) lower right cell: 1010

(c) lower left cell: 1000 (d) upper right cell: 0010

 4. (a) upper left cell: W X Y Z (b) lower right cell: WXYZ

(c) lower left cell: WX Y Z (d) upper right cell: W XYZ

Section 4–9 Karnaugh Map SOP Minimization

 1. 8-cell map for 3 variables; 16-cell map for 4 variables

 2. AB + BC + A BC

 3. (a) A B C + ABC + ABC + ABC

(b) A B C + A BC + ABC + ABC + AB C + ABC

(c) A B C D + A B CD + ABC D + ABCD + ABCD + ABCD + AB CD + ABCD

(d) A B C D + ABC D + ABC D + AB C D + ABCD + ABCD + ABCD + A BCD +
ABCD + ABCD + ABCD

Section 4–10 Karnaugh Map POS Minimization

 1. In mapping a POS expression, 0s are placed in cells whose value makes the standard sum term 

zero; and in mapping an SOP expression 1s are placed in cells having the same values as the 

product terms.
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 2. 0 in the 1011 cell: A + B + C + D

 3. 1 in the 0010 cell: A BCD

Section 4–11 The Quine-McCluskey Method

 1. A minterm is a product term in which each variable appears once, either complemented or 

uncomplemented.

 2. An essential prime implicant is a product term that cannot be further simplified by combining 

with other terms.

Section 4–12 Boolean Expressions with VHDL

 1. Simplification can make a VHDL program shorter, easier to read, and easier to modify.

 2. Code simplification results in less space used in a target device, thus allowing capacity for 

more complex circuits.

 3. Truth table: Behavioral

  Boolean expression: Data flow

  Logic diagram: Structural

RELATED PROBLEMS FOR EXAMPLES

 4–1 A + B = 0 when A = 1 and B = 0.

 4–2 A B = 1 when A = 0 and B = 0.

 4–3 XYZ

 4–4 W + X + Y + Z

 4–5 ABCD E

 4–6 (A + B + CD)E

 4–7 ABCD = A + B + C + D

 4–8 Results should be same as example.

 4–9 AB

 4–10 CD

 4–11 ABC + AC + A B

 4–12 A + B + C

 4–13 Results should be same as example.

 4–14 ABC + AB + AC + AB + B C

 4–15 WXYZ + WXYZ + WXYZ + W XYZ + WXYZ + WXY Z

 4–16 011, 101, 110, 010, 111. Yes

 4–17 (A + B + C)(A + B + C)(A + B + C)(A + B + C)

 4–18 010, 100, 001, 111, 011. Yes

 4–19 SOP and POS expressions are equivalent.

 4–20 See Table 4–18.

 4–21 See Table 4–19.

TABLE 4–18

A B C X

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

TABLE 4–19

A B C X

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0
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 4–22 The SOP and POS expressions are equivalent.

 4–23 See Figure 4–61.

 4–24 See Figure 4–62.
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FIGURE 4–61
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FIGURE 4–62
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FIGURE 4–63
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111 1

111 1

1

1

FIGURE 4–64

 4–25 See Figure 4–63.

 4–26 See Figure 4–64.

 4–27 No other ways

 4–28 X = B + AC + ACD + CD

 4–29 X = D + ABC + BC + AB

 4–30 Q = X + Y

 4–31 Q = X Y Z + WXZ + WYZ

 4–32 See Figure 4–65.

 4–33 See Figure 4–66.
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FIGURE 4–65
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FIGURE 4–66
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 4–34 (X + Y  )(X + Z )(X + Y + Z )

 4–35 (X + Y + Z)(W + X + Z)(W + X + Y + Z)(W + X + Y + Z)

 4–36 Y Z + X Z + W Y + X YZ

 4–37 architecture RelProb_1 of Example4_37 is

begin

 X ,5 (not A or B or C) and D;

end architecture RelProb_1;

architecture RelProb_2 of Example4_37 is

begin

 X ,5 (not A and D or B and D or C and D);

end architecture RelProb_2;

 4–38 architecture RelProb of Example4_38 is

begin

 X ,5 not(A and ((B and C) or not D))

end architecture RelProb;

TRUE/FALSE QUIZ

 1. T  2. F  3. T   4. T   5. F   6. F

 7. T  8. T  9. T  10. F  11. F  12. T

SELF-TEST

 1. (d)   2. (a)   3. (d)   4. (c)   5. (c)   6. (a)   7. (a)

 8. (b)   9. (d)  10. (b)  11. (a)  12. (b)  13. (b)  14. (c)

 15. (c)  16. (c)  17. (c)  18. (b)  19. (c)  20. (c)
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