
Top Level View of Computer Function and Interconnection

Dr. Rand Basil Alhashimie

rand.basil@tiu.edu.iq

Tishk International University

Engineering Faculty

Mechatronics Engineering Department Computer

Microprocessor and Programmer

1

mailto:rand.basil@tiu.edu.iq

2

Lecture Objectives

After studying this lecture, you should be able to:

• Understand the basic elements of an instruction cycle and the role of
interrupts.

• Describe the concept of interconnection within a computer system.

• Understand the difference between synchronous and asynchronous bus
timing.

3

Lecture Outline

• Program concept

• Computer Top level

• CPU

• Memory

• I/O interconnections

Hardware and Software

Approaches

4

Program Concept

5

Program Concept

• Hardwired systems are inflexible

• General purpose hardware can do different tasks, given correct

control signals.

• Instead of re-wiring, supply a new set of control signals

6

What is a program?

• A sequence of steps

• For each step, an arithmetic or logical operation is done

• For each operation:

• a different set of control signals is needed

• a unique code is provided (e.g. ADD, MOVE)

Von Neumann Architecture

• Von Neumann architecture was
first published by John von Neumann in
1945.

• His computer architecture design
consists of a Control Unit, Arithmetic and
Logic Unit (ALU), Memory Unit,
Registers and Inputs/Outputs.

• Von Neumann architecture is based on
the stored-program computer concept,
where instruction data and program data
are stored in the same memory. This
design is still used in most computers
produced today.

7

8

Von Neumann Architecture

• Data and instructions are stored in a single read–write memory.

• The contents of this memory are addressable by location, without regard to

the type of data contained there.

• Execution occurs in a sequential fashion (unless explicitly modified) from one

instruction to the next.

• A particular set of hardware will perform various functions on data depending

on control signals applied to the hardware.

9

Von Neumann Architecture

How shall control signals be supplied?

• The entire program is actually a sequence of steps. At each step, some arithmetic or logical

operation is performed on some data.

• Programming is now much easier. Instead of rewiring the hardware for each new program, all

we need to do is provide a new sequence of codes.

• Each code is, in effect, an instruction, and part of the hardware interprets each instruction and

generates control signals.

• To distinguish this new method of programming, a sequence of codes or instructions is called

software.

Computer Function:
Top Level View

• Computer consists of:

• CPU

• Memory

• I/O interconnections

• These components are

connected to achieve the main

10

function of the computer, which is

to execute program.
Figure 2

11

Components

• The Control Unit and the Arithmetic and Logic Unit constitute the

Central Processing Unit.

• Data and instructions need to get into the system and results out

• Input/output

• Temporary storage of code and results is needed

• Main memory

12

I/O Components

• Data and instructions must be put into the system. For this we need some sort

of input module.

• This module contains basic components for accepting data and instructions in

some form and converting them into an internal form of signals usable by the

system.

• A means of reporting results is needed, and this is in the form of an output

module. Taken together, these are referred to as I/O components.

13

Main Memory (Temporary Storage)

• An input device will bring instructions and data in sequentially. But a program is

not invariably executed sequentially; it may jump around (e.g., the IAS jump

instruction).

• Similarly, operations on data may require access to more than just one element

at a time in a predetermined sequence. Thus, there must be a place to store

temporarily both instructions and data.

• That module is called memory, or main memory, to distinguish it from external

storage or peripheral devices. Von Neumann pointed out that the same memory

could be used to store both instructions and data.

Memory Locations and I/O

• A memory module consists of a set of locations,

defined by sequentially numbered addresses.

• Each location contains a binary number that

can be interpreted as either an instruction or

data.

• An I/O module transfers data from external

devices to CPU and memory, and vice versa. It

contains internal buffers for temporarily holding

these data until they can be sent on.

14

1
5

Computer Function

• The basic function performed by a computer is execution of a program,

which consists of a set of instructions stored in memory.

• The processor does the actual work by executing instructions specified in

the program.

• In its simplest form, instruction processing consists of two steps:

• The processor reads (fetches) instructions from memory one at a time.

• Executes each instruction.

1
6

Program Execution

• Program execution consists of repeating the process of instruction fetch and

instruction execution.

• The instruction execution may involve several operations and depends on the

nature of the instruction. The processing required for a single instruction is

called an instruction cycle.

• The instruction cycle involves two steps which are referred to as the fetch

cycle and the execute cycle.

1
7

Program Execution Stop

Program execution halts only:

• if the machine is turned off,

• some sort of unrecoverable error occurs,

• or a program instruction that halts

encountered.

the computer is

Instruction Cycle: Fetch and Execute

• Two steps:
• Fetch

• Execute

1
8

1
9

Fetch Cycle

• Program Counter (PC) holds address of next instruction to fetch

• Processor fetches instruction from memory location pointed to

by PC

• Increment PC

• Unless told otherwise

• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

Execute Cycle

• Processor-memory

• data transfer between CPU and main memory

• Processor I/O

• Data transfer between CPU and I/O module

• Data processing

• Some arithmetic or logical operation on data

• Control

• Alteration of sequence of operations

• e.g. jump

• Combination of above 7

Interrupts

• Mechanism by which other modules (e.g. I/O) may interrupt normal

sequence of processing

• Program

• e.g. overflow, division by zero

• Timer

• Generated by internal processor timer

• Used in pre-emptive multitasking

• I/O

• from I/O controller

• Hardware Failure

• e.g. power failure 14

Program Flow Control

22

Transfer of Control via Interrupts

23

Interrupt Cycle

• Added to instruction cycle

• Processor checks for interrupt

• Indicated by an interrupt signal

• If no interrupt, fetch next instruction

• If interrupt pending:

• Suspend execution of current program

• Save context

• Set PC to start address of interrupt handler routine

• Process interrupt

• Restore context and continue interrupted program

24

Program Timing
Short I/O Wait

25

Program Timing
Long I/O Wait

26

Multiple Interrupts

• Disable interrupts

• Processor will ignore further interrupts whilst processing one interrupt

• Interrupts remain pending and are checked after first interrupt has been

processed

• Interrupts handled in sequence as they occur

• Define priorities

• Low priority interrupts can be interrupted by higher priority interrupts

• When higher priority interrupt has been processed, processor returns to

previous interrupt 21

Multiple Interrupts - Sequential

28

Multiple Interrupts – Nested

29

Time Sequence of Multiple Interrupts

30

31

Connection

• All the units must be connected

• Different type of connection for different type of unit

• Memory

• Input/Output

• CPU

Computer Modules

32

Memory Connection

• Receives and sends data

• Receives addresses (of locations)

• Receives control signals

• Read

• Write

• Timing

33

Input/Output Connection(1)

34

35

Input/Output Connection(2)

• Receive control signals from computer

• Send control signals to peripherals

• e.g. spin disk

• Receive addresses from computer

• e.g. port number to identify peripheral

• Send interrupt signals (control)

CPU Connection

• Reads instruction and data

• Writes out data (after processing)

• Sends control signals to other units

• Receives (& acts on) interrupts

36

Bus Interconnection Scheme

37

38

Buses

• There are a number of possible interconnection systems

• Single and multiple BUS structures are most common

• e.g. Control/Address/Data bus (PC)

• e.g. Unibus (DEC-PDP)

39

What is a Bus?

• A communication pathway connecting two or more devices

• Usually broadcast

• Often grouped

• A number of channels in one bus

• e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown

40

Data Bus

• Carries data

• Remember that there is no difference between “data” and “instruction”

at this level

• Width is a key determinant of performance

• 8, 16, 32, 64 bit

41

Address bus

• Identify the source or destination of data

• e.g. CPU needs to read an instruction (data) from a given

location in memory

• Bus width determines maximum memory capacity of system

• e.g. 8080 has 16 bit address bus giving 64k address space

42

Control Bus

• Control and timing information

• Memory read/write signal

• Interrupt request

• Clock signals

43

Control Bus
• Memory write: causes data on the bus to be written into the addressed location

• Memory read: causes data from the addressed location to be placed on the bus

• I/O write: causes data on the bus to be output to the addressed I/O port

• I/O read: causes data from the addressed I/O port to be placed on the bus

• Transfer ACK: indicates that data have been accepted from or placed on the bus

• Bus request: indicates that a module needs to gain control of the bus

• Bus grant: indicates that a requesting module has been granted control of the bus

• Interrupt request: indicates that an interrupt is pending

44

Control Bus
• Interrupt ACK: acknowledges that the pending interrupt has been recognized

• Clock: is used to synchronize operations

• Reset: initializes all modules.

The operation of the bus is as follows:

➢ If one module wishes to send data to another, it must do two things: (1) obtain the use of the bus, and (2)

transfer data via the bus.

➢ If one module wishes to request data from another module, it must (1) obtain the use of the bus, and (2)

transfer a request to the other module over the appropriate control and address lines. It must then wait for

that second module to send the data.

45

Single Bus and Multiple Bus

• Lots of devices on one bus leads to:

• Propagation delays

• Long data paths mean that coordination of bus use can adversely affect

performance

• If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to overcome these problems

Traditional (ISA) - (with cache)

46

High Performance Bus

47

Bus Types

• Dedicated

• Separate data & address lines

• Multiplexed

• Shared lines

• Address valid or data valid control line

• Advantage - fewer lines

• Disadvantages

• More complex control

• Ultimate performance
19

49

Timing

• Coordination of events on bus

• Synchronous

• Events determined by clock signals

• Control Bus includes clock line

• A single 1-0 is a bus cycle

• All devices can read clock line

• Usually sync on leading edge

• Usually a single cycle for an event

Synchronous
Timing Diagram

50

Asynchronous Timing – Read Diagram

51

Asynchronous Timing – Write Diagram

52

53

Synchronous vs Asynchronous

• Synchronous timing is simpler to implement and test.

• Synchronous timing is less flexible than asynchronous timing.

• Because all devices on a synchronous bus are tied to a fixed clock rate, the system cannot take

advantage of advances in device performance.

• With asynchronous timing, a mixture of slow and fast devices, using older and newer

technology, can share a bus.

	Slide 1
	Slide 2: Lecture Objectives
	Slide 3: Lecture Outline
	Slide 4
	Slide 5: Program Concept
	Slide 6: What is a program?
	Slide 7: Von Neumann Architecture
	Slide 8: Von Neumann Architecture
	Slide 9: Von Neumann Architecture
	Slide 10: Computer Function: Top Level View
	Slide 11: Components
	Slide 12: I/O Components
	Slide 13: Main Memory (Temporary Storage)
	Slide 14: Memory Locations and I/O
	Slide 15: Computer Function
	Slide 16: Program Execution
	Slide 17: Program Execution Stop
	Slide 18: Instruction Cycle: Fetch and Execute
	Slide 19: Fetch Cycle
	Slide 20: Execute Cycle
	Slide 21: Interrupts
	Slide 22: Program Flow Control
	Slide 23: Transfer of Control via Interrupts
	Slide 24: Interrupt Cycle
	Slide 25: Program Timing Short I/O Wait
	Slide 26: Program Timing Long I/O Wait
	Slide 27: Multiple Interrupts
	Slide 28: Multiple Interrupts - Sequential
	Slide 29: Multiple Interrupts – Nested
	Slide 30: Time Sequence of Multiple Interrupts
	Slide 31: Connection
	Slide 32: Computer Modules
	Slide 33: Memory Connection
	Slide 34: Input/Output Connection(1)
	Slide 35: Input/Output Connection(2)
	Slide 36: CPU Connection
	Slide 37: Bus Interconnection Scheme
	Slide 38: Buses
	Slide 39: What is a Bus?
	Slide 40: Data Bus
	Slide 41: Address bus
	Slide 42: Control Bus
	Slide 43: Control Bus
	Slide 44: Control Bus
	Slide 45: Single Bus and Multiple Bus
	Slide 46: Traditional (ISA) - (with cache)
	Slide 47: High Performance Bus
	Slide 48: Bus Types
	Slide 49: Timing
	Slide 50: Synchronous Timing Diagram
	Slide 51: Asynchronous Timing – Read Diagram
	Slide 52: Asynchronous Timing – Write Diagram
	Slide 53: Synchronous vs Asynchronous

