
Lecture 1:
Algorithms and Pseudocode

Ms. Togzhan Nurtayeva
Course Code: IT 235/A
Semester 3
Week 2-4
Date: 08.10.2023

Objectives

 Algorithms

 Flowcharts

 Types of Algorithms:

➢ Searching (Linear, Binary)

➢ Sorting (Bubble, Insertion)

➢ Optimization (Greedy, Whale Optimization
Algorithms (WOA))

➢ Recursive

➢ Big-O Notation

Algorithm

 An algorithm is a finite sequence of precise instructions for

performing a computation or for solving a problem.

https://app.diagrams.net/

https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial

Flowchart

A flowchart is a diagram that depicts a process, system or computer algorithm. They are
widely used in multiple fields to document, study, plan, improve and communicate often
complex processes in clear, easy-to-understand diagrams.

https://app.diagrams.net/
https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial

Flowcharts can:

Demonstrate the
way code is
organized.

Visualize the
execution of code
within a program.

Show the structure
of a website or
application.

Understand how
users navigate a
website or program.

Flowchart
Symbols

Finding the
largest number

Quadratic
Equation

Flowchart for the
Website’s Login
Page

EXAMPLE 1:

 Set the temporary maximum equal to the first

integer in the sequence. (The temporary maximum

will be the largest integer examined at any stage of

the procedure.)

 Compare the next integer in the sequence to the

temporary maximum, and if it is larger than the

temporary maximum, set the temporary maximum

equal to this integer.

 Repeat the previous step if there are more integers

in the sequence.

 Stop when there are no integers left in the

sequence. The temporary maximum at this point is

the largest integer in the sequence.

Describe an algorithm

for finding the maximum

(largest) value in a finite

sequence of integers.

https://app.diagrams.net/

https://app.diagrams.net/

Input: 𝑎𝑟𝑟[] = {10, 324, 45, 90,9808}; 𝑂𝑢𝑡𝑝𝑢𝑡: 9808

Input : 𝑎𝑟𝑟[] = {20, 10, 100, 20, 4}; 𝑂𝑢𝑡𝑝𝑢𝑡 ∶ 100

Go through each step of the given algorithm to find the max value in
array (show every step).

Flowchart to find if N is a minimum value
among n (=10) numbers

Create a flowchart, where you
have to build a program: sum of
square of n natural numbers.

Pseudocode (Appendix 3)

 procedure algorithm name (list ∗ description of
input variables)

 {comments}

 variable : = expression

 if condition then statement or block of statements

 if condition then statement 1

else statement 2

 if condition 1 then statement 1

else if condition 2 then statement 2

else if condition 3 then statement 3 …

 for variable := initial value to final value

block of statements

 while condition

statement or block of statements

 return output of algorithm

In computer science,
pseudocode is a plain
language description of the
steps in an algorithm or
another system. Pseudocode
often uses structural
conventions of a normal
programming language but
is intended for human
reading rather than machine
reading.

Types of Algorithm Problems

Searching
Looking through a list to find
something that needs a specific
characteristic

Sorting
Sort things from least to greatest or
greatest to least or biggest to
smallest

Optimization
Looking for the least or the greatest

Facial Recognition
Facial recognition is the mechanics behind iPhone logins and
Snapchat filters, and it runs on an algorithm. The system works
by using a biometrics map to plot facial features from a photo or
video. It then takes this information and compares it to a known
database of faces to find a match. This is how it can verify
identity. When it is just used for Instagram or Snapchat filters,
there is no database search. It simply makes a biometric map of
the face and applies the filter to it.

Recipes
Just like sorting papers and even tying your shoes, following a
recipe is a type of algorithm. The goal of course being to create a
duplicated outcome. In order to complete a recipe, you have to
follow a given set of steps. Say you are making bread. You need
flour, yeast and water. After you have your ingredients, you need
to combine them in a certain way that will create a predictable
outcome, in this case a loaf of bread.

Sorting Papers, Traffic Signals, Bus Schedules, GPS, Google Search, Facebook, etc.

Searching Algorithms

The goal is to locate an element 𝑥 in
the list of distinct elements or

determine that it is not in the list.

The solution is the location of the
term that equals 𝑥 or 0 if 𝑥 is not in

the list.

Example: Spell check

essentially looks through all items in
the list, compares it to the dictionary
and then the output: it is going to put

squiggly little red line under
something that is not spelled

correctly, or it is not going to do
anything if everything is spelled

correctly

Linear Search

 This algorithm checks each term in the
sequence, in order, with the desired term, 𝑥.

 Let 𝑥 = 9

4, 7, 3, 2, 1, 0, 9
𝑎1

𝑎2

𝑎3

𝑎4

𝑎5 𝑎7

𝑎6

Output: 7

Trace the linear search algorithm to look for 12 in the list: 4, 7, 2, 1, 9, 11, 12, 8, 5

𝑥 = 12
𝑎1 𝑎3

𝑎4

𝑎5
𝑎6

𝑎7

𝑎8𝑎2

𝑎9

𝑖 = 1: 1 ≤ 9? 12 ≠ 4?

𝑖 = 2: 2 ≤ 9? 12 ≠ 7?

𝑖 = 3: 3 ≤ 9? 12 ≠ 2?

𝑖 = 4: 4 ≤ 9? 12 ≠ 1?

𝑖 = 5: 5 ≤ 9? 12 ≠ 9?

𝑖 = 6: 6 ≤ 9? 12 ≠ 11?

𝑖 = 7: 7 ≤ 9? 12 ≠ 12?

7 ≤ 9? 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 7

Trace the linear search algorithm to look for 3 in the list: 4, 7, 2, 1, 9, 11, 12, 8, 5

𝑥 = 3

𝑎1 𝑎3
𝑎4

𝑎5
𝑎6

𝑎7

𝑎8𝑎2

𝑎9

𝑖 = 1: 1 ≤ 9? 3 ≠ 4?

𝑖 = 2: 2 ≤ 9? 3 ≠ 7?

𝑖 = 3: 3 ≤ 9? 3 ≠ 2?

𝑖 = 4: 4 ≤ 9? 3 ≠ 1?

𝑖 = 5: 5 ≤ 9? 3 ≠ 9?

𝑖 = 6: 6 ≤ 9? 3 ≠ 11?

𝑖 = 7: 7 ≤ 9? 3 ≠ 12?

𝑖 = 8: 8 ≤ 9? 3 ≠ 8?

𝑖 = 9: 9 ≤ 9? 3 ≠ 5?

𝑖 = 10: 10 ≤ 9?

10 ≤ 9? 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0

Flowchart for a Linear Search

22, 11, 5, 6, 7, 3, 9, 1

Given a list of array:

a) Find the location of 𝑥, where 𝑥 = 3

b) Find the location of 𝑥, where 𝑥 = 10

c) Create a flowchart for a given problem.

Using a Linear Search Algorithm

Binary Search

 In a list of items in increasing order, the binary search algorithm begins by
comparing the desired element 𝑥 with the middle value.

 The algorithm then chooses the upper or lower half of the data by comparing the
desired value with the middle value.

 The process continues until a list of size 1 is found.

 Let 𝑥 = 9

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5 𝑎7

𝑎6

0, 1, 2, 3, 4, 7, 9

Output: 7

1 + 7

2
= 4 → 𝑎4

3 < 9 → 𝑤𝑜𝑟𝑘𝑠 𝑜𝑛𝑙𝑦 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡
 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡

5 + 7

2
= 6 → 𝑎6 7 < 9 → 𝑤𝑜𝑟𝑘𝑠 𝑜𝑛𝑙𝑦 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡

Search for the umber 8 in the list using the binary search algorithm :

4, 7, 2, 1, 9, 11, 12, 8, 5

Floor function used for m value
in binary search:

|_ 4 _|=4

|_ 4.01 _|=4

|_ 4.99 _|=4

𝟏, 𝟐, 𝟒, 𝟓, 𝟕, 𝟖, 𝟗, 𝟏𝟏, 𝟏𝟐

𝑗 = 9𝑖 = 1
𝑥 = 8

1 < 9? 𝑚 = |_
1 + 9

2
 _| = 5 8 > 7? 𝑖 = 6, 𝑗 = 9

𝑚 = |_
6 + 9

2
 _| = 76 < 9? 8 > 9? 𝑖 = 6, 𝑗 = 7

6 < 6? 8 = 8? 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 6

6 < 7? 𝑚 = |_
6 + 7

2
 _| = 6 8 > 8? 𝑖 = 6, 𝑗 = 6

Search for 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 3 in the list using the binary
search algorithm :

4, 7, 2, 1, 9, 11, 12, 8, 5

Floor function used for m
value in binary search:

|_ 4 _|=4

|_ 4.01 _|=4

|_ 4.99 _|=4

𝟏, 𝟐, 𝟒, 𝟓, 𝟕, 𝟖, 𝟗, 𝟏𝟏, 𝟏𝟐

𝑗 = 9𝑖 = 1
𝑥 =3

1 < 9? 𝑚 = |_
1 + 9

2
 _| = 5 3 > 7? 𝑖 = 1, 𝑗 = 5

𝑚 = |_
1 + 5

2
 _| = 31 < 5? 3 > 4? 𝑖 = 1, 𝑗 = 3

1 < 3? 𝑚 = |_
1 + 3

2
 _| = 2 3 > 2? 𝑖 = 3, 𝑗 = 3

3 < 3? 3 = 4? 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0

Flowchart for a Binary Search

22, 11, 5, 6, 7, 3, 9, 1

Given a list of array:

a) Find the location of 𝑥, where 𝑥 = 3

b) Find the location of 𝑥, where 𝑥 = 10

c) Create a flowchart for a given problem.

Using a Binary Search Algorithm

More Practice

 Use linear and binary searching algorithms to locate 𝑛 = 22
and 𝑛 = 5 in set A.

𝐴 = {0, 2, 4, 11, 22, 8, 14, 9, 27, 30}

Sorting Algorithms

An algorithm that sorts the
elements of a list into
increasing order (numerical,
alphabetical, etc.)

 Used often for large databases like sorting
customer or part numbers, prices, etc.

 Phone directories (by last name)

 Over 100 sorting algorithms have been
devised

Sorting Algorithms

Bubble Sort Insertion Sort

Bubble Sort Algorithm

An example of a computer algorithm is bubble sort. This is a simple algorithm used for taking a list of
jumbled up numbers and putting them into the correct order. The algorithm runs as follows:

 Look at the first number in the list.

 Compare the current number with the next number.

 Is the next number smaller than the current number? If so, swap the two numbers around. If not,
do not swap.

 Move to the next number along in the list and make this the current number.

 Repeat from step 2 until the last number in the list has been reached.

 If any numbers were swapped, repeat again from step 1.

 If the end of the list is reached without any swaps being made, then the list is ordered, and the
algorithm can stop.

Bubble Sort Algorithm

 A simple algorithm that successively compares adjacent elements, interchanging
them if they are in the wrong order. This may require several passes.

4
3
5
2
1

Pass 1:

3
4
5
2
1

✔

❌

❌

Pass 2:

3
4
2
5
1 ❌

3
4
2
1
5

Pass 3:

3
4
2
1
5

✔

❌

3
2
4
1
5

❌

3
2
1
4
5 ✔

3
2
1
4
5

❌
2
3
1
4
5

2
1
3
4
5

Pass 4:

2
1
3
4
5

1
2
3
4
5

❌

❌

5, 1, 4, 2, 8

0, 5, 7, 6, 9, 4, 3, 2

Sort the list using Bubble Sort: 3, 1, 7, 5, 2

3, 1, 7, 5, 2

1, 3, 7, 5, 2

1, 3, 7, 5, 2

1, 3, 5, 7, 2

1, 3, 5, 2, 7

1, 3, 5, 2, 7

1, 3, 5, 2, 7

1, 3, 5, 2, 7

1, 3, 2, 5, 7

1, 3, 2, 5, 7

1, 3, 2, 5, 7

1, 2, 3, 5, 7

1, 2, 3, 5, 7

1, 2, 3, 5, 7

➢ Use the bubble sort to put 3, 2, 4, 1, 5 into increasing order.

Try!

Insertion Sort Algorithm

 Another simple sorting algorithm that begins with the second element, comparing
it to the first and ordering it appropriately. The third element is then compared
with the first and, if necessary, the second to order it. This pattern repeats.

4
3
5
2
1

1st pass:

3
4
5
2
1

2nd pass:

3
4
5
2
1

3rd pass:

2
3
4
5
1

4th pass:

1
2
3
4
5

yes

yes

yes

no

no

no

Insertion Sort Example

7, 4, 5, 2

Sort the list using Insertion Sort: 3, 1, 7, 5, 2

3, 1, 7, 5, 2
unsorted

1, 3, 7, 5, 2

1, 3, 7, 5, 2

1, 3, 5, 7, 2

1, 2, 3, 5, 7

➢ m temporarily store the number you are inserting in
➢ at the end after sliding numbers bigger than a[j] down 1 spot, there will

be an empty value at a[i]’s location (as values move upwards, value of
a[j] will be wiped at the very beginning), where m (wiped a[j] value) will

be inserted.

Practice

 Use the Bubble and Insertion Sorting algorithms to sort the elements of set A.

𝐴 = {42, 19, 32, 11, 8, 1}

Answer: Bubble Sort

 Use the Bubble and Insertion Sorting algorithms to sort the elements of set A.

𝐴 = {42, 19, 32, 11, 8, 1}

Pass 1:

19, 42, 32, 11, 8, 1

19, 32, 42, 11, 8, 1

19, 32, 11, 42, 8, 1

19, 32, 11, 8, 42, 1

19, 32, 11, 8, 1, 42

Pass 2:

19, 32, 11, 8, 1, 42

19, 11, 32, 8, 1, 42

19, 11, 8, 32, 1, 42

19, 11, 8, 1, 32, 42

19, 11, 8, 1, 32, 42

11, 19, 8, 1, 32, 42

11, 8, 19, 1, 32, 42

11, 8, 1, 19, 32, 42

11, 8, 1, 19, 32, 42

8, 11, 1, 19, 32, 42

8, 1, 11, 19, 32, 42

8, 1, 11, 19, 32, 42

1, 8, 11, 19, 32, 42

Pass 3: Pass 5:Pass 4:

Answer: Insertion Sort

 Use the Bubble and Insertion Sorting algorithms to sort the elements of set A.

𝐴 = {42, 19, 32, 11, 8, 1}

Pass 1:

19, 42, 32, 11, 8, 1

Pass 2:

1, 8, 11, 19, 32, 42

Pass 3: Pass 5:Pass 4:

19, 32, 42, 11, 8, 1 11, 19, 32, 42, 8, 1 8, 11, 19, 32, 42, 1

➢ Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5
in increasing order.

Try!

3 > 2, 2, 3, 4, 1, 5

4 > 2 & 4 > 3, 2, 3, 4, 1, 5

1 < 2, 1, 2, 3, 4, 5

5 > 4, 1, 2, 3, 4, 5

Write an algorithm that finds the second-smallest element among
a, b, and c. Assume that the values of a, b, and c are distinct.

Hint: first use (any) sorting algorithm and then find
second-smallest element.

Optimization Algorithms: Greedy Algorithms

❑ These algorithms makes the “best” choice at each step. We must specify what that
“best” choice is.

 Finding shortest path between two points

 Connect network using least amount of fiber-optic cable

 Scheduling

❑ There are perhaps hundreds of popular optimization algorithms

 Design a greedy algorithm for making change of n U.S. cents with quarters, dimes,
nickels and pennies.

$0.97 – Making Change

 At each step, use the largest possible value coin that does not exceed the amount of change left.

$0.97 Quarter

$0.72

$0.97 − $0.25

Quarter $0.72 − $0.25

$0.47 Quarter $0.47 − $0.25

$0.22 Dime $0.22 − $0.10

$0.12 Dime $0.12 − $0.10

$0.02 Penny $0.02 − $0.01

$0.01 Penny $0.01 − $0.01

quarter 25 cents
dime 10 cents
nickel 5 cents
penny 1 cent

Make a Change for
𝟑𝟗𝟕 𝟕𝟓𝟎 IQR using
Greedy Optimization
Algorithm.

The backpack problem

Let’s imagine, a thief broke into a jewelry store, in
which there are three jewelry weighing 2 kg, 4 kg,

and 6 kg cost $3000, $5000, $6000, respectively.
That is to say, $1500/kg, $1250/kg, $1000/kg.

The thief can take only 10 kg – that is how much his
backpack holds. The thief wants to maximize the

profit. What will be the optimal solution for the
thief?

$5000+$6000=$11000
(10 kg)

Greedy Algorithm: Scheduling

 A greedy algorithm makes the best choice at each step according to a specified criterion. However,

it also can be difficult to determine which of many possible criteria to choose:

To use a greedy algorithm to schedule the most talks, that is, an optimal schedule, we need to decide

how to choose which talk to add at each step. There are many criteria we could use to select a talk at

each step, where we chose from the talks that do not overlap talks already selected. For example, we

could add talks in order of earliest start time, we could add talks in order of shortest time, we could

add talks in order of earliest finish time, or we could use some other criterion.

 Talk 1 starts at 8 a.m. and ends at 12 noon,

 Talk 2 starts at 9 a.m. and ends at 10 a.m.,

 Talk 3 starts at 11 a.m. and ends at 12 noon.

8 am – 12 pm

9 am – 10 am

11 am – 12 am

We first select the Talk 1 because it starts earliest. But once we have selected Talk 1 we cannot select

either Talk 2 or Talk 3 because both overlap Talk 1. Hence, this greedy algorithm selects only one talk.

This is not optimal because we could schedule Talk 2 and Talk 3, which do not overlap.

Algorithm 1:

•The first idea is to select as short events as possible.

In the example, this algorithm selects the following

events:

•However, selecting short events is not always a

correct strategy. For example, the algorithm fails

in the below case:

Algorithm 2:

•Another idea is to always select the next

possible event that begins as early as possible.

This algorithm selects the following events:

•However, given a counter example for this

algorithm. In this case, the algorithm only

selects one event:

Algorithm 3:

•The third idea is to always select the next

possible event that ends as early as possible. This

algorithm selects the following events:

•It turns out that this algorithm always produces an optimal

solution.

•The reason for this is that it is always an optimal choice to first

select an event that ends as early as possible.

•After this, it is an optimal choice to select the next event using

the same strategy, etc., until any other event can’t be selected.

•One way is the algorithm works is to consider what happens if

first select an event that ends later than the event that ends as

early as possible.

•Now, with having at most an equal number of choices how the

next event can be selected.

•Hence, selecting an event that ends later can never yield a

better solution, and the greedy algorithm is correct.

Hunting strategy
of Humpback

Whale

 Humpback Whale dive 12 meters deep.

 They create bubble around the target.

 Target will be captured by bubbles.

 Ready to eat.

To catch their prey, whales use
Bubble Net Feeding method

Whale Optimization Algorithm
(WOA)

Humpback Whale: Hunting Technique

➢ WOA was proposed based on the bubble-net hunting behaviour of the
humpback whales.

➢ WOA is one of the nature- inspired heuristic optimization algorithms.
➢ WOA is widely used in engineering applications and medical application.
➢ WOA is eff icient algorithm the key characters are, it is simple and easy

to implement, gradient information is not required, local optima can be
bypassed and used in a wide range of disciplinary challenges.

➢ WOA is used to find optimal solutions in highly complex constraints in
reasonable time period.

Applications of WOA

The WOA is a new swarm intelligence
optimization algorithm, which was
proposed by Australian scholars Mirjalili
and Lewis in 2016. Inspired by the hunting
behavior of humpback whales in nature,
the algorithm simulates the shrinking
encircling, spiral updating position, and
random hunting mechanisms of the
humpback whale population. The
algorithm includes three stages: encircling
prey, bubble net attack and search for
prey.

▪ https://www.mdpi.com/1424-8220/21/13/4579

▪ https://www.scirp.org/journal/paperinf
ormation.aspx?paperid=101268

Research on WOA

https://www.mdpi.com/1424-8220/21/13/4579
https://www.scirp.org/journal/paperinformation.aspx?paperid=101268
https://www.scirp.org/journal/paperinformation.aspx?paperid=101268

1. List all the steps used by Algorithm 1 (procedure max) to find the maximum of the list: 1, 8, 12, 9,

11, 2, 14, 5, 10, 4.

3. Describe an algorithm that takes as input a list of n integers and finds the location of the last even

integer in the list or returns 0 if there are no even integers in the list.

2. Devise an algorithm that finds the sum of all the integers in a list.

Practice

4. Describe an algorithm that
locates the first occurrence of
the largest element in a finite
list of integers, where the
integers in the list are not
necessarily distinct.

5)

6)

7)

8)

9)

Use the greedy algorithm to make change using quarters,
dimes, and pennies (but no nickels) for each of the amounts given
in 7) question above. For which of these amounts does the greedy
algorithm use the fewest coins of these denominations possible?

Use the greedy algorithm to make change using quarters,
dimes, nickels, and pennies for:
a) 51 cents
b) 69 cents
c) 76 cents
d) 60 cents

8) Greedy algorithm uses fewest coins in parts (a), (c),
and (d). a) Two quarters, one penny b) Two quarters, one
dime, nine pennies c) Three quarters, one penny d) Two
quarters, one dime

7) a) Two quarters, one penny
b) Two quarters, one dime, one nickel, four pennies
c) A three quarters, one penny
d) Two quarters, one dime

9) The 9:00–9:45 talk, the 9:50–10:15 talk, the 10:15–
10:45 talk, the 11:00–11:15 talk

a) 1, 5, 4, 3, 2;
1, 2, 4, 3, 5;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5

b) 1, 4, 3, 2, 5;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5

c) 1, 2, 3, 4, 5;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5;
1, 2, 3, 4, 5

Selection sort is an effective and efficient sort algorithm based on comparison operations. It adds one
element in each iteration. You need to select the smallest element in the array and move it to the beginning
of the array by swapping with the front element.

Selection Sort

https://machinelearningmastery.com/tour-of-optimization-algorithms/

https://algorithmsbook.com/optimization/files/optimization.pdf

Links for additional and detailed
information about Optimization

https://machinelearningmastery.com/tour-of-optimization-algorithms/
https://algorithmsbook.com/optimization/files/optimization.pdf

Recursive

 Towers of Hanoi

 Triangular Numbers

 Fibonacci

 Sequences

 Factorial

𝑛 = 3:

Towers of Hanoi

𝑛 = 4:

Towers of Hanoi

1,3,7,15,31,63, 127, 255 …

2𝑛 − 1

If you had 64 golden disks you would have
to use a minimum of 264 − 1 moves. If
each move took one second, it would take
around 585 𝑏𝑖𝑙𝑙𝑖𝑜𝑛 years to complete the
puzzle!

2 𝑎𝑛−1 + 1 What if n is large?

Towers of Hanoi animations

https://www.mathsisfun.com/games/towerofhanoi.html

Play and make sure you get minimum moves for certain number of discs:

http://towersofhanoi.info/Animate.aspx

You can check your solutions comparing with this one:

https://www.mathsisfun.com/games/towerofhanoi.html
http://towersofhanoi.info/Animate.aspx

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …

𝑥𝑛 =
𝑛(𝑛 + 1)

2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, …

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

➢ {3, 6, 12, 24, … }

➢ {2, 6, 14, 30, 62, … }

➢ {1,2,6, 24, 120, 720, … }

➢ {2, 4, 16, 256,65536, … }

➢ {2, 3, 6, 18, 108, 1944,209952, … }

➢ {5, 11, 17, 23, … }

Find the Factorial of a Number and Fibonacci series
using Recursion (PseudoCode or Algorithm)

Find the Factorial of a Number using Recursion

#include <iostream>
using namespace std;

unsigned int factorial(unsigned int n)

{

 if (n == 0 || n == 1)
 return 1;

 return n * factorial(n - 1);
}

int main()
{

 int num = 5;
 cout << "Factorial of "

 << num << " is " << factorial(num) << endl;

 return 0;
}

Recursive
Demonstration

of Factorial

// Fibonacci Series using Recursion
#include <iostream>
using namespace std;

int fib(int n)
{
 if (n <= 1)
 return n;
 return fib(n - 1) + fib(n - 2);
}

int main()
{
 int n = 9;
 cout << fib(n);
 return 0;
}

#include<iostream>
using namespace std;

class GFG{
public:
int fib(int n)
{
 int f[n + 2];
 int i;
 f[0] = 0;
 f[1] = 1;
 for(i = 2; i <= n; i++)
 {
 f[i] = f[i - 1] + f[i - 2];
 }
 return f[n];
 }
};

int main ()
{
 GFG g;
 int n = 4;
 cout << g.fib(n);
 return 0;
}

// Fibonacci Series using Space Optimized Method

#include<bits/stdc++.h>
using namespace std;

int fib(int n)
{

 int a = 0, b = 1, c, i;
 if(n == 0)
 return a;
 for(i = 2; i <= n; i++)
 {

 c = a + b;
 a = b;
 b = c;
 }
 return b;

}

int main()
{
 int n = 9;

 cout << fib(n);
 return 0;
}

Recursive Demonstration of the Fibonacci
Sequence

Big-O Notation

Big-O Notation

In the time complexity analysis, we define the time as a function of the problem size
and try to estimate the growth of the execution time with the growth in problem size.

Time Complexity

The space require by the program to save input data and results in memory (RAM).

Memory Space

Big-O Notation

Big-O notation (with a capital letter O, not a zero), also called Landau’s symbol, is a
symbolism used in complexity theory, computer science, and mathematics to describe the
basic behavior of functions. Basically, it tells you how fast a function grows or declines.

Landau’s symbol comes from the name of the German mathematician Edmund Landau
who invented the notation.

The letter O is used because the rate of growth of a function is also called its order.

History

Big-O Notation

✓ Efficiency of an Algorithm.

✓ Time Factor of an Algorithm.

✓ Space Complexity of an Algorithm.

It is represented by 𝑂(𝑛), where 𝑛 is the number of operations.

It Describes:

Big-O Notation

Let us consider that every operation can be executed in 1 ns (10−9s).

Execution Time

Big-O Notation

 We use Big-O notation to classify algorithms based on the number operations or
comparisons they use.

 For large values of 𝑥: 𝑥2, 3𝑥2 + 25, 4𝑥2 + 7𝑥 + 10 are all very similar, so we will

consider them of the same order: O(𝒙𝟐)

 𝑓(𝑥) is 𝑂(𝑔(𝑥)) if there exist constants (witnesses) 𝐶 and 𝑘 such that

|𝒇(𝒙)|≤ 𝑪|𝒈(𝒙)| whenever 𝒙 > 𝒌.

Example 1 (Version 1)

Show that 3𝑥2 + 25 is O(𝑥2)

𝑥 = 5:Let: 3𝑥2 + 25 = 3(5)2+25 = 75 + 25 = 100

𝐶(5)2≥ 100

25𝐶 ≥ 100

𝐶 ≥ 4

𝑘

Let 𝐶 = 4, 𝑘 = 5

3𝑥2 + 25 ≤ 4|𝑥2| when 𝑥 > 5.

𝑥 = 6:

3𝑥2 + 25 = 133 4𝑥2 = 144

Example 1 (Version 2)

Show that 3𝑥2 + 25 is O(𝑥2)

3𝑥2 + 25𝑥2,3𝑥2 + 25 ≤ 𝑥 > 1

28𝑥2,3𝑥2 + 25 ≤ 𝑥 > 1

𝐶 = 28, 𝑘 = 1

28𝑥2

3𝑥2 + 25

1

Example 2

4𝑥3 + 7𝑥2 + 12Show that is O(𝑥3) by finding the witnesses, C and k.

4𝑥3 + 7𝑥2 + 12 ≤ 4𝑥3 + 7𝑥3 + 12𝑥3, 𝑥 > 1

|4𝑥3 + 7𝑥2 + 12| ≤ |23𝑥3|, 𝑥 > 1

𝐶 = 23, 𝑘 = 1

Example 3

𝑥3 + 5𝑥Show that is not O(𝑥2)

|𝑥3 + 5𝑥| ≤ 𝐶|𝑥2|, 𝑥 > 𝑘

𝑥3 + 5𝑥 > 𝑥 ∙ 𝑥2, 𝑥 > 0𝑖𝑓 𝐶 = 𝑥:

No fixed C that will keep

𝑥3 + 5𝑥 ≤ 𝐶𝑥2

Once 𝑥 > 𝐶, calculation will be wrong

C has to be a constant and this
inequality has to hold for all x > k.
So, no matter what you pick for C, x
can always get large enough to
overcome that.

Prove that:

2𝑛 + 10 = 𝑂(𝑛)

1000𝑛2 + 1000𝑛 = 𝑂(𝑛2)

Suppose a computer can perform 1012 bit operations per second. Find the largest problem
size that could be solved in 1 second if an algorithm requires:

Input Size calculations

𝑛4 bit operations 2𝑛 bit operations

𝑛4 = 1012

(𝑛4)
1
4 = (1012)

1
4

𝑛 = 103 = 1000

2𝑛 = 1012

239 ≈ 5.5 ∙ 1011

240 ≈ 1.1 ∙ 1012

𝑛 = 39

2𝑛 = 1012

log 2𝑛 = log 1012

𝑛 ∙ log 2 = 12

log 10 = 1

𝑛 =
12

log 2
≈ 39.86

Suppose a computer can perform 1012 bit operations per second. Find the time it would take
an algorithm that requires 𝑛3 + log 𝑛 operations with a problem size of:

Time calculations

𝑛 = 1000 𝑛 = 108

log 𝑛 = log2 𝑛

𝑓 𝑛 = 𝑛3 + log 𝑛

10003 + log2 1000 ≈ 109 + 10 bit operations

109 𝑏. 𝑜 ∙
1 𝑠𝑒𝑐

1012 𝑏. 𝑜
=

1

1000
𝑠𝑒𝑐.

𝑓 𝑛 = 𝑛3 + log 𝑛

(108)3 + log2 108 ≈ 1024 + 26.6 bit operations

1024 𝑏. 𝑜 ∙
1 𝑠𝑒𝑐

1012 𝑏. 𝑜
= 1012𝑠𝑒𝑐.

1012sec ∙
1𝑚𝑖𝑛

60𝑠𝑒𝑐
∙

1ℎ𝑟

60 𝑚𝑖𝑛
∙

1 𝑑𝑎𝑦

24 ℎ𝑜𝑢𝑟
∙

1𝑦𝑟

365 𝑑𝑎𝑦𝑠
≈ 31710 𝑦𝑒𝑎𝑟𝑠

Given that supercomputer takes 10−15 seconds per bit operation, how long will it
take that supercomputer to solve a problem of size 𝑛 = 100 if the algorithm
requires:
▪ 𝑛3 bit operations?
▪ 𝑛log𝑛 operations?

What is the largest problem size n that we can solve in no more than one hour
using an algorithm that requires f(n) operations, where each operation takes
10−9 seconds (this is close to a today's computer), with the following f(n) ?
Below are examples of the given algorithms.

log2(𝑛)

𝑙𝑜𝑔24(𝑛)

3𝑛

Suppose you have algorithms with the six running times listed below. (Assume
these are the exact number of operations performed as a function of the input size
n.) Suppose you have a computer that can perform 1010 operations per second,
and you need to compute a result in at most an hour of computation. For each of
the algorithms, what is the largest input size n for which you would be able to get
the result within an hour?
a) 𝑛2

b) 𝑛3

c) 100𝑛2

d) 2𝑛

a) For 𝑛2, the running is 𝑛2 operations. Since the computer can
perform 1010 operations per second, the largest input size n for

which the result can be computed within an hour is:
𝑛2 = 1010 × 3600. Simplifying, we get:

 𝑛 = 1010 × 3600, 𝑛 = 6000000.

So, the largest input size n is 6000000.

Input size (n)

R
u

n
n

in
g

 t
im

e

References

Discrete Mathematics explained in Kurdish:

 https://www.youtube.com/watch?v=A4dq1r
VwcF4&list=PLxIvc-
MGOs6gZlMVYOOEtUHJmfUquCjwz&index
=17

Discrete Mathematics and its Applications by
Kenneth H.Rosen, Chapter 3, page 191:

 https://www.houstonisd.org/cms/lib2/TX01
001591/Centricity/Domain/26781/Discrete
Mathematics.pdf

https://www.enjoyalgorithms.com/blog/time
-complexity-analysis-in-data-structure-and-
algorithms

https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.houstonisd.org/cms/lib2/TX01001591/Centricity/Domain/26781/DiscreteMathematics.pdf
https://www.houstonisd.org/cms/lib2/TX01001591/Centricity/Domain/26781/DiscreteMathematics.pdf
https://www.houstonisd.org/cms/lib2/TX01001591/Centricity/Domain/26781/DiscreteMathematics.pdf
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-in-data-structure-and-algorithms
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-in-data-structure-and-algorithms
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-in-data-structure-and-algorithms

	Slide 1: Lecture 1: Algorithms and Pseudocode
	Slide 2: Objectives
	Slide 3: Algorithm
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: EXAMPLE 1:
	Slide 11
	Slide 12
	Slide 13: Flowchart to find if N is a minimum value among n (=10) numbers
	Slide 14
	Slide 15
	Slide 16: Pseudocode (Appendix 3)
	Slide 17
	Slide 18: Types of Algorithm Problems
	Slide 19
	Slide 20: Searching Algorithms
	Slide 21: Linear Search
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Binary Search
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: More Practice
	Slide 32: Sorting Algorithms
	Slide 33: Sorting Algorithms
	Slide 34: Bubble Sort Algorithm
	Slide 35: Bubble Sort Algorithm
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Insertion Sort Algorithm
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Optimization Algorithms: Greedy Algorithms
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Greedy Algorithm: Scheduling
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Hunting strategy of Humpback Whale
	Slide 68
	Slide 69
	Slide 70: Applications of WOA
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Recursive
	Slide 84
	Slide 85
	Slide 86: Towers of Hanoi
	Slide 87: Towers of Hanoi animations
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Recursive Demonstration of Factorial
	Slide 92
	Slide 93: Recursive Demonstration of the Fibonacci Sequence
	Slide 94: Big-O Notation
	Slide 95
	Slide 96: Big-O Notation
	Slide 97
	Slide 98: Big-O Notation
	Slide 99: Big-O Notation
	Slide 100
	Slide 101
	Slide 102: Big-O Notation
	Slide 103: Example 1 (Version 1)
	Slide 104: Example 1 (Version 2)
	Slide 105: Example 2
	Slide 106: Example 3
	Slide 107
	Slide 108: Input Size calculations
	Slide 109: Time calculations
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115: References

