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Objectives

Algorithms

Flowcharts

Types of Algorithms:
Searching (Linear, Binary)
Sorting (Bubble, Insertion)

Optimization (Greedy, Whale Optimization
Algorithms (WOA))

Recursive

Big-O Notation




Algorithm

» An algorithm i1s a finite sequence of precise instructions for
performing a computation or for solving a problem.

WHAT IS AN
ALGORITHM?

098




Flowchart

A flowchart is a diagram that depicts a process, system or computer algorithm. They are
widely used in multiple fields to document, study, plan, improve and communicate often
complex processes in clear, easy-to-understand diagrams.

https://app.diagrams.net/

https: //www.lucidchart.com/pages/what-is-a-flowchart-tutorial



https://app.diagrams.net/
https://www.lucidchart.com/pages/what-is-a-flowchart-tutorial

Flowcharts can:

Demonstrate the
way code is
organized.

Show the structure
of a website or
application.

Visualize the
execution of code
within a program.

Understand how
users navigate a
website or program.



Symbol Name Function

Start/end An oval represents a start
or end point.

¢

A line is a connector that shows
Arrows relationships between the
representative shapes.

Flowchart
Input/Output A parallelogram represents input Symb OlS

L |

or ouptut.
[ Process A rectangle represents a process.
1
Decision A diamond indicates a decision.

<




Finding the

largest number 0

False False




Quadratic
Equation

TRUE
<

!

rl=(-b++vD)/2a
re=(-b-+vD)/2a

4

PRINT R1,R2

l

START

INPUT 3 VALUES

D=(b*b)-(4*a*c)

\%

FALSE TRUE
IS fn=-b/2a
2tk ’ D=0 ®  2-b/2a
l FALSE
ROOTS ARE
IMAGINARY

v

PRINT R1,R2
>

Y §

STOP



Flowchart for the
Website’s Login

Page

Log in Process Flowchart

Enter to the
website

have
an account

No Sign up

yes

Fill out the
information

Enter e-mail
and password

e-mail
and password
valid

yes

loged in to the
system

Submit

creately




» Set the temporary maximum equal to the first
Integer in the sequence. (The temporary maximum
will be the largest integer examined at any stage of
the procedure.)

» Compare the next integer in the sequence to the
temporary maximum, and if it is larger than the
temporary maximum, set the temporary maximum

EXAMPLE 1: equal to this integer.

» Repeat the previous step if there are more integers
Describe an algorithm in the sequence.
for finding the maximum » Stop when there are no integers left in the
(Iargest) value in a finite sequence. The temporary maximum at this point is

the largest integer in the sequence.

sequence of integers.

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure max(ay, as, ..., a,> itegers)
max:= aj
fori:=2ton
if max < a; then max := a;
return max{mar 1s the largest element}




;’f Input a[1], ..., a[n]/

read afi]

e

max < ai]?



https://app.diagrams.net/

Input: arr[] = {10,324,45,90,9808}; Output: 9808

Input: arr[] = {20,10,100,20,4}; Output: 100

ALGORITHM 1 Finding the Maximum Element in a Finite Sequence.

procedure max{ay, as, ..., a,: integers)
max = dj
fori:=2ton
if max = a; then max := a;
return max{max 1s the largest element)

Let’s Practice!

Go through each step of the given algorithm to find the max value in
array (show every step).




Flowchart to find if N 1s a minimum value

among n (=10) numbers

/ Input the number N /

.
Min= N
Count =1

g

No
@ Output Min /
Count = Count + | -
¥ Yes
~ Input the number N

- No N < Min ?
Yes

Min= N




Create a flowchart, where you
have to build a program: sum of
square of n natural numbers.



/ Read num, sum=0 /

False

sum=sum-+{i*i)

v

i=i+1

r

/ Print sum /




v

>
>
>
>

Pseudocode (Appendix 3)

procedure algorithm name (list * description of
input variables)

{comments}
variable : = expression
if condition then statement or block of statements

if condition then statement 1

else statement 2

>

if condition 1 then statement 1

else if condition 2 then statement 2

else if condition 3 then statement 3 ...

» for variable := initial value to final value
block of statements

» while condition

statement or block of statements

» return output of algorithm



In computer  science,
pseudocode is a plain
language description of the
steps in an algorithm or

another system. Pseudocode
often uses structural
conventions of a normal
programming language but
is intended for human
reading rather than machine
reading.

{

Fori:=1tondo

{

ji=1;
Fork:=i+1tondo
If (alk] < a[j]) then
ji=k;

t:=ali);

ali] :=a[j);

afj] =t

}

}

Fori=1ton

{

Examine a[i] to a[n]
and suppose

The smallest
element is at a[j];

Interchange ali] and
aj};
}



Types of Algorithm Problems

Binary Search

0

Sorting Algorithms
3 M=4 5 6 8

7
L=0 2 7 H=9

Bt
0 Q-2 3 4 l=5 -5 M=T -8 Hg | |
2% [2]5[s [ [ ]selva] o1} 8 ) B — Wi Eﬁ

0 1 2 3 4 5.M=5 H=6 7 8 9
B8 [2 s [ [12 [ @il s6]72] o1

oG

Searching Sorting Optimization
Looking through a list to find Sort things from least to greatest or Looking for the least or the greatest
something that needs a specific greatest toleast or biggest to

characteristic smallest



Facial Recognition

Facial recognition is the mechanics behind iPhone logins and
Snapchat filters, and it runs on an algorithm. The system works
by using a biometrics map to plot facial features from a photo or
video. It then takes this information and compares it to a known
database of faces to find a match. This is how it can verify
identity. When it is just used for Instagram or Snapchat filters,
there is no database search. It simply makes a biometric map of
the face and applies the filter to it.

Recipes

Just like sorting papers and even tying your shoes, following a _geb
recipe is a type of algorithm. The goal of course being to create a = SEP ,3”
duplicated outcome. In order to complete a recipe, you have to | P S JERY

follow a given set of steps. Say you are making bread. You need
flour, yeast and water. After you have your ingredients, you need
to combine them in a certain way that will create a predictable
outcome, in this case a loaf of bread.

Sorting Papers, Traffic Signals, Bus Schedules, GPS, Google Search, Facebook, etc.



— L

fourtteen years of sales experi

ervisor, we fopurteen
Searching AlgOritth that would 1e0re
Ignore All
hat [ have Add to Dictionary
1]l Business AutoCorrect
0, Increase Language
ity Furnish 8 o elling..

Example: Spell check

essentially looks through all items in

the list, compares it to the dictionary

and then the output: it is going to put
squiggly little red line under
something that is not spelled

correctly, or it is not going to do

anything if everything is spelled

correctly

The solution is the location of the
term that equals x or 0 if x is not in
the list.

The goal is to locate an element x in
the list of distinct elements or
determine that it is not in the list.

J




Linear Search

searching for 3

=== 37 No, next!

4 === 37 No, next!

3 === 37 Yes, found it!

» This algorithm checks each term in the
sequence, in order, with the desired term, x.

» letx =9
a, a4 dg
4.7,3,2,1,0,9
a; dasz ds Qg
Output: 7

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: mteger, a1, az, ..., a,: distinct mtegers)
=1
while (i = n and x # a;)
i=i+1
if i = n then location:=i
else focation := 0
return location{location 1s the subscript of the term that equals x, or 15 0 1f x 1s not found)}




Trace the linear search algorithm to look for 12 in the list:  4,7,2,1,9, 11, 12, 8,5

x =12
i =1:
= 2:
I = 3:
[ = 4
i =5:
[ = 6:
[=17:

2<9?

3<9?

4<9?

5597

6<9?

7<9?

1<9? V

TRUE

4

TRUE

4

TRUE

NS

TRUE

<

TRUE

<

TRUE

12 # 47 V

TRUE

12 =77 V

TRUE

12 + 27 V

TRUE

12 # 17 V
12 #+ 9?7 V

TRUE

12 #1117 V

TRUE

12 # 12?x

FALSE

@1 a3 as 4z Qo

procedure linear search (x: integer, a4, a,, ..., a,: distinct integers)
=1
while (i€ nand x # a) /1 if you haven't reached the end of the list and haven't found x
i=i+1 Il increase i by 110 move 10 the next number in the list

if i € nthen location ;=i /if you haven't reached the end of the list, then you found x in location i
else location := 0  # x wasn't found in the list, so we use location 0 to designate that it wasn't found

retu m locatlon pseudocode from Discrete Mathematics and I1s Applications, Rosen, 7e, McGraw-Hill

7<9? V location = 7




Trace the linear search algorithm to look for 3 in the list:

x =3
i = 1:
[ = 2:
[ = 3:
| = 4:
i =5:
I = 6:
=7

v
v
v
v
v
v
v

3+ 47

3+ 77

3+ 27

4,7,2,1,9,11,12,8,5

@1 a3 as 4z Qo
a; 0ag (GAg ag

i = 8: 839?{ 3 # 87 V
i =9 939?3{ 3 # 57 V
i = 10: 10S9?x

FALSE

10 <9? |location = 0

ALGORITHM 2 The Linear Search Algorithm.

procedure linear search(x: integer, ay, az, ..., ap: distinct integers)
i:=1
while (i = n and x # a;)
f:=i4+1
if i = n then focation:=i

else location := 0
return location{location 1s the subscript of the term that equals x, or 1s 0 if x 1s not found)




Flowchart for a Linear Search

\ Stat

£k

_g'“ Input x, a[1], ..., a[n] f,*f

i=i+1

Yes

Y

!
/ location=i /
f




PRAC" (E Given a list of array:
O your

OWN

22,11,5,6,7,3,9,1

Using a Linear Search Algorithm

a) Find the location of x, where x = 3
b) Find the location of x, where x = 10

c) Create a flowchart for a given problem.



e

-

Binary Search

» In alist of items in increasing order, the binary search algorithm begins by
comparing the desired element x with the middle value.

» The algorithm then chooses the upper or lower half of the data by comparing the

desired value with the middle value.

» The process continues until[a list of size 1 is found.

» letx =9
a, a, Gag
8)1)2)3) ¥Ji)9
a, az as a,
1+7 =4 > q,|| 3<9 - worksonly with the right
2 side of the list
5+7 . .
——— =6 - ag|| 7 <9 - works only with the right
5 6
side of the list

Output: 7

ALGORITHM 3 The Binary Search Algorithm.

procedure binary search (x: integer, a), @1, ..., d,. ICreasing integers)
i := 1{i 1s left endpont of search interval}
j = n [j 1s nght endpoint of search interval}
while i < j
m:= [{{ + j)/2]
if x = a, theni:=m+1
else j:=m
if x = a; then location:= i
else location := 0
return location{location 1s the subscript i of the term a; equal to x, or 0 1f x 15 not found}




Search for the umber 8 in the list using the binary search algorithm :

4,7,2,1,9,11,12,8,5

1,2,4,5,7,8,9,11,12

"\
i=1
x =8

1+9
1<9?V m=|_%_|
6<9 m=1212
TRUE - 2 -

6+ 7
6 <7? V m:|_%_|
6 < 67 " 8 = 87 v/

FALSE

?
j=9

8> 77 V

TRUE

location = 6

[ =6,

Floor function used for m value
in binary search:

_4_|=4
|_4.01_|=4
|_4.99_|=4

procedure binary search (x: integer, a;, a;, ..., a,: incre
i:=1  iisthe lefl endpaint of the search interval
j™=n  ijis the right endpoint of the search interval
while i < j /f as long as you are looking at a list of more than
m:=_{i+j¥2_| /i m becomes the location of the mid

ifx>a,theni:=m+1 &ifxisbigger than the number
elsej:==m i otherwise, move the top down

if x = a; then location := i  / if your list of 1 matches x, then
else location ;= 0 ¥ x wasn't found in the list, 0 we use locati

return location
peeudocods from Discrels Mathematic




. . . o ALGORITHM 3 The Binary Search Alzorithm.
Search for the number 3 in the list using the binary : S

search algorithm : procedure binary search (x: mteger, a). a»

..... i,” INCreasing integers)

i := 1]i 1s left endpoint of search interval}
j :=n{j 1s right endpoint of search interval}
4, 7, 2, 1, 9, 11, 12, 8, 5 while i < j

m:= (i + j)/2]

if x = ay theni:=m+1
else j :=m

if x = a; then focation:= i
else Jocation: =0

{; 2; 4‘; 5; 7; 8; 9; 11; 1TZ return location{location 1s the subseript i of the term a; equal to x, or 0 if x 15 not found}
i=1 ji=9
X =3 Floor function used for m
value in binary search:

1+9

1<97V m=|_T_=5 3>77x i=1, J=5 |_4_|=4

FALSE |_ 4.01_|:4

1+5 . . |_4.99_[=4

1<50 @ m=|.—— _|=3 3>4?x i=1 =3

3 <37 x 3=47 x location = 0




Flowchart for a Binary Search

| :\__ y

; Input x, a[1], ..., a[n] ffl

I !

I !

! !
l / location =0 /

/ location =i




PRACTICE

On Your

OWN

Given a list of array:

22,11,5,6,7,3,9,1

Using a Binary Search Algorithm

a) Find the location of x, where x = 3
b) Find the location of x, where x = 10

c) Create a flowchart for a given problem.




3 Practice
More Practice Makes |
Perfect

» Use linear and binary searching algorithms to locate n = 22
and n = 5 in set A.

A={0,2,411,22,8,14,9,27,30}



Sorting Algorithms

An algorithm that sorts the
elements of a list into
increasing order (numerical,
alphabetical, etc.)

Used often for large databases like sorting
customer or part numbers, prices, etc.

Phone directories (by last name)

Over 100 sorting algorithms have been
devised



Sorting Algorithms

BUBBLE SORT ALGORITHM INSERTION SORT ALGORITHM
(WORKING + PSEUDOCODE) (WORKING + PSEUDOCODE)
3
BEDOIO

0 1 2:3 4

o ° | < [][2

Descending

5 - Doon
o &

Bubble Sort Insertion Sort



Bubble Sort Algorithm

An example of a computer algorithm is bubble sort. This is a simple algorithm used for taking a list of
jumbled up numbers and putting them into the correct order. The algorithm runs as follows:

» Look at the first numberin the list.

v

Compare the current number with the next number.

v

Is the next number smaller than the current number? If so, swap the two numbers around. If not,
do not swap.

Move to the next number along in the list and make this the current number.
Repeat from step 2 until the last number in the list has been reached.

If any numbers were swapped, repeat again from step 1.

vV v vy

If the end of the list is reached without any swaps being made, then the list is ordered, and the
algorithm can stop.



Bubble Sort Algorithm

» A simple algorithm that successively compares adjacent elements, interchanging
them if they are in the wrong order. This may require several passes.

/ Pass 1: \ / Pass 2: \ / Pass 3: \ /" Pass 4: )
x 3 3 3 3], 3 3 By 2 2| ¢ 1

3 1 4 - e 2 2 2 3l 1 1

5 E]/ 2 2 U 4)( 1 1 1 3

2 2 |X |5 1 1 1 4

1 1 X@ 5 5 (5 g g g

o NG 2N AN y




Start

-
Readnandaln]
‘{f/' ead nand aln /
ALGORITHM 4 The Bubble Sort.
procedure bubblesort(ay, ..., a, : real numbers with n = 2) .
fori:=1ton—1 [ o ]

for j:=1ton —i
if a; > aj;1 then interchange a; and aj4

{a1, ..., ay 15 in increasing order}

/K ~
_.\\['r:n \ no /3/ Print the array /
a3
i=i+1 |li/
M‘:» End

yas

¥
l Swap alj], a[j+1] ]
I




5,1,4,2,8




0,5,7,6,9,4,3,2



Sort the list using Bubble Sort:

1,3,5,2,

1,3,5,

1,3,5,2,7

\“,_ -

3,1,7,5,2

~)

2,

~J

v

1,3, 2,

5,7

1,3,2)5,7

1,3,2)5,7

1,2,

1,2/3,5,7

1,2,3,5,7

3,5,7




Try!

» Use the bubble sort to put 3, 2, 4, 1, 5 into increasing ordetr.

First pass (3 2 2 2 Third pass (’2 1
2 ( 3 3 3 1 Ii 2
4 4 4 1 3 3
1 1 w1 ¢4 4 1
5 5 5 5 5 5
Second pass ( 2 2 2 Fourth pass (; C - an interchange
3 3 1 -
1 =1 ( 3 4 ( : pair in correct order
4 4 4 . i ot
5 5 5 Numbers i ColoT

guaranteed to be 1 correct order




Insertion Sort Algorithm

» Another simple sorting algorithm that begins with the second element, comparing
it to the first and ordering it appropriately. The third element is then compared
with the first and, if necessary, the second to order it. This pattern repeats.

15t pass: 2nd pass: 3rd pass: 4th pass:
4 3 3 2 1
3 4 4 3 2
5 © 5 4 3
2 2 5 4
1 1 1 5



ALGORITHM 5 The Insertion Sort.

procedure insertion sort(ai, ay, . .., a,: real numbers with n > 2)
for j :=2ton
=1
WhilEﬂfj:p.ﬂf Fll,ll#.-—
i=i+1
m:=d;j
fork:=0toj—i—1

Aj—f = Qj_f—1

aii=m !65318724

a1, ..., a, 1s In Increasing order}




€S

m=al[j]
k=0

alil=m

i++

oo/ — )

alj-kl=a[j-k-1] F—>

k++




Insertion Sort Example

Insertion Sort in C++

Sorted Array Unsorted Array

Traverse leftwards wherever

you find the first greater item

insert before that

Since,3<5 3 gets inserted before 5
5 moves 1 position rightwards

Since,1<3 1 gets inserted before 3
3, 5 each move 1 position rightwards

9 is at correct position now No Insertion needed or
No rightward movement needed

Since, 8 <9 8 gets inserted after 5
' 9 moves 1 position rightwards

2 gets inserted after 1

Since,2<3 3 to 9 each moves 1 position rightwards

4 gets inserted after 3
Since, 4 <5 5, 8,9 each moves 1 position rightwards

7 gets inserted after 5
Since,7<8 8,9 each moves 1 position rightwards

Final Sorted Array




7,4,5, 2




Sort the list using Insertion Sort: 3,1,7,5,2

ALGORITHM 5 The Insertion Sort.

,&b unsorted
N 3 75 2 procedure insertion sorf(a, as, . .., a,: real numbers with n > 2)
’ » for j :=2ton
=1
while a; > g;
i=i+1
m:=aj
fork:=0toj—i—1
Aj_f ‘= dj_f—1
dai '=m
{ay, ..., a, is In increasing order)

» m temporarily store the number you are inserting in

> at the end after sliding numbers bigger than a[j] down 1 spot, there will
be an empty value at a[i]’s location (as values move upwards, value of
a[j] will be wiped at the very beginning), where m (wiped a[j] value) will
be inserted.




!EEQE!!IB



Practice

» Use the Bubble and Insertion Sorting algorithms to sort the elements of set A.

A ={42,19,32,11,8,1}



Answer: Bubble Sort

» Use the Bubble and Insertion Sorting algorithms to sort the elements of set A.

/ Pass 1: \

19,42,32,11,8,1
\/

19,32,42,11,8,1
\/

19,32,11,42,8,1
\/

19,32,11,8,42,1
\/

19,32,11,8,1,42

\_ J

A={42,19,32,11,8, 1}

4 N

19,32,11,8,1,42
\/

19,11,32,8,1,42
\/

19,11,8,32,1,42
\/

19,11,8,1, 32,42

Pass 2:

\_ J

/

\

19,11,8,1, 32,42
\/

11,19,8,1, 32,42
\/

11,8,19,1, 32,42
\/

Pass 3:

11,8,1,19, 32,42

J

-

11,8,1,19, 32,42
\/

8,11,1,19,32,42
\/

Pass 4:

~

8,1,11,19,32,42

\_

J

-

8,1,11,19, 32,42
\/

Pass 5:

1,8,11,19, 32,42

~




Answer: Insertion Sort

» Use the Bubble and Insertion Sorting algorithms to sort the elements of set A.

A ={42,19,32,11,8,1}

Pass 1: Pass 2: Pass 3: Pass 4: Pass 5:

19,42,32,11,8,1 19,32,42,11,8,1 11,19,32,42.8,1 8,11,19,32,42,1 1,8,11,19, 32,42



Try!

» Use the insertion sort to put the elements of the list 3, 2, 4, 1, 5
in increasing order.

3> 2, e 4 2,3,415
4>2&4>3 ™2 23415
1 <2, E—) 1,2,3,4 5
5> 4, — 1,2,3,4,5






Optimization Algorithms: Greedy Algorithms

O These algorithms makes the “best” choice at each step. We must specify what that
“best” choice is.

» Finding shortest path between two points
» Connect network using least amount of fiber-optic cable

» Scheduling

( There are perhaps hundreds of popular optimization algorithms



» Design a greedy algorithm for making change of n U.S. cents with quarters, dimes,
nickels and pennies.

$0.97 — Making Change

» At each step, use the largest possible value coin that does not exceed the amount of change left.

$0.97
$0.72
$0.47
$0.22

$0.12
$0.02

$0.01

-

4 Quarter\

Quarter
Quarter
Dime
Dime

Penny

Penny )

$0.97 — $0.25
$0.72 — $0.25
$0.47 — $0.25
$0.22 — $0.10
$0.12 — $0.10
$0.02 — $0.01
$0.01 — $0.01

quarter — 25 cents
dime — 10 cents
nickel —  5cents
penny —— 1cent




Make a Change for
397 750 IQR using

Greedy Optimization
Algorithm.

ww Central Brmkof Iraq -
o 2 £

=

.-. .:’- \ | » v '. ;
1::()’!?\!_ ——y

housand Dinaiees




The backpack problem

Let’s imagine, a thief broke into a jewelry store, in
which there are three jewelry weighing 2 kg, 4 kg,
and 6 kg cost $3000, $5000, $6000, respectively.
That is to say, $1500/kg, $1250/kg, $1000/kg.

The thief can take only 10 kg — that is how much his
backpack holds. The thief wants to maximize the
profit. What will be the optimal solution for the
thief?

$5000+$6000=$11000
(10 kg)



ALGORITHM 6 Greedy Change-Making Algorithm.

procedure change(cy, ca, ..., ¢,: values of denominations of coins, where
] > €3 > -++ > Cp; M. apositive integer)
fori :=1tor
d; = 0 {d; counts the coins of denomination ¢; used}
while n > ¢
d; =d; + 1 {add a coin of denomination ¢; }
ni=Hn-—C;

id; 1s the number of coins of denomination ¢; in the change fori =1, 2. ..., r




Greedy Algorithm: Scheduling

» A greedy algorithm makes the best choice at each step according to a specified criterion. However,
it also can be difficult to determine which of many possible criteria to choose:

To use a greedy algorithm to schedule the most talks, that is, an optimal schedule, we need to decide
how to choose which talk to add at each step. There are many criteria we could use to select a talk at
cach step, where we chose from the talks that do not overlap talks already selected. For example, we
could add talks in order of earliest start time, we could add talks i order of shortest time, we could
add talks in order of earliest finish time, or we could use some other criterion.

» Talk 1 starts at 8 a.m. and ends at 12 noon,
» Talk 2 starts at 9 a.m. and ends at 10 a.m.,
» Talk 3 starts at 11 a.m. and ends at 12 noon.



11 am — 12 am

We first select the Talk 1 because it starts earliest. But once we have selected 7alk 1 we cannot select
either Talk 2 or Talk 3 because both overlap 7alk 1. Hence, this greedy algorithm selects only one talk.
This 1s not optimal because we could schedule 7alk 2 and Talk 3, which do not overlap.




event starting time ending time

1

O QW

2
3
6

3

5)
9
8

Algorithm 1:

*The first idea is to select as short events as possible.

In the example, this algorithm selects the following
events:

*However, selecting short events is not always a
correct strategy. For example, the algorithm fails
In the below case:




event

starting time ending time

O Q™

1

2
3
6

3

5)
9
8

Algorithm 2:

«Another idea is to always select the next
possible event that begins as early as possible.
This algorithm selects the following events:

*However, given a counter example for this
algorithm. In this case, the algorithm only
selects one event:




event starting time ending time
A 1 3
B 2 5)
C 3 9
D 6 8

Algorithm 3:

*The third idea is to always select the next
possible event that ends as early as possible. This
algorithm selects the following events:

It turns out that this algorithm always produces an optimal
solution.

*The reason for this is that it is always an optimal choice to first
select an event that ends as early as possible.

«After this, it is an optimal choice to select the next event using
the same strategy, etc., until any other event can’t be selected.
*One way is the algorithm works is to consider what happens if
first select an event that ends later than the event that ends as
early as possible.

*Now, with having at most an equal number of choices how the
next event can be selected.

*Hence, selecting an event that ends later can never yield a
better solution, and the greedy algorithm is correct.




ALGORITHM 7 Greedy Algorithm for Scheduling Talks.

procedure schedule(s) < s» < - < s, start times of talks,
e1 < ey < --- < e¢,: ending times of talks)

sort talks by finish time and reorder so thate; <ex; < ... < ¢,
S:=0
for j:=1ton

if talk j is compatible with S then
S := SU {talk j}
return S {5 is the set of talks scheduled}




» Time

11

10




Task 1

Task 4

Task 5

Task 2




©)

Task 4 || Task 5

Task 8 Task 10 -
talk 1:start 8 am._ end 10 am. @\
talk 2: start 9am._ end 11 am. | d
talk 3: start 10:30 am., end 12 noon
talk 4: start 9:30 am_, end 1 p.m. J \
talk 5: start 8:30 am., end 2 p.m. =
talk 6: start 11 am., end 2 p.m. _
talk 7: start 1 pm_, end 2 p.m. \\



Whale Optimization Algorithm

Hunting strategy (WOA)
of Humpback
Whale

Humpback Whale dive 12 meters deep.

To catch their prey, whales use

Bubble Net Feeding method They create bubble around the target.

Target will be captured by bubbles.

vV v v Vv

Ready to eat.




Humpback Whale: Hunting Technique l

‘b'\a ‘?

\J

/$
S D> 4
-

" Whales create spiral-shaped bubbles

with shrinking circles



start

» WOA was proposed based on the bubble-net hunting behaviour of the

humpback whales.
> WOA is one of the nature- inspired heuristic optimization algorithms. R P A S
» WOA is widely used in engineering applications and medical application. ¢
» WOA is efficient algorithm the key characters are, it is simple and easy

Calculate the fitness value of each search agent @——

to implement, gradient information is not required, local optima can be
bypassed and used in a wide range of disciplinary challenges. ¢

» WOA is used to find optimal solutions in highly complex constraints in
reasonable time period.

The best position is x*

i

Update the search agents position

i
No
The maximum number of iterations is satisfied’
-~ X
X "/
< 584 D’
AL
Output global optimal position x*

v F bt ot -
X(t+1)=D"-e"-cos(Zrt) + X*(t) t=05 t=—05 t=—1 ¢=0 t=1



Applications of WOA

The WOA i1s a new swarm intelligence S. No. Application

Problem

optimization algorithm, which was

) R Economic and Emission Dispatch using WOA
proposed by Australian scholars Mirjalili

and Lewis in 2016. Inspired by the hunting 7 Multi-Objective Optimal Vehicle Fuel Consumption based on
behavior of humpback whales in nature, WOA
the algorithm simulates the shrinking 3. Multi-objective optimal mobile robot path planning base on WOA
encircling, spiral updating position, and 4 An Ameliorative WOA for Multi-Objective Optimal Allocation of
random hunting mechanisms of the Water Resources . .
humpback whale popula tion The 5 A MOWOA for Solving Engineering Design Problems
algorithm includes three stages: encircling _ .

6. WOA for combined heat and power economic dispatch

prey, bubble net attack and search for
prey.



Using the WOA, brain

tumour can be classified. : : : o : ; :
Classification of sentiments within online social media

based on the theory of social impact using whale
optimization algorithm.

Optimum position and size of the battery
storage unit to minimize losses using WOA.

Positioning of charging stations for electric
vehicles with service ability using WOA.




Research on WOA

= https://www.mdpi.com/1424-8220/21/13/4579

= https://www.scirp.org/journal /paperinf
ormation.aspx?paperid=101268



https://www.mdpi.com/1424-8220/21/13/4579
https://www.scirp.org/journal/paperinformation.aspx?paperid=101268
https://www.scirp.org/journal/paperinformation.aspx?paperid=101268

A




Practice

1. List all the steps used by Algorithm 1 (procedure max) to find the maximum of the list: 1, 8,12, 9,

11,2, 14,5, 10, 4.
-
J
o

N—

2. Devise an algorithm that finds the sum of all the integers in a list.

3. Describe an algorithm that takes as input a list of n integers and finds the location of the last even
integer in the list or returnsO if there are no even integers in the list.






» 4. Describe an algorithm that
locates the first occurrence of
the largest element in a finite
list of integers, where the
integers in the list are not
necessarily distinct.



5)

6)

Sort these lists using the insertion sort.

a) 3.5.4.1,2 b) 5.4.3,2.1
¢) 1.2.3.4.5

Use the bubble sort to sort 3, 1., 5, 7. 4, showing the lists
obtained at each step.




7)  Use the greedy algorithm to make change using quarters,
dimes, nickels, and pennies for:
a) 51 cents
b) 69 cents
c) 76 cents
d) 60 cents

Use the greedy algorithm to make change using quarters,

dimes, and pennies (but no nickels) for each of the amounts given
in 7) question above. For which of these amounts does the greedy
algorithm use the fewest coins of these denominations possible?

8)

9) Use Algorithm 7 to schedule the largest number of talks

in a lecture hall from a proposed set of talks. if the starting

L‘ and ending times of the talks are 9:00 a.m. and 9:45 A.m.:

| 9:30 aA.m. and 10:00 a.m.: 9:50 a.m. and 10:15 A.m.;

v 10:00 a.m. and 10:30 a.m.: 10:10 a.m. and 10:25 a.Mm.:

‘ 10:30 a.m. and 10:55 a.m.: 10:15 a.m. and 10:45 a.m.:

- 10:30 a.m. and 11:00 a.m.; 10:45 a.m. and 11:30 a.m.:
10:55 am. and 11:25 A.m.: 11:00 a.m. and 11:15 a.m.







Sort these lists using the

a)
c)

3,54, 1.2
1,2,3.4,5

b) 5.4.3,2. 1

Selection sort is an effective and efficient sort algorithm based on comparison operations. It adds one
element in each iteration. You need to select the smallest element in the array and move it to the beginning

of the array by swapping with the front element.

Algorithm 4 Selection Sort

1: fori=1ton—1do

2: min =1

3: for j=i+1tondo

4:

5: if A[j] < A[min| then
6: min = j

¢ end if

8: end for

o)

Swap A[min] and A[i
10: end for

// Find the index of the i*" smallest element

NDNDN -

-

-

= = T

-

(S

W w w N
N NI N

o1 O1 01 N

-
- .

NNDN =
Wwwh

-

-

N NI N

o1 01 O WD

-
-
-
-
-

et ek e )

-

STEP1.

STEP 2. E

STEP 3. [2]a][5]7 ]| =—=

min element

STEP 4.

— =

7
ﬁ min element

sfa]7 |

Unsorted Array

517

Unsorted Array

2 —> |2
ﬁ min element Sorted Array
sla |7 | == [2]4
t min element Sorted Array
2 4

5 7

Sorted Array

Unsorted Array

214

5 7

Sorted Array




Selection Sort

Yellow is smallest number found
Blue is current item
Green i1s sorted list




Links for additional and detailed
information about Optimization

https://machinelearningmastery.com/tour-of-optimization-algorithms/

https://algorithmsbook.com/optimization/files/optimization.pdf


https://machinelearningmastery.com/tour-of-optimization-algorithms/
https://algorithmsbook.com/optimization/files/optimization.pdf

Recursive
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Towers of Hanoi

-

iDek 1

2l =

i = c A B i
2 3 4
A B ¢ A B c A
5 § 7
_|'|' E : -ﬂ'. 3 ':.: A







Towers of Hanoi

1,3,7,15,31,63,127,255 ...

N‘ 1 2 3 4 5 6 7 8 |sum

2(ap_1) +1 What if n is large? 1 | 1 r
/ 2 |1 2 3

3 1 2 4 7

n_ |

2" =1 4 |1 2 a4 8 | 15

5 |1 2 4 8 16 ._ 31

If you had 64 golden disks you would have 6 |1 248 [16]32] | 63
to use a minimum of 2% —1 moves. If 7 |1 2 4 8 16 32 64 127
each move took one second, it would take 8 1| 2|4 8|16 | 32 | 64 | 128 | 255

around 585 billion years to complete the
puzzle!



Towers of Hanoil animations

Play and make sure you get minimum moves for certain number of discs:

https: //www.mathsisfun.com/games/towerofhanoi.html

You can check your solutions comparing with this one:

http://towersofhanoi.info/Animate.aspx


https://www.mathsisfun.com/games/towerofhanoi.html
http://towersofhanoi.info/Animate.aspx

1,3,6,10,15, 21, 28, 36, 45, 55, ...

_n(n+1)

Xn 5

A Rule

We can make a "Rule" so we can calculate any triangular number.

First, rearrange the dots like this:

n= 1 2

e e e ()
[ _'5,

Then double the number of dots, and form them into a rectangle:

n= 1 2 3 4
* :. YL:. :.
M eeee

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597, 2584, 4181, ...

Fp=Fo_1+F,




> (5,11,17,23, ...}

> (3,6,12,24,...)

> {2,6,14,30,62, ...}

Find the Factorial of a Number and Fibonacci series
using Recursion (PseudoCode or Algorithm)

»> {1,2,6,24,120,720, ...}

> {2,4,16,256,65536, ...}

> {2,3,6,18,108,1944,209952, ... }



Find the Factorial of a Number using Recursion

#include <iostream>
using namespace std;

unsigned int factorial(unsigned int n)

{
if(n==0||n==1)
return 1;
return n * factorial(n - 1);
}
int main()
{

int num = 5;
cout << "Factorial of "

<<num << "is " << factorial(num) << endl;
return o;

n!
1
2x1
Ix2x1
4x3x2x%x1
Sx4x3IX2Xx1

etc

1
=2 x 11
=3 x 21
=4 x 31
=5 x 41

etc




Final value =120
51

f S1=5*24=120is returned
S * 4!

Re CurSive T 4'=4* 6=24is returned

4 * 31

Demonstration i TR
of Factorial e

T 21=2* | =2 isreturned
2 *-1!

T I returned
1

(a) Sequence of recursive calls. (b) Values returned from each recursive call.




// Fibonacci Series using Recursion // Fibonacci Series using Space Optimized Method #include<iostream>
#include <iostream> #include<bits/ Stdct3+-h> using namespace std;
. . using namespace std;
using namespace std;
o int fib(int n) class GFG{
int fib(int n) { public:
{ inta=0,b=1,c, i int fib(int n)
if(n<=1) if( n == 0) {
returnn; | returna; intf[n + 2];
return fib(n - 1) + fib(n - 2); ?’I‘(l =2 i<=n;its) inti;
b c=a+b; flo]=o;
a=b; fl1] = 1;
int main() b=c; for(i=2;1i<=n; i++)
{ b {
intn =9; returnb; fli] = i - 1] + f[i - 2];
cout << fib(n); ¥ }
\ return o; int main() ;eturn fln];
{
intn =9; ¥
E:}[llir; <Of1b(n); int main ()
’ {
’ GFG g;
intn =4;
cout << g.fib(n);
return o;
¥




Recursive Demonstration of the Fibonacci
Sequence

fib(3) [ =1 +1+1+1+1=5

i e, NS NEE

fib(4) fib(3)

fib(2) fib(2)

fib(1)
=1

wa| 01 [ ?“::’ “\E
fib(1) fib(0)
= 1 }: D

n= ) 1 2 3 4 5 6 i 8 9 0 1i 12 13 14 ...

Xp = 0 1l 1 2 3 5 8 13 |21 34 | 55 &89 144 233 377 | ...




Big-O Notation
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Big-O Notation

Time Complexity

In the time complexity analysis, we define the time as a function of the problem size
and try to estimate the growth of the execution time with the growth in problem size.



Big-O Notation

Memory Space

The space require by the program to save input data and results in memory (RAM).



Big-O Notation

Big-O notation (with a capital letter O, not a zero), also called Landau’s symbol, is a
symbolism used in complexity theory, computer science, and mathematics to describe the
basic behavior of functions. Basically, it tells you how fast a function grows or declines.

Landau’s symbol comes from the name of the German mathematician Edmund Landau
whoinvented thenotation.

The letter O is used because the rate of growth of a function is also called its order.



Big-O Notation

v Efficiency of an Algorithm.
v Time Factor of an Algorithm.

v Space Complexity of an Algorithm.

[It is represented by O (n), where n is the number of operations.]




Number of
Operations

Worst Case

Average Case

Best Case

3 <+

Input Size




Execution Time

Let us consider that every operation can be executed in 1 ns (10~°s).

Time
Function (n = 10%) (n = 10%) (n = 10°)
log, n 10 ns 13.3 ns 16.6 ns
Vvn 31.6 ns 100 ns 316 ns
n 1 ps 10 ps 100 ps
nlog, n 10 ps 133 ps 1.7 ms
n? 1 ms 100 ms 10 s
n’ 1s 16.7 min 11.6 days
n 16.7 min 116 days 3171 yr
2" 3.4-10%%% yr | 6.3-10%°93 yr | 3.2 103086 yr




Big-O Notation

» We use Big-O notation to classify algorithms based on the number operations or
comparisons they use.

» For large values of x: x2,3x% + 25,4x? + 7x + 10 are all very similar, so we will
consider them of the same order: O(x?%)

» f(x)is 0(g(x)) if there exist constants (witnesses) C and k such that
|f (x)|< C|g(x)| whenever x > k.



Example 1 (Version 1)

Show that 3x? + 25 is O(x?)

let: x=05 3x2+25=3(5)%+25=75+ 25 =100

k
2
25C = 100
|3x2% + 25| < 4|x?| when x > 5.
C =>4

x = 6:

3x?% + 25 =133 4x% = 144



Example 1 (Version 2)

2
Show that 3x% + 25 is O(x?) 4 28x

3x%+ 25 <3x2+25x%, x>1 3x%+ 25

3x%2+25<28x%, x>1
C = 28, k=1




Show that 4x3 + 7x%2+ 12 is O(x3) by finding the witnesses, C and k.

4x3 + Tx%2 +12 < 4x3+7x3+ 12x3, x>1
|[4x3 + 7x% + 12| < |23x3], x> 1

C =23, k=1



Show that x3 + 5x is not O(x?)

if C =x:

|x3+5x| < C|x?|, x>k

x3+5x>x-x%, x>0

No fixed C that will keep

x3+5x < Cx?

Once x > C, calculation will be wrong

C has to be a constant and this

inequality has to hold for all x > k.
So, no matter what you pick for C, x

can always get large enough to
overcome that.

(¥

)




/ Let's

pracﬂcel

Prove that:

=) 2n+10=0(n)

=) 1000n%+ 1000n = 0(n?)



Input Size calculations

Suppose a computer can perform 1012 bit operations per second. Find the largest problem

size that could be solved in 1 second if an algorithm requires:

@ n* bit operations
n* = 10"

1 1

()% = (10'%)%

n =103 = 1000

@ 2™ bit operations
2" = 10"
239 ~ 55- 10

240 ~ 1.1. 1012

2" = 10"

log2™ =log1

012

n-log2 =12

n

- 39.86
T log2 T

log10 =1




Time calculations

logn = log,n

Suppose a computer can perform 1012 bit operations per second. Find the time it would take
an algorithm that requires n® + logn operations with a problem size of:

(:) n = 1000 (:) n =108

f(n) =n® +logn f(n) =n3 +logn
10003 + log, 1000 =~ 10° + 10 bit operations (108)3 + log, 108 ~ 10%* + 26.6 bit operations
1 sec
10%*b.0 - ———— = 10'?%sec
1 sec 1 12 '
10% b. o - 10°*b.0

= sec.
1012 p. 1000
0 1lmin  1lhr 1 day 1yr

1012 . . . .
Se¢ 60sec 60 min 24 hour 365 days

~ 31710 years



> TEST YOURSELF

’?. Given that supercomputer takes 10~1> seconds per bit operation, how long will it

take that supercomputer to solve a problem of size n = 100 if the algorithm
requires:

= 13 bit operations?
= nlogn operations?




?/' > What is the largest problem size n that we can solve in no more than one hour
using an algorithm that requires f(n) operations, where each operation takes
1077 seconds (this is close to a today's computer), with the following f(n) ?
Below are examples of the given algorithms.

01 >> log2(n)

f(n) x 10 ?s = 1 hour = 3600s
02 >> log2*(n) f(n) = 3.6 x 10"

01 >> log, 1 = 3.6 x 10"

n — 936x 10"

02 >> (log, n)* = 3.6 x 10%

-
1 = 21.3?:{1[!

03 > n— 1.2 x 102



/2/ﬂ Suppose you have algorithms with the six running times listed below. (Assume
these are the exact number of operations performed as a function of the input size
n.) Suppose you have a computer that can perform 10!° operations per second,
and you need to compute a result in at most an hour of computation. For each of
the algorithms, what is the largest input size n for which you would be able to get
the result within an hour?

a) n?
b) n3
c) 100n?
d) 2"

a) For n?, the running is n? operations. Since the computer can
perform 101° operations per second, the largest input size n for
which the result can be computed within an hour is:

n? = 1019 x 3600. Simplifying, we get:

n =v101% x 3600, n = 6000000.

So, the largest input size n is 6000000.



Running time

Operations

Big-O Complexity Chart

Elements

v

Input size (n)




Examples of Algorithms and their big-O complexity

Big-O Notation

Examples of Algorithms

O(1)

Push, Pop, Enqueue (if there is a tail reference),
Dequeue, Accessing an array element

O(log(n)) Binary search

O(n) Linear search

O(n log(n)) Heap sort, Quick sort (average), Merge sort
O(n?) Selection sort, Insertion sort, Bubble sort
O(n?) Matrix multiplication

O(2") Towers of Hanoi




References

Discrete Mathematics explained in Kurdish:

REFERENCE Q

Discrete Mathematics and its Applications by
Kenneth H.Rosen, Chapter 3, page 191:



https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.youtube.com/watch?v=A4dq1rVwcF4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=17
https://www.houstonisd.org/cms/lib2/TX01001591/Centricity/Domain/26781/DiscreteMathematics.pdf
https://www.houstonisd.org/cms/lib2/TX01001591/Centricity/Domain/26781/DiscreteMathematics.pdf
https://www.houstonisd.org/cms/lib2/TX01001591/Centricity/Domain/26781/DiscreteMathematics.pdf
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-in-data-structure-and-algorithms
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-in-data-structure-and-algorithms
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-in-data-structure-and-algorithms
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