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Signals and Systems, Time Domain

Today:
Types of signals

Types of systems
Measuring and characterizing signals
Some important special signals

A simple communication system signal: Pulse Dopper Eadar

Fourier series

Mext Time:
™ Frequency domain description of signals and systems




Signals and Systems, Part 1

> A signal is a real (or complex) valued function of one or more real

variables.
* voltage across a resistor or current through inductor
» pressure at a point in the ocean
> amount of rain at 37 4225 N, 122 1653 W
* amount of rain at 16:00 UTC as function of latitude longitude
-

price of Google stock at end of each trading day

In this course the independent variable is almost always time.

» Physical signals have units, e.g., volts or psi (Si pascal = N/m?)

» Signals can (usually or in principle) be measured:

-

-

-

git) — g(0) (value at specific time, 0)
g(t) — |7 glu)du (total area)

g(t) — [T |g(u)|? du (total energy)




Signals and Systems (cont.)

= A system is an object that takes signals as inputs and produces signals
as outputs.

qgl(t) —| system |—— f(f)

> |n general, the output signal depends on entirety of input signal; e.g.,
> f(t) = Salt)
> fit) = Lf_l gl u) du
> G(f) = [ glt)e 271" dt
= Examples of physical systems:
* Electncal circuit: voltage in, voltage or current out
= Building: earth shaking in, building shaking out

= Audico amplifier




Signal Energy and Power

> The energy of a signal g(t) is

f: g (t))? dt

We are interested in energy only when it is finite. Common cases:

» Bounded signal of finite duration; e.g., a pulse

» Exponentially decaying signals (output of some linear systems with pulse
input)

= DNecessary conditions for finite energy.

 The energy in the “tails” of the signal must approach (:

lim ( f_ |g(£)[2]dt + fx |g.;¢_«,|z]m) =0




Signal Energy and Power

> The power of a signal is defined as a limit:
T/2

: 1 2
Py = Jim = [ lg(e))? ar

This is the average energy per unit time.

> This limit may be [0 even when the signal is not. For example

oot = () 1
t) = O L) =
g1 (t) {n o 92(t) = T

P These both have a finite energy, so the power goes to zero as 1’ goes to
infinity.

= If g(t) is complex valued, then |g(t)|* is the square of
magnitude /modulus, (g™ ().




Signal Energy and Power

> A signal is periodic if it repeats: g(t +T) = g(t) for every L.
E.g., sint has period 27 and tant has period .

™ The power of a periodic signal g(i

=—f g(t)|” dt

where T is the period of g(t).

> Since all periods are the same, we can integrate our any period and get
the same result.




Units of Power

-

-

-

If a signal g(t) measured in wvolts is applied to a load resistor I, then the
power in watts is

f 2
p — )
I
Mormally we do not care about the load, so we normalize to I = 1.

In many applications, the effect of the signal varies as the log of the
signal; e.g., human hearing and sight.

Power can be expressed in decibels (dB), which are logarithmic and
relative to some standard power. If FF is measured in watts, then

> power in dBW is 10 log,, P (power relative to 1 W)
* power in dBm (or dBmW) is log,, (1000 P) = 30 + 10log,, F

There are lots of other examples (dBA for accoustics, dBi for antennas)

One bel (B) is too large to be useful.

The bel is named for Alexander Graham Bell (1847-1922). The dB was adopted by MBS in 1931.
It is not an 51 umit.




dB in Communications

-

-

Expressing power in dB is very useful for communication systems

Communication systems often have a wide range of amplitudes (1 kW
transmitted, 1 W received).

Many of the components in the system have multiplicative effects (path
loss, antenna gain)

Example

™ Transmit 10 W (+40 dBm)

* Transmit antenna gain of 10 (+10 dBE)

* Path loss of 107 (-90 dB)

» Receive antenna gain 10 (+10 dB)

» Received signal s 40 dBm + 10dE - 90dB + 10dB = -30 dBm

This is 1071 — 1072 mW, or 1 uW




Classification of Signals

> Signals can have a variety of characteristics, including

* values can be continuous or discrete
* continuous or discrete time variable

* deterministic or random

* For deterministic signals, we have four cases:

* continuous time, continuous valued (mathematics)
continuous time, discrete valued

-
» discrete time, continuous valued (digital signal processing)
e

discrete time, discrete valued (digital switching)

* Time can be restricted to a finite interval (e.g., periodic)




Classification of Signals (cont.)

| g[t}/ g[t}

—
——
'

'
-
—
-




Operations on Signals: Time Shift

For a continuous-time signal x(t), and a time ; = (0,
> Replacing ¢ with ¢ — ¢, gives a delayed signal x(f — 1)
> Replacing ¢ with ¢ + ¢, gives an advanced signal x(f + &)

2
x(f+1) x(r)

——

3 A o 1 z

= May seem counterintuitive. Think about where £ — 1 is zero.




Operations on Signals: Time Scaling

A signal x(t) i1s scaled in time by multiplying the time variable by a positive
constant b, to produce x(it). A positive factor of b either expands
(0 << b <= 1) or compresses (b > 1) the signal in time.




Operations on Signals (cont.)

Replace t with —{, time reversed signal is x(—1)

A

x(1)

el )

x(—t)

~¥




Unit rectangle rect(t)

Unit rectangle signal:

(1 ifle =12
rect(t) = { 0  otherwise.
i
1
rect(t)
-1/2 o0 1/2 L

Also written as 11(f).




Unit Triangle A(t)

Unit triangle signal:

() otherwise.

{ it i ] = 1/2

All)

-1/2 0 1/2 f
Also sometimes written as A(?) or tri(t).

This is an unusual definition due to the book. Usually A(t) is 2 units wide,
so that it is the convolution of two rect(t) functions.




Unit Step Function w(#)

= The Heaviside unit step function is defined by

1 & =10
wl(t) =
UL A
1
i)
— + i —
—2 —1 0 1 2 F

T he unit step function corresponds to turning on at time (.
 Lnit step is integral of unit impulse:

w(t) = J.":t ) du = () = u(t)

DMlreer Heasside (180 192%) was & seHf-taught English clectrical emginesr, mathematecizan, amd physecist wheo sdapoed comnples
mumbers to the study of slectrecal circuits, nvented mathematscal techmeques o the soluticon of differential equations (later Found
o be sguivalent to Laplace transfiorms), reformulated Boecseil's field squations in terms of electres and magnetic foroes and
emer@y fux, and ndependently co-formulated vector analysis




The sinc(.) function

» We will define the sinc(.) function differently than in EE102A, where we

used the definition .
sin(t)

sincg () = .!
Fi )

This is a function that is 1 a £ = (), and zero at the integers. We'll call
this sinc; () because it includes the 7 factor in its argument.

> In this course, we will define sinc(.) as

sin(f)
2

This still has an amplitude of 1 at ¢ = (), but has zeros at multiples of .
The two are related by

sine(t) =

sine(wt) = siney ()




The sinc(.) function
This looks like this

sin(t)
l

sine(t) =

— —T ) T .y i




Unit Impulse Signal

(Dirac's) delta function or wnit impulse 4 is an idealization of a signal
that

> s very large near ¢ = ()

> is very small away from ¢ = ()

> has integral 1

for example:

1 /e 1/&

» the exact shape of the function doesn’t matter

= ¢ is small (which depends on context)




Unit Impulse Signal

> Example: g.(t) = n rect(nt) where 2 is an integer. As n gets larger

—1
The area is one, but it gets narrower and narrower.

= Paul A. M. Dirac "defined” &(f) by

=D

S(t) £ 0 ift=£0 and f S(t) df = 1

— i3

= The area of the impulse is important; the energy of 4(¢) is not defined.




Properties of Unit Impulse Signal

> Sampling property:

fm H(8)6(t — T) dt = f:ﬂ ot + TYS(t) dt

— s

= f_:ﬂ w(T)o(t) dt = (T _/:m 8(t) dt = (T')

In more rigorous mathematics, the sampling property defines the unit
impulse as a generalized function.

= Convolution:

o

(% 8)(T) = f 2(8)5(t — T) dt = o(T)

— 00




Properties of Unit Impulse Signal

> MMultiplication by a function:

e(t)é(t) = p(0)a(t)

™ This is illustrated for some continuous function f(f) as

—1 | 0 1

> If f(t) is continuous, then the only value that matters is f{()).




More Complex Signals

Many more |
elements.

nteresting signals can be made up by combining simple signal

Example: Pulsed Doppler RF Waveform (we'll talk about this later!)

Al
0

A

; Lﬂ-h-[i.uf

RF cosine gated on for v us, repeated every I' us, for a total of V pulses.




More Complex Signals

Start with a simple rect(t) pulse
4 1

—1 — 172 { 1/ i

Scale to the correct duration and amplitude for one subpulse

r
A A rect(r /T)
3 { ' : -
-2T -T Lk I 2T
Combine shifted replicas
2
. A rect({t — nl )} /T)

L1 1,1 1.

-2T -T Lk I 2T

This is the envelope of the signal.



More Complex Signals

Then multiply by the RF carrier, shown below

cos{on)
|
0
-1
L L L L 1 -
2T T 0 T 2T

to produce the pulsed Doppler waveform

2 A rect{(r — nT) /x)cos(an)
’ e —2

1
2 T




Periodic Signals

= A signal g i1s called periodic if it repeats in time; i.e., for some T = (],

g(t +T) = g(t)
for all .

> |f g is periodic, its period is the smallest such T

> Examples: trignometric functions are periodic. Period of cost is 2m;
period of tant is 7.

> The period of g(mt) is T /m.

» If gy and [ are periodic, their common period is LCM(T,. Ty). E.g.,
period of sin wf + sin 27t /5 is LCM(2,5) = 10.




Fourier Series

> Periodic signals can be written as the sum of sinusoids whose frequencies
are integer multiples of the fundamental frequency fo = 1/Th.

> The most general representation uses complex exponential functions.

o
g(t) = 3 Cpe??mion

r=—=0o0

In general, the Fourier series coeffcients (', are complex numbers, even
when the signal is real valued. Mote the factor of 27 since we are using

the frequency in cycles /second, or Hz.

> The Fourier series coefficents can be computed by

1 a—+Thn _
C, = o f gl(t)eFEmlont gy
0 Ja

The integral is over any period of the signal.




Fourier Series Alternative Forms

> Euler's formula e’ = cos# + jsin @ allows us to represent periodic
signals as sums of sines and cosines:

2T : 2
1 .
glt) = S0 + HE 1 (Lyq OIS {—ni} — E fry 81N ( '.ri!..t)

The coefficients are

T
Ly = Ef gty cos{ 2T font) dtf
To Jo
7 T
b, — ;f g(t) sin(2m fynt) dt
To Jo

= A third compact form combines the sin(.) and cos(.) terms into phase
shifted cos(.) terms

g(t) = Co + > _ A, cos(n2w fot + 6,)
=1

Each frequency component is described by amplitude and phase.




Fourier Series Examples

* Sinsuoids have a finite number of terms. By Euler’s formula,

e — cost 4+ isint

Therefore

cos i = and sint = ,
2 23

The Fourier series coefhicients for cost are, ... O _ o2, O 1. Ch. OO, ...

..,0,0,1 0 L 00,...

and for sint are

1 i
0, 23 %

] 7N




Fourier Series of Square Wave

* Square wave with period 27 defined over interval [—m, 7| by
1 |f| =< w/2
w(t) = 1 "’ll
0 —m< |t <m/2
Fourier series coefficients: if n = (],

2 ) —jnt |, 2
C, - > 1.e—mtgp — L &7
270 J_nyo 2T —gn _m/f2

1 H:IT__I:T'I:_."E L E.—*.'r__r'ﬂ_."E

2 FEL)
1 sinmTn/2 1

1
3 mn )2 Eﬁinc[:rr-iri.fﬂ} = (n odd)




Fourier Series of Square Wave
This looks like




Square Wave (cont.)

1=

M= 1

il
=
ar
& r
2

oll

0.2
—ill

o

2

is

L

05

]

oS

—i0 =

-z

The overshoot i1s an example of the Gibbs" phenomenon.

The overshoot is == 99 and occurs no matter how many terms are used.




Next Time

» Fourier Transtorms in 27 f

» Some important theorems for communications

» Communications applications
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