
Lecture 2: Big-O Notation

Time Complexity and Space
Complexity of an Algorithm

Ms. Togzhan Nurtayeva
Course Code: IT 235/A
Semester 3
Week 4-5
Date: 26.10.2023

Two criteria are used to judge algorithms:

i. Time complexity
ii. Space complexity

Time complexity of an algorithm is the amount of CPU time it needs to run completion.

Space complexity of an algorithm is the amount of memory it needs to run completion.

TIME:
- Operations
- Comparisons
- Loops
- Pointer references
- Function calls to outside

SPACE:
- Variables
- Data structures
- Allocations
- Function call

Time complexity of an algorithm is the amount of time (or number of steps)
needed by a program to complete its task (to execute a particular algorithm).

The time taken for an algorithm is comprised of two times:

1. Compilation time

2. Run time

Limits

Better

Solutions

Less More
Time
Space

Compile Time

❖ Compilation time is the time taken to compile an algorithm
❖While compiling it checks for the syntax (𝑖𝑛𝑡 → 𝑖𝑡𝑛) and semantic errors (𝑖𝑛𝑡 12 → 𝑖𝑛𝑡 12.5)

in the program and links it with the standard libraries

Run Time

❖ It is the time to execute the compiled program
❖ The run time of an algorithm depends on the number of instructions present in the

algorithm
❖Note that run time is calculated only for executable statements and not for declaration

statements

Types of Time Complexity

Time complexity of an algorithm is generally classified into three types:

1. Worst Case (Longest Time)

2. Average Case (Average Time)

3. Best Case (Shorter Time)

✓ Big Oh Notation: Upper bound

✓ Omega Notation: Lower bound

✓ Theta Notation: Tighter bound

Standard Analysis Techniques

➢ Constant time statements

➢ Analyzing Loops

➢ Analyzing Nested Loops

➢ Analyzing Sequence of Statements

➢ Analyzing Conditional Statements

Time and Space are dependent
on these analysis

Basic Example for Time Complexity

// Input: int A[n], array of n integers
// Output: sum of all numbers in array A

int Sum (int A[], int N){

int s = 0;

for (int i = 0 ; i < N ; i++)

s = s + A[i] ;

return s;
}

1

2

3

4

5
6

7

8

1, 2, 8: Once
3, 4, 5, 6, 7: Once per each iteration of for
loop, N iteration

Total: 5𝑁 + 3

The complexity function of the algorithm is:
𝑓 𝑁 = 5𝑁 + 3

Space Complexity of Algorithm

Space Complexity of a program is the amount of memory consumed by the algorithm until it completes
its execution.

The space occupied by the program is generally by the following:

1. A fixed amount of memory occupied by the space for the program i.e. data types
2. Code and space occupied by the variables used in the program.
3. A variable amount of memory occupied by the component variable whose size is dependent on the

problem being solved.
4. This space increases or decreases depending on whether the program uses iterative or recursive

procedures.

Space Complexity = Auxiliary Space + Input Space

Types of Space Complexity

➢ Type 1: A fixed part that is a space required to store certain data and variables, that are
independent of the size of the problem.

For example, simple variables and constant used, program size, etc.

➢ Type 2: A variable part is a space required by variables, whose size depends on the size of the
problem.

For example, dynamic memory allocation, recursion stack space, etc.

Space Complexity S(P) of any algorithm P is S(P) = C + SP (I)

Where,

C is the fixed part
S(I) is the variable part

Algorithm: SUM (A, B)
Step 1 – Start
Step 2 – C ← A+B+10
Step 3 - Stop

Other Types of Space

Instruction Space: is the space in memory occupied by the complied version of the program. We
consider this space as a constant space for any value of n. The instruction space is independent of the
size of the problem.

Data Space: is the space in memory, which used to hold the variables, data structures, allocated
memory and other data elements. The data space is related to the size of the problem.

Environment Space: is the space in memory used on the run time stack for each function call. This is
related to the run time stack and holds the returning address of the previous function. Stored return value
and pointer on it.

Basic Example for Space Complexity

𝑇𝑦𝑝𝑒 Size

bool, char, unsigned char, signed char, _int8 1 byte

_int16, short, unsigned short, wchar_t, _wchar_t 2 bytes

float, _int32, int, unsigned int, long, unsigned long 4 bytes

double, _int64, long double, long long 8 bytes

1. To store program instructions.
2. To store constant values.
3. To store variable values.
4. And for few other things like

function calls, jumping
statements, etc.

{
int z = a + b + c;
return (z);
}

int sum(int a[], int n)
{
int x = 0;
for (int i = 0; i < n; i++)
{
x = x + a[i];
}
return (x);
}

(4(4)+4) = 20 bytes

4n +12

Difference Between

Space Complexity Time Complexity

Space Complexity is the
space (memory) needed
for an algorithm to solve
the problem. An efficient
algorithm take space as
small as possible.

Time Complexity is the time
required for an algorithm to
complete its process. It
allows comparing the
algorithm to check which
one is the efficient one.

Time complexity of a program is a simple measurement of how fast the time taken by a
program grows, if the input increases.

Method 2Method 1

The second method is faster. That’s why time complexity is important. In real life we want
software to be fast & smooth.

𝑛 − 2 𝑛 − 2

Space complexity of a program is a simple measurement of how fast the space taken by a
program grows, if the input increases.

The second method is better. There is no point in using more space to solve a problem if, we
can do the same with lesser space complexity.

Method 1
Method 2

𝑂(𝑛)

𝑂(1)

Calculating Time
complexity of
Algorithms

Calculations in different Cases

1. Loop

for (𝑖 = 1 to 𝑛){
x = y + z;
}

// 𝑛

// 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑖𝑚𝑒

𝑂(𝑛)

2. Nested Loop

for (𝑖 = 1 to 𝑛){
 for (𝑗 = 1 to 𝑛){
 x = y + z;
}
}

// 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑖𝑚𝑒

// 𝑛
// 𝑛

𝑂(𝑛2)

constant time can be neglected

Time complexity

Calculations in different Cases

3. Sequential Statements

ii) for (𝑖 = 1 to 𝑛){
x = y + z;
}

// 𝑛

// 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑖𝑚𝑒 = 𝑐2

𝑂(𝑛)

4. If-else Statements

if (condition){

}
else
{

}
// 𝑛2

// 𝑛

𝑂(𝑛2)

i) a = a+ b; // 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑖𝑚𝑒 = 𝑐1

iii) for (𝑗 = 1 to 𝑛){
c = d + e;
}

// 𝑛

// 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑡𝑖𝑚𝑒 = 𝑐3

= 𝑐1 + 𝑐2𝑛 + 𝑐3𝑛 = 𝑛

Time complexity

5. Loops running constant times

6. Loops running n times and
incrementing/decrementing by
constant

for (𝑖 = 1 to 𝑐)
{
 x = y + z;
}

int 𝑖 = 1;
while (𝑖 ≤ 𝑐)
{
 x = y + z;
}

𝑂(1)

for (𝑖 = 1 ; 𝑖 ≤ 𝑛; 𝑖 = 𝑖 + 𝑐)
{
 x = y + z;
}

int 𝑖 = 1;
while (𝑖 ≤ 𝑛)
{
 i = i + c;
}

𝑂(𝑛)

𝑂(𝑛)

7. Loops running n times and
incrementing/decrementing by
constant factor

for (𝑖 = 1 ; 𝑖 ≤ 𝑛; 𝑖 = 𝑖 ∗ 𝑐)
{
 x = y + z;
}

int 𝑖 = 1;
while (𝑖 ≤ 𝑛)
{
 i = i / c;
}

𝑂(𝑙𝑜𝑔𝑛)

8. Loops running n times and
incrementing by some constant
power

for (𝑖 = 2 ; 𝑖 ≤ 𝑛; 𝑖 = 𝑝𝑜𝑤 (𝑖, 𝑐))
{
 x = y + z;
}

int 𝑖 = 2;
while (𝑖 ≤ 𝑛)
{
 i = pow(i , c);
}

𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔𝑛)

1 → 𝑖 = 2
2 → 𝑖 = 2𝑐

3 → 𝑖 = 2𝑐2

…

The loop will end when: 𝑛 = 2𝑐𝑖

log2(𝑛) = log 2 (2𝑐𝑖
)

𝑙𝑜𝑔𝑛 = 𝑐𝑖

log 𝑐 𝑙𝑜𝑔𝑛 = 𝑙𝑜𝑔𝑐 𝑐𝑖

𝑖 = 𝑙𝑜𝑔𝑐(𝑙𝑜𝑔𝑛)

Algo1 ()
{
int 𝑖;
for (𝑖 = 1 to 𝑛)
print (“Hello World”);
}

Algo2 ()
{
int 𝑖;
for (𝑖 = 1 to 𝑛)
 for (𝑗 = 1 to 𝑛)
print (“Hello World”);
}

𝑂(𝑛)

𝑂(𝑛2)

//nested loop

More Examples

Time complexity

Algo3 ()
{
int 𝑖;
for (𝑖 = 1; 𝑖 < 𝑛; 𝑖 = 𝑖 ∗ 2)
print (“Hello World”);
}

Algo4 ()
{
int 𝑖;
for (𝑖 = 1; 𝑖 < 𝑛; 𝑖 = 𝑖/5)
print (“Hello World”);
}

𝑖 → 1, 2, 4, 8, 16, 32, … 𝑛

20 , 21, 22 , 23, 24 , 25 … 2𝑘

𝑛 = 2𝑘

2𝑘 = 𝑛

𝑘 = log2 𝑛

𝑂(log2 𝑛)

𝑂(log5 𝑛)

Time complexity

Algo5 ()
{
int 𝑖;
for (𝑖 = 1; 𝑖 < 𝑛3; 𝑖 = 𝑖 ∗ 5)
print (“Hello World”);
}

𝑂(log5 𝑛3)

Algo6 ()
{
int 𝑖;
for (𝑖 = 1; 𝑖2 <= 𝑛; 𝑖 + +)
print (“Hello World”);
}

Algo7 ()
{
int 𝑖 = 1, 𝑘 = 1;
while (𝑘 <= 𝑛)
{
 𝑖 + +;
 𝑘 = 𝑘 + 𝑖;
print (“Hello World”);
}
}

𝑖2 <= 𝑛

𝑖2 <= 𝑛
𝑖 <= 𝑛

𝑂(𝑛)

// all operations
inside any loop
considered

𝑘 1 3 6 10 15 … 𝑛

𝑖 1 2 3 4 5 … 𝑧𝑧(𝑧 + 1)

2
= 𝑛

𝑧2 + 𝑧 = 2𝑛

𝑧 = 2𝑛 = 2 ∙ 𝑛 𝑂(𝑛)

Time complexity

Algo8 ()
{
int 𝑖, 𝑗, 𝑘;
for (𝑖 = 𝑛/2; 𝑖 <= 𝑛; 𝑖 + +)
 for (𝑗 = 1; 𝑗 <= 𝑛/2; 𝑗 + +)
 for (𝑘 = 1; 𝑘 <= 𝑛; 𝑘 = 𝑘 ∗ 2)
print (“Hello World”);
}

// 𝑛/2

// 𝑛/2

// log2 𝑛

𝑛

2
∙

𝑛

2
∙ log2 𝑛 =

𝑛2 log2 𝑛

4

𝑂(𝑛2 log2 𝑛)

Time complexity

Algo9 ()
{
int 𝑖 = 𝑛;
while (𝑖 > 1)
{
print (“Hello World”);
 𝑖 = 𝑖/2;
}
}

// log2 𝑛

𝑂(log2 𝑛)

Algo10 ()
{
int 𝑖, 𝑗, 𝑘;
for (𝑖 = 𝑛/2; 𝑖 < 𝑛; 𝑖 + +)
 for (𝑗 = 1; 𝑗 <= 𝑛; 𝑗 = 2 ∗ 𝑗)
 for (𝑘 = 1; 𝑘 <= 𝑛; 𝑘 = 𝑘 ∗ 2)
print (“Hello World”);
}

// 𝑛/2

// log2 𝑛

// log2 𝑛

𝑛

2
∙ log2 𝑛 ∙ log2 𝑛 =

𝑛 (log2 𝑛)2

2

𝑂(𝑛 (log2 𝑛)2)

Time complexity

Algo11 ()

for (𝑖 = 1 to 𝑛){
 for (k = 1 to m)
print (“Hello World”);
}

Algo12 ()

for (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + +){
 for (𝑘 = 1; 𝑘 <= 𝑖; 𝑘 = 𝑘 + 1)
print (“Hello World”);
}

𝑂(𝑛𝑚)

𝑖 1 𝑡𝑖𝑚𝑒 2 𝑡𝑖𝑚𝑒𝑠 3 𝑡𝑖𝑚𝑒𝑠 … 𝑛 𝑡𝑖𝑚𝑒𝑠

𝑘 1 𝑡𝑖𝑚𝑒 1, 2 𝑡𝑖𝑚𝑒𝑠 1, 2,3 𝑡𝑖𝑚𝑒𝑠 … 1,2, 3, … , 𝑛 𝑡𝑖𝑚𝑒𝑠

𝑇𝐶 = 1 + 2 + 3 … + 𝑛 =
𝑛 𝑛 + 1

2
= (

𝑛2 + 𝑛

2
)

𝑂(𝑛2)

Time complexity

Independent Loop Dependent Loop

Time complexity

Algo13 ()

for (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + +){
 for (𝑗 = 1; 𝑗 <= 𝑛; 𝑗 = 𝑗 + 𝑖)
𝑥 = 𝑥 + 1;
}

𝑖 1 2 3 … 𝑛

𝑗 𝑛 𝑛/2 𝑛/3 … 𝑛/𝑛

𝑇𝐶 = 𝑛 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
= 𝑛𝑙𝑜𝑔𝑛𝑂(𝑛𝑙𝑜𝑔𝑛)

෍

𝑘=1

𝑛
1

𝑘
≈ න

1

𝑛 𝑑𝑥

𝑥
= 𝑙𝑜𝑔𝑛

Time complexity

Algo14 ()

𝑥 = 0;
for (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + +){
 for (𝑗 = 1; 𝑗 ≤ 𝑖; 𝑗 = 𝑗 + +)
 for (k = 1; 𝑘 ≤ 𝑗; 𝑘 = 𝑘 + +)
𝑥 = 𝑥 + 1;
}

𝑖 1 2 3 … 𝑛

𝑗 1 1; 2 1; 2; 3 … 1, 2, 3, … , 𝑛

𝑘 1 1; 1, 2 1; 1, 2; 1, 2, 3 … 1; 1, 2; … 1,2, 3 … 𝑛

1 + 1 + 2 + 1 + 2 + 3 + ⋯ + 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)(𝑛 + 2)

6

𝑂(𝑛3)

int fun(int n)
{
 int count = 0;
 for (int i = n; i > 0; i /= 2)
 for (int j = 0; j < i; j++)
 count += 1;
 return count;
}

𝑇 𝑛 = 𝑛 +
𝑛

2
+

𝑛

4
+ ⋯ + 1 = 𝑂(𝑛)

int a = 0, b = 0;
for (i = 0; i < N; i++) {
 a = a + rand();
}
for (j = 0; j < M; j++) {
 b = b + rand();
}

𝑂(𝑁 + 𝑀)

int i, j, k = 0;
for (i = n / 2; i <= n; i++) {
 for (j = 2; j <= n; j = j * 2)
{
 k = k + n / 2;
 }
}

𝑂(𝑛𝑙𝑜𝑔𝑛)

for (int i = n; i > 0; i = i / 2)
{
 for (int j = 1; j < n; j = j * 2)
{
 for (int k = 0; k < n; k = k + 2)
{
//some logic with complexity X
}
}
}

𝑂(𝑛 (log2 𝑛)2)

for(int i=0;i<n;i++){
i*=k;
}

𝑂(log𝑘 𝑛)

int value = 0;
for(int i=0;i<n;i++)
 for(int j=0;j<i;j++)
 value += 1;

𝑂(𝑛2)

int a = 0, i = N;
while (i > 0) {
 a += i;
 i /= 2;
}

𝑂(log 𝑛)

Calculating Space
complexity of
Algorithms

Algo1 () – Addition of two numbers

function add(n1, n2)
{
sum = n1 + n2
return sum
}

y axis: size in bytes
x axis: N value

Space Complexity = Auxiliary Space + Input Space

n1 – 4 bytes
n2 – 4 bytes
sum – 4 bytes
Aux (function call, return) – 4 bytes

Total (estimated): 16 bytes = C

Constant Space (behavior)

𝑂(1)

Space complexity

Algo2 () – Sum of all elements in array

function sumOfNumbers(arr[], N)
{
sum = 0
for (i = 0 to N)
{
sum = sum + arr[i]
}
print (sum)
}

Space Complexity = Auxiliary Space + Input Space

arr – N * 4 bytes
sum – 4 bytes
i – 4 bytes
Aux (initializing for loop,
function call, return) – 4 bytes

Total (estimated): 4N + 12 bytes
𝑂(𝑛)

Linear Space Complexity

Space complexity

Algo3 () – Factorial of a number (iterative)

int fact = 1;
for (int i = 1; i <= n; i++)
{
fact *= i;
}
return fact;

Space Complexity = Auxiliary Space + Input Space

fact – 4 bytes
n – 4 bytes
i – 4 bytes
Aux (initializing for loop,
function call, return) – 4 bytes

Total (estimated): 16 bytes

𝑂(1)

Constant Space (behavior)

Space complexity

Algo4 () – Factorial of a number (recursive)

factorial(n){
if (n <= 1) {
return 1;
} else {
return (n*factorial(n-1));
}
}

Space Complexity = Auxiliary Space + Input Space

Call Stack

assume n = 5
𝑓𝑛(5)

5*f(4)

4*f(3)

3*f(2)

2*f(1)

1

120

n – 4 bytes
Aux (function
call) – 5 * 4 bytes

Total (estimated): 4 bytes + 4*n bytes

Linear Space Complexity

𝑂(𝑛)

Space complexity

Space – Time Tradeoff and Efficiency

All efforts made by analyzing time and space complexity lead to the algorithm’s efficiency.

But, when we can say that an algorithm is efficient? The answer seems to be obvious: it should be
fast, and it should take the least amount of memory possible.

Unfortunately, in algorithmics, space and time are like two separate poles. Increasing speed will
most often lead to increased memory consumption and vice-versa.

On the one side, we have merge sort, which is extremely fast but requires a lot of memory. On the
other side, we have bubble sort, a slow algorithm but one that occupies minimal space. There are
also some balanced ones like in-place heap sort. Its speed and space usage are not the best, but
they’re acceptable.

Maximizing both the algorithm’s space and time complexity is impossible. We should adjust
those parameters according to our requirements and environment.

5 Basic Sequences and Their Sums

Adding positive integers

𝑆 =
𝑛(𝑛 + 1)

2

Summing up the squares

𝑆 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

Finding the sum of the cubes

𝑆 =
𝑛2(𝑛 + 1)2

4

Summing odd numbers

𝑆 = 𝑛2

Adding up even numbers

𝑆 = 𝑛(𝑛 + 1)

What is the time and space complexity of the following codes:

a) b) c)

What is the time and space complexity of the following codes:

a) b) c)

Time Complexity: O(n + m)
Space Complexity: O(1)

Time Complexity: O(n²)
Space Complexity: O(1)

Time Complexity: O(n²)
Space Complexity: O(1)

What is the time complexity of the following codes:

a)

b)

c)

What is the time complexity of the following codes:

a)

b)

c)

Time Complexity: O(log n)

Time Complexity: O(log n)

Time Complexity: O(nlog n)

What is the time complexity of the following code:

What is the time complexity of the following code:

Time Complexity: O(2^n)

What is the time complexity of the following code:

What is the time complexity of the following code:

Time Complexity: O(log n)

Recursive Method:

Auxiliary Space: O(log n)

The iterative implementation of Binary Search:

Time Complexity: O (log n)
Auxiliary Space: O (1)

Analysis of input size at each iteration of Binary Search:

At Iteration 1:

Length of array = n

At Iteration 2:

Length of array =
𝑛

2

At Iteration 3:

Therefore, after Iteration k:

Length of array =
𝑛

2

2
=

𝑛

22

Length of array =
𝑛

2𝑘

Also, we know that after k iterations, the length of the
array becomes 1 Therefore, the Length of the array:

𝑛

2𝑘 = 1

=> 𝑛 =2𝑘

Applying log function on both sides:

=> log2 𝑛 = log2 2𝑘

=> log2 𝑛 = k ∗ log2 2

As (log𝑎 𝑎 = 1) Therefore, 𝑘 = log2 𝑛

https://medium.com/@manishsakariya/time-complexity-examples-6a4877a1b923

Self-study links

https://www.youtube.com/watch?v=AWHi1-Xmd-Y

https://www.youtube.com/watch?v=yOb0BL-84h8&t=1107s

https://www.enjoyalgorithms.com/blog/time-complexity-analysis-of-loop-in-programming

https://medium.com/@manishsakariya/time-complexity-examples-6a4877a1b923
https://www.youtube.com/watch?v=AWHi1-Xmd-Y
https://www.youtube.com/watch?v=yOb0BL-84h8&t=1107s
https://www.enjoyalgorithms.com/blog/time-complexity-analysis-of-loop-in-programming

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

