Tishk International University Department of Architecture 2023-2024

Steel Structures

Dr. Yousif A. Hussein

Course layout

Chapter 01 Introduction to Structural Steel Design

Chapter 02 Specifications, Loads, and Methods of Design

Chapter 03 Analysis of Tension Members

Chapter 04 Design of Tension Members

Chapter 05 Introduction to Axially Loaded Compression Members

Chapter 06 Design of Axially Loaded Compression Members

Chapter 07 Design of Axially Loaded Compression Members (Continued)

Chapter 08 Introduction to Beams

References:

Jack C . McCormac and Stephenf. Csernak (2012) "Structural Steel Design", Prentice Hall.

American Institute of Steel Construction (2005) "Steel onstruction Manual".

Alan Williams (2011) "Steel Structures Design: ASD/LRFD", McGraw Hill.

CHAPTER1

Introduction to Structural Steel Design

INTRODUCTION

- There are endless number of steel bridges, buildings, towers, and other structures in the world.
- In the United States, the first steel framed building was the Rand McNally Building in Chicago, erected in 1890.
- The Royal Insurance Building in Liverpool designed by James Francis Doyle in 1895 (erected 1896-1903) was the first to use a steel frame in the United Kingdom.
- Eiffel tower (985 ft) was constructed in 1889

ADVANTAGES OF STEEL AS A STRUCTURAL MATERIAL

1. High Strength	The high strength of steel per unit of weight means that the weight of
	structures will be small. This fact is of great importance for long-span
	bridges, tall buildings, and structures situated on poor foundations.
2. Uniformity	The properties of steel do not change appreciably with time, as do those of
	a reinforced- concrete structure.
3. Elasticity	Steel behaves closer to design assumptions than most materials because it
	follows Hooke's law up to fairly high stresses. The moments of inertia of a
	steel structure can be accurately calculated, while the values obtained for a
	reinforced-concrete structure are rather indefinite.

Figure definition of Hooke's law

4. Permanence	Steel frames that are properly maintained will last indefinitely.
---------------	---

5. Ductility The property of a material by which it can withstand extensive deformation without failure under high tensile stresses is its ductility.

- When a mild or low-carbon structural steel member is being tested in tension, a considerable reduction in cross section and a large amount of elongation will occur at the point of failure before the actual fracture occurs.
- A material that does not have this property is generally unacceptable and is probably hard and brittle, and it might break if subjected to a sudden shock.
 - In structural members under normal loads, high stress concentrations develop at various points. The ductile nature of the usual structural steels enables them to yield locally at those points, thus preventing premature failures.
- A further advantage of ductile structures is that when overloaded, their large deflections give visible evidence of impending failure (sometimes jokingly referred to as "running time").
- 6. Toughness
 Structural steels are tough—that is, they have both strength and ductility.
 - A steel member loaded until it has large deformations will still be able to withstand large forces.
 - The ability of a material to absorb energy in large amounts is called toughness.

7. Additions to Steel structures are quite well suited to having additions made to them. New bays or even entire new wings can be added to existing steel frame
Structures buildings, and steel bridges may often be widened.

8. Miscellaneousa) Ability to be fastened together by several simple connection devices, including welds and bolts.

- b) Adaptation to prefabrication.
- c) Speed of erection;
- d) Ability to be rolled into a wide variety of sizes and shapes.
- e) Possible reuse after a structure is disassembled; and
- f) Scrap value, even though not reusable in its existing form. Steel is the ultimate recyclable material.

DISADVANTAGES OF STEEL AS A STRUCTURAL MATERIAL

1. Corrosion Most steels are susceptible to corrosion when freely exposed to air and water, and therefore must be painted periodically.

2. Fireproofing The strength of structural members is tremendously reduced at temperatures commonly reached in fires when the other materials in a building burn. As a result, the steel frame of a building may have to be protected by materials with certain insulating characteristics.

- 3. Buckling
- As the length and slenderness of a compression member is increased, its danger of buckling increases.

• The use of steel columns is very economical because of their high strength-to-weight ratios. Occasionally, however, some additional steel is needed to stiffen them so they will not buckle. This tends to reduce their economy

4. Fatigue Another undesirable property of steel is that its strength may be reduced if it is subjected to a large number of stress reversals or even to a large number of variations of tensile stress. (Fatigue problems occur only when tension is involved.)

5. Brittle Fracture Under certain conditions steel may lose its ductility, and brittle fracture may occur at places of stress concentration. Fatigue-type loadings and very low temperatures aggravate the situation. Triaxial stress conditions can also lead to brittle fracture.

STEEL SECTIONS

- Structural steel can be economically rolled into a wide variety of shapes and sizes without appreciably changing its physical properties.
- The most desirable members are those with large moments of inertia in proportion to their areas, such as the I, T, and C shapes.
- Steel sections are usually designated by the shapes of their cross sections.
- It is necessary to make a definite distinction between American standard beams (called S beams) and wide-flange beams (called W beams), as they are both I-shaped.

S beams	W beams
The S beams, which were the first beam	The inner surface of the flange of a W section
sections rolled in America, have a slope on	is either parallel to the outer surface or nearly
their inside flange surfac <mark>es</mark> of 1 t <mark>o</mark> 6.	so, with a maximum slope of 1 to 20 on the
RNAT	inner surface, depending on the manufacturer.

The W and S sections are shown in the figure (below), together with several other familiar steel sections. The uses of these various shapes will be discussed in detail in the chapters to follow.

Structural shapes are identified by a certain system described in the Manual for use in drawings, specifications, and designs. Examples of this identification system are as follows:

1	W27×114	is a W section approximately 27 inch deep, weighing 114 lb/ft.
2	S12 × 35	is an S section 12 inch deep, weighing 35 lb/ft.
3	$HP12 \times 74$	is a bearing pile section approximately 12 inch deep, weighing 74 lb/ft.
		Bearing piles are made with the regular W rolls, but with thicker webs to
		provide better resistance to the impact of pile driving. The width and
		depth of th <mark>es</mark> e sections are approximately equal, and the flanges and
		webs have equal or almost equal thickness.
4	M8 × 6.5	is a miscellaneous section 8 inch deep, weighing 6.5 lb/ft. It is one of a
		group of doubly symmetrical H-shaped members that cannot by
		di <mark>men</mark> sions be classified as a W, S, or HP s <mark>ectio</mark> n, as the slope of their
		inner flanges is other than 16¾ percent.
5	C10 × 30	is a channel 10 inch deep, weighing 30 lb/ft.
6	MC18 × 58	is a miscellaneous channel 18 inch deep, weighing 58 lb/ft, which cannot
		be classified as a C shape because of its dimensions.
7	$HSS14 \times 10 \times$	is a rectangular hollow structural section 14 inch deep, 10 inch wide,
	5/8	with a 5/8-inch wall thickness. It weighs 93.10 lb/ft. Square and round
		HSS sections are also available.
8	$L6 \times 6 \times 1/2$	is an equal leg angle, each leg being 6 inch long and 1/2 inch thick.
9	WT18 × 151	is a tee obtained by splitting a W36 X 302 This type of section is known
		as a structural tee.
10		Rectangular steel sections are classified as wide plates or narrow bars.

STRESS-STRAIN RELATIONSHIPS IN STRUCTURAL STEEL

- To understand the behavior of steel structures, an engineer must be familiar with the properties of steel.
- Stress-strain diagrams present valuable information necessary to understand how steel will behave in a given situation.
- If a piece of ductile structural steel is subjected to a tensile force, it will begin to elongate. If the tensile force is increased at a constant rate, the amount of elongation will increase linearly within certain limits. In other words, elongation will double when the stress goes from 6000 to 12,000 psi (pounds per square inch).

- When the tensile stress reaches a value roughly equal to three-fourths of the ultimate strength of the steel, the elongation will begin to increase at a greater rate without a corresponding increase in the stress.
- The largest stress for which Hooke's law applies, or the highest point on the linear portion of the stress-strain diagram, is called the proportional limit. The largest stress that a material can withstand without being permanently deformed is called the elastic limit.
- The stress at which there is a significant increase in the elongation, or strain, without a corresponding increase in stress is said to be the **<u>yield stress</u>**.
- The strain that occurs before the yield stress is referred to as the <u>elastic strain</u>; the strain that occurs after the yield stress, with no increase in stress, is referred to as the <u>plastic strain</u>.
- Plastic strains are usually from 10 to 15 times as large as the elastic strains.
- Following the plastic strain, there is a range in which additional stress is necessary to produce additional strain. This is called **strain-hardening**.

CHAPTER2

Specifications, Loads, and Methods of Design

SPECIFICATIONS AND BUILDING CODES

- The design of most structures is controlled by building codes and design specifications.
- Engineering specifications that are developed by various organizations present the best opinion of those organizations as to what represents good practice.
- Engineering specifications and codes are actually laws or ordinances specify minimum design loads, design stresses, construction types, material quality, and other factors.
- Several organizations publish recommended practices for regional or national use. Among these organizations are the AISC and AASHTO (American Association of State Highway and Transportation Officials). Nearly all municipal and state building codes have adopted the AISC Specification, and nearly all state highway and transportation departments have adopted the AASHTO Specifications.
- Another very important code, the International Building Code (IBC).

LOADS

ERBI

2008

- Perhaps the most important and most difficult task faced by the structural engineer is the accurate estimation of the loads that may be applied to a structure during its life.
- After loads are estimated, the next problem is to determine the worst possible combinations of these loads that might occur at one time. For instance, would a highway bridge completely covered with ice and snow be simultaneously subjected to fast-moving lines of heavly loaded trailer trucks in every lane and to a 90-mile lateral wind, or is some lesser combination of these loads more likely?
- AISC Specification states the nominal loads to be used for structural design. Also, the American Society of Civil Engineers (ASCE) provides a publication entitled Minimum Design Loads for Buildings and Other Structures.

In general, loads are classified as *<u>dead loads</u>, <u>live loads</u>, <u>and environmental loads</u> according to their character and duration of application.*

Each of these types of loads are discussed in the next few sections.

DEAD LOADS

Dead loads are loads of constant magnitude that remain in one position. They consist of the structural frame's own weight and other loads that are permanently attached to the frame. For a steel-frame building, the frame, walls, floors, roof, plumbing, and fixtures are dead loads.

The approximate weights of some common building materials for roofs, walls, floors, and so on are presented in Table 2.1.

TABLE 2.1	Typical Dead Loads for Some Common Building
	Materials

Reinforced concrete	150 lb/cu ft
Structural steel	490 lb/cu ft
Plain concrete	145 lb/cu ft
Movable steel partitions	4 psf
Plaster on concrete	5 psf
Suspended ceilings	2 psf
5-Ply felt and gravel	6 psf
Hardwood flooring (7/8 in)	4 psf
$2 \times 12 \times 16$ in double wood floors	7 psf
Wood studs with $1/2$ in gypsum each side	8 psf
Clay brick wythes (4 in)	39 psf

LIVE LOADS

Live loads are loads that may change in position and magnitude. They are caused when a structure is occupied, used, and maintained.

Live loads include:

1. Floor loads:

- The minimum gravity live loads to be used for building floors are clearly specified by the applicable building code.
- A few of the typical values for floor loadings are listed in Table 2.2, and some typical concentrated loads are listed in Table 2.3.

for Design of Buildings				
Type of building	LL (psf)			
Apartment houses				
Apartments	40			
Public rooms	100			
Dining rooms and restaurants	100			
Garages (passenger cars only)	40			
Gymnasiums, main floors, and balconies	100			
Office buildings				
Lobbies	100			
Offices	50			
Schools				
Classrooms	40			
Corridors, first floor	100			
Corridors above first floor	80			
Storage warehouses				
Light	125			
Heavy	250			
Stores (retail)				
First floor	100			
Other floors	75			

TABLE 2.2 Typical Minimum Uniform Live Loads for Design of Buildings

TABLE 2.3 Typical Concentrated Live Loads for Building	gs	
Hospitals—operating rooms, private rooms, and wards	1000 lb	
Manufacturing building (light)	2000 lb	
Manufacturing building (heavy)		
Office floors	2000 lb	
Retail stores (first floors)	1000 lb	
Retail stores (upper floors)	1000 lb	
School classrooms	1000 lb	
School corridors	1000 lb	

- **2. Traffic loads for bridges:** Bridges are subjected to series of concentrated loads of varying magnitude caused by groups of truck or train wheels.
- **3. Impact loads:** Impact loads are caused by the vibration of moving or movable loads.
- **4.** Longitudinal loads: Longitudinal loads are another type of load that needs to be considered in designing some structures. Stopping a train on a railroad bridge or a truck on a highway bridge causes longitudinal forces to be applied.
- **5. Other live loads:** such as soil pressures, hydrostatic pressures, and blast loads.

ENVIRONMENTAL LOADS

Environmental loads are caused by the environment in which a particular structure is located. For buildings, environmental loads are caused by rain, snow, wind, temperature change, and earthquakes.

Snow: For roof designs, snow loads varying from 10 to 40 psf are commonly used. A load
of approximately 10 psf might be used for 45° (degree) slopes and a 40-psf load for flat
roofs.

- 2. Rain: If water on a flat roof accumulates faster than it runs off, the result is called ponding, because the increased load causes the roof to deflect into a dish shape that can hold more water, which causes greater deflections, and so on. This process continues until equilibrium is reached or until collapse occurs. The best method of preventing ponding is to have an appreciable slope of the roof (1/4 in/ft or more), together with good drainage facilities.
- **3.** Wind loads: A survey of engineering literature for the past 150 years reveals many references to structural failures caused by wind. Wind forces act as pressures on vertical windward surfaces, pressures or suction on sloping windward surfaces (depending on the slope), and suction on flat surfaces.

For some common structures, uplift loads may be as large as 20 to 30 psf or even more.

4. Earthquake loads: Many areas of the world fall in "earthquake territory," and in those areas it is necessary to consider seismic forces in design for all types of structures.

LOAD AND RESISTANCE FACTOR DESIGN (LRFD) AND ALLOWABLE STRENGTH DESIGN (ASD)

The AISC Specification provides two acceptable methods for designing structural steel members and their connections. These are Load and Resistance Factor Design (LRFD) and Allowable Strength Design (ASD).

COMPUTATION OF LOADS FOR LRFD AND ASD

- With both the LRFD and the ASD procedures, expected values of the individual loads (dead, live, wind, snow, etc.) are first estimated in exactly the same manner as required by the applicable specification. These loads are referred to as **service** or **working loads**.
- Various combinations of these loads that feasibly may occur at the same time are grouped together. The largest load group (in ASD) or the largest linear combination of loads in a group (in LRFD) is then used for analysis and design.

COMPUTING COMBINED LOADS WITH LRFD EXPRESSIONS

- Load factors are calculated to increase the magnitudes of service loads to use with the LRFD procedure.
- The purpose of these factors is to account for the uncertainties involved in estimating the magnitudes of dead and live loads.
- The AISC Manual provides the following load factors for buildings.

1	U = 1.4D
2	$U = 1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
3	$U = 1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L^* \text{ or } 0.5w)$
4	$U = 1.2D + 1.0W + L^* + 0.5(L_r \text{ or } S \text{ or } R)$
5	$U = 1.2D + 1.0E + L^* + 0.2S$
6	U = 0.9D + 1.0W
7	U = 0.9D + 1.0E

*The load factor on L in combinations (3.), (4.), and (5.) is to be taken as 1.0 for floors in places of public assembly, for live loads in excess of 100 psf and for parking garage live load. The load factor is permitted to equal 0.5 for other live loads.

In these load combinations, the following abbreviations are used:

- U =the design or factored load
- D = Dead load
- L = Live load
- $L_r = roof live load$
- S = Snow load

R = nominal load due to initial rainwater or ice, exclusive of the ponding contribution.

- W = Wind load
- E = Earthquake load

ERBIL

2008

Examples 2-1 to 2-3 show the calculation of the factored loads, using the applicable LRFD load combinations. The largest value obtained is referred to as the critical or governing load combination and is to be used in design.

Example 2-1

The interior floor system shown in Figure (below) has W24 X 55 sections spaced 8 ft on center and is supporting a floor dead load of 50 psf and a live floor load of 80 psf. Determine the governing load in lb/ft that each beam must support.

Solution:

Note that each foot of the beam must support itself (a dead load) plus 8 X 1 = 8 ft² of the building floor

$$D = 55\frac{lb}{ft} + (8 ft)(50 psf) = 455\frac{lb}{ft}$$
$$L = (8 ft)(80 psf) = 640 lb/ft$$

Computing factored loads, using the LRFD load combinations.

Note that with a floor live load of 80 psf a load factor of 0.5 has been added to load combinations (3.), (4.), and (5.) per the exception stated in ASCE 7-10 and this text for floor live loads.

1
$$W_u = (1.4)(455) = 637 \ lb/ft$$

2 $W_u = (1.2)(455) + 1.6(640) = 1570 \, lb/ft$

$$3 W_u = (1.2)(455) + (0.5)(640) = 866 \ lb/ft$$

4
$$W_u = (1.2)(455) + (0.5)(640) = 866 \, lb/ft$$

5
$$W_u = (1.2)(455) + (0.5)(640) = 866 \, lb/ft$$

$$6 W_u = (0.9)(455) = 409.5 \, lb/ft$$

7 $W_u = (0.9)(455) = 409.5 \, lb/ft$

Governing factored load = $1570 \ lb/ft$ to be used for design.

Example 2-2

A roof system with W16 x 40 section spaced 9 ft on center is to be used to support a dead load of 40 psf; a roof live, snow, or rain load of 30 psf; and a wind load of \pm 32 psf. Compute the governing factored load per linear foot.

Solution

 $D = 40 \ lb/ft + (9 \ ft) (40 \ psf) = 400 \ lb/ft$

$$L = 0$$

 $L_r \text{ or } S \text{ or } R = (9 ft)(30 psf) = 270 lb/ft$

$$W = (9 ft)(32 psf) = 288 lb/ft$$

Substituting into the load combination expressions and noting that the wind can be downward , - or uplift, + in Equation 6, we derive the following loads:

 $W_{\mu} = (1.4)(400) = 560 \, lb/ft$ 1 $W_{\mu} = (1.2)(400) + 0.5(270) = 615 \, lb/ft$ 2 $W_u = (1.2)(400) + (1.6)(270) + (0.5)(288) = 1056 \, lb/ft$ 3 $W_u = (1.2)(400) + (1.0)(288) + (0.5)(270) = 903 \, lb/ft$ 4 $W_{\mu} = (1.2)(400) + (0.2)(270) = 534 \, lb/ft$ 5 $W_{\mu} = (0.9)(400) + (1.0)(288) = 648 \, lb/ft$ 6 7 $W_u = (0.9)(400) + (1.0)(-288) = 72 \, lb/ft$ 2008 Governing factored load = 1056 lb/ft for design

Example 2-3

The various axial loads for a building column have been computed according to the applicable building code, with the following results: dead load 200 k, load from roof= 50 k (roof live load); live load from floors (reduced as applicable for large area and multistory columns)=250 k; compression wind = 128 k; tensile wind = 104 k; compression earthquake =60 k; and tensile earthquake =70 k.

Determine the critical design column load, Pu, using LRFD load combinations.

Solution.

This problem solution assumes the column floor live load meets the exception for the use of the load factor of 0.5 in load combinations (3.), (4.), and (5.)

1
$$P_u = (1.4)(200) = 280 k$$

2 $P_u = (1.4)(200) + (1.6)(250) + (0.5)(50) = 655 k$
3.(a) $P_u = (1.2)(200) + (1.6)(50) + (0.5)(250) = 445 k$
(b) $P_u = (1.2)(200) + (1.6)(50) + (0.5)(128) = 384 k$
4.(a) $P_u = (1.2)(200) + (1.0)(128) + (0.5)(250) = 518 k$
(b) $P_u = (1.2)(200) - (1.0)(104) + (0.5)(250) = 286$
5.(a) $P_u = (1.2)(200) + (1.0)(60) + (0.5)(250) = 425 k$
(b) $P_u = (1.2)(200) - (1.0)(70) + (0.5)(250) = 295 k$
6. (a) $P_u = (0.9)(200) + (1.0)(128) = 308 k$
(b) $P_u = (0.9)(200) - (1.0)(104) = 76 k$
7. (a) $P_u = (0.9)(200) + (1.0)(60) = 240 k$
(b) $P_u = (0.9)(200) - (1.0)(70) = 110 k$

PROBLEMS FOR SOLUTION

For Probs. 2-1 through 2-4 determine the maximum combined loads using the recommended AISC expressions for LRFD.

- 2-1 D = 100 psf, L = 70 psf, R = 12 psf, $L_r = 20 \text{ psf}$ and S = 30 psf (Ans. 247 psf)
- 2-2 $D = 10,000 \text{ lb}, W = \pm 32,000 \text{ lb}$
- 2-3 $D = 9000 \text{ lb}, L = 5000 \text{ lb}, L_r = 2500 \text{ lb}, E = \pm 6500 \text{ lb}$ (Ans. 20,050 lb)
- 2-4 D = 25 psf, $L_r = 20 \text{ psf}$ and $W = \pm 26 \text{ psf}$

CHAPTER3

Analysis of Tension Members

INTRODUCTION

• Tension members are found in bridge and roof trusses, towers, and bracing systems, and in situations where they are used as tie rods.

- The selection of a section to be used as a tension member is one of the simplest problems encountered in design. As there is no danger of the member buckling, the designer needs to determine only the load to be supported. Then the area required to support that load is calculated, and finally a steel section is selected that provides the required area.
- One of the simplest forms of tension members is the circular rod, but there is some difficulty in connecting it to many structures.
- When rods are used in wind bracing, it is a good practice to produce initial tension in them, as this will tighten up the structure and reduce rattling and swaying.

A common rule of thumb is to detail the rods about 1/16 in short for each 20 ft of length. Approximate stress is:

$$f = \epsilon E = \frac{\left(\frac{1}{16} in\right)}{\left(12\frac{in}{ft}\right)(20 ft)} (29 \times 10^6 psi) = 7550 psi$$

Another very satisfactory method involves tightening the rods with some sort of sleeve nut or turnbuckle.

• Today, although the use of cables is increasing for suspended-roof structures, tension members usually consist of single angles, double angles, tees, channels, W sections, or sections built up from plates or rolled shapes.

A few of the various types of tension members in general use are illustrated in Fig. 3.1. In this figure, the dotted lines represent the intermittent tie plates or bars used to connect the shapes.

FIGURE 3.1 Types of tension members.

- The tension members of steel roof trusses may consist of single angles as small as 2 x 1/2 or 2 x 1/4 for minor members.
- For bridges and large roof trusses, tension members may consist of channels, W or S shapes, or even sections built up from some combination of angles, channels, and plates.

• Cross bracing is often done with tensile members as these members need only to act in tension.

 Steel cables are made with special steel alloy wire ropes that are colddrawn to the desired diameter. The resulting wires with strengths of about 200,000 to 250,000 psi can be economically used for suspension bridges, cable supported roofs, ski lifts, and other similar applications.

NOMINAL STRENGTHS OF TENSION MEMBERS

A ductile steel member without holes and subject to a tensile load can resist without fracture a load larger than its gross cross-sectional area times its yield stress [$A. \sigma_{yield}$] because of strain hardening.However, a tension member loaded until strain hardening is reached will lengthen a great deal before fracture—a fact that will, in all probability, end its usefulness and may even cause failure of the structural system of which the member is a part.

If, on the other hand, we have a tension member with bolt holes, it can possibly fail by fracture at the net section through the holes.

This failure load may very well be smaller than the load required to yield the gross section, apart from the holes.

NET AREAS

The presence of a hole increases the unit stress in a tension member, even if the hole is occupied by a bolt.

There is still less area of steel to which the load can be distributed, and there will be some concentration of stress along the edges of the hole.

Tension is assumed to be uniformly distributed over the net section of a tension member, although photoelastic studies show there is a decided increase in stress intensity around the edges of holes, sometimes equaling several times what the stresses would be if the holes were not present.

Figure. Stresses around hole (red color represents concentration of stresses)

- The term "net cross-sectional area," or simply, "net area," refers to the gross cross-sectional area of a member, minus any holes, notches, or other indentations.
- It is usually necessary to subtract an area a little larger than the actual hole. For instance, holes are *punched* to a diameter 1/16 in larger than that of the bolts. When this practice was followed, the punching of a hole was assumed to damage or even destroy 1/16 in more of the surrounding metal. As a result, the diameter of the hole subtracted was 1/8 in larger than the diameter of the bolt. The area of the hole was rectangular and equalled the diameter of the bolt plus 1/8 in times the thickness of the metal.
- Today, *drills* enable fabricators to drill very large numbers of holes. For such holes, only 1/16 in. is added to the bolt diameters for such holes.

Example 3-1

Determine the net area of $3/8 \ge 8$ -in the plate shown in Fig. 3.2. The plate is connected at its end with two lines of 3/4-in bolts.

Fig. 3-2 Illustration of Example 3-1

$$A_n = \left(\frac{3}{8}\ln\right)(8\ in) - 2\left(\frac{3}{4}\ln + \frac{1}{8}\ln\right)\left(\frac{3}{8}\ln\right) = 2.34\ \text{in}^2(1510\ \text{mm}^2)$$

- The connections of tension members should be arranged so that no eccentricity is present.
- Should the connections have eccentricities, moments will be produced that will cause additional stresses in the vicinity of the connection.
- The centroidal axes of truss members meeting at a joint are assumed to coincide. Should they not coincide, eccentricity is present and secondary stresses are the result.

FIGURE 3.4 Possible failure sections in plates.

• Figure 3.4(c) shows a member in which a failure other than a transverse one is possible. The holes are staggered, and failure along section ABCD is possible unless the holes are a large distance apart.

The strength of the member along section ABCD can be determined accoriding to the AISC Specification, which offeres offer a very simple method for computing the net width of a tension member along a zigzag section. The method is to take

the gross width of the member, regardless of the line along which failure might occur, subtract the diameter of the holes along the zigzag section being considered, and add for each inclined line the quantity given by the expression $s^2/4g$. where: s is the longitudinal spacing (or pitch) of any two holes and g is the transverse spacing (or gage) of the same holes. The values of s and g are shown in Fig. 3.4(c).

There may be several paths, any one of which may be critical at a particular joint. Each possibility should be considered, and the one giving the least value should be used.The smallest net width obtained is multiplied by the plate thickness to give the net area.

Holes for bolts and rivets are normally drilled or punched in steel angles at certain standard locations. These locations or gages are dependent on the angle-leg widths and on the number of lines of holes. Table 3.1 shows these gages.

l <u>←</u> g_→	Leg	8	7	6	5	4	$3\frac{1}{2}$	3	$2\frac{1}{2}$	2	$1\frac{3}{4}$	$1\frac{1}{2}$	$1\frac{3}{8}$	$1\frac{1}{4}$	1
	g	$4\frac{1}{2}$	4	$3\frac{1}{2}$	3	$2\frac{1}{2}$	2	$1\frac{3}{4}$	$1\frac{3}{8}$	$1\frac{1}{8}$	1	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{3}{4}$	<u>5</u> 8
	<i>g</i> 1	3	$2\frac{1}{2}$	$2\frac{1}{4}$	2										
	<i>B</i> 2	3	3	$2\frac{1}{2}$	$1\frac{3}{4}$										

TABLE 3.1 Workable Gages for Angles, in Inches

Example 3-2

Determine the critical net area of the 1/2-in-thick plate shown in Fig. 3.5, using the AISC Specification. The holes are punched for 3/4-in bolts.

FIGURE 3.5

Solution:

- The critical section could possibly be ABCD, ABCEF, or AB<mark>EF.</mark>
- Hole diameters to be subtracted are 3/4 + 1/8 = 7/8 in.
- The net areas for each case are as follows:

$$ABCD = (11 in) \left(\frac{1}{2} in\right) - 2\left(\frac{7}{8} in\right) \left(\frac{1}{2} in\right) = 4.63 in^{2}$$
$$ABCEF = (11 in) \left(\frac{1}{2} in\right) - 3\left(\frac{7}{8} in\right) \left(\frac{1}{2} in\right) + \frac{(3 in)^{2}}{4(3 in)} \left(\frac{1}{2} in\right) = 4.56 in^{2} \leftarrow ABEF = (11 in) \left(\frac{1}{2} in\right) - 2\left(\frac{7}{8} in\right) \left(\frac{1}{2} in\right) + \frac{(3 in)^{2}}{4(6 in)} \left(\frac{1}{2} in\right) = 4.81 in^{2}$$

2008

Example 3-3

For the two lines of bolt holes shown in Fig. 3.6, determine the pitch that will give a net area DEFG equal to the one along ABC. The problem may also be stated as follows: Determine the pitch that will give a net area equal to the gross area less one bolt hole. The holes are punched for 3/4-in bolts.

Solution

The hole diameters to be subtracted are 3/4 in + 1/8 in = 7/8 in.

$$ABC = 6 in - (1) \left(\frac{7}{8} in\right) = 5.13 in$$

$$DEFG = 6 in - 2 \left(\frac{7}{8} in\right) + \frac{s^2}{4(2 in)} = 4.25 in + \frac{s^2}{8 in}$$

$$ABC = DEFG$$

$$5.13 = 4.25 in + \frac{s^2}{8 in}$$

$$s = 2.65 in$$
ERBIL

The AISC Specification does not include a method for determining the net widths of sections other than plates and angles. For channels,W sections, S sections, and others, the web and flange thicknesses are not the same. As a result, it is necessary to work with net areas rather than net widths. If the holes are placed in straight lines across such a member, the net area can be obtained by simply subtracting the crosssectional areas of the holes from the gross area of the member. If the holes are staggered, the $\frac{s^2}{4g}$ values must be multiplied by the applicable thickness to change it to an area.

Example 3-4

Determine the net area of the $W12 \times 16$ ($A_g = 4.71 in^2$) shown in Fig. 3.7, assuming that the holes are for 1-in bolts.

FIGURE 3.7

Solution. Net areas: hole ϕ is 1 in $+\frac{1}{8}$ in $= 1\frac{1}{8}$ in

$$ABDE = 4.71 \text{ in}^2 - 2\left(1\frac{1}{8}\text{ in}\right)(0.220 \text{ in}) = 4.21 \text{ in}^2$$
$$ABCDE = 4.72 \text{ in}^2 - 3\left(1\frac{1}{8}\text{ in}\right)(0.220 \text{ in}) + (2)\frac{(2 \text{ in})^2}{4(3 \text{ in})}(0.220 \text{ in}) = 4.11 \text{ in}^2 \leftarrow$$

If the zigzag line goes from a web hole to a flange hole, the thickness changes at the junction of the flange and web.

In Example 3-5, the net area of a channel that has bolt holes staggered in its flanges and web has been computed. The channel is assumed to be flattened out into a single plate, as shown in parts (b) and (c) of Fig. 3.8. The net area along route ABCDEF is determined by taking the area of the channel minus the area of the holes along the route in the flanges and web plus the $\frac{s^2}{4g}$ values for each zigzag line times the appropriate thickness. For line CD, $\frac{s^2}{4g}$ has been multiplied by the thickness of the web. For lines BC and DE (which run from holes in the web to holes in the flange), an approximate procedure has been used in which the $\frac{s^2}{4g}$ values have been multiplied by the average of the web and flange thicknesses.

Example 3-5

Determine the net area along route ABCDEF for the $C15 \times 33.9$ ($A_g = 10.00 \text{ in}^2$) shown in Fig. 3.8. Holes are for $\frac{3}{4}$ in bolts.

Solution

Approximate net A along

$$ABCDEF = 10.00 \text{ in}^{2} - 2\left(\frac{7}{8} \text{ in}\right)(0.650 \text{ in}) \\ - 2\left(\frac{7}{8} \text{ in}\right)(0.400 \text{ in}) \\ + \frac{(3 \text{ in})^{2}}{4(9 \text{ in})}(0.400 \text{ in}) \\ + (2)\frac{(3 \text{ in})^{2}}{(4)(4.60 \text{ in})}\left(\frac{0.650 \text{ in} + 0.400 \text{ in}}{2}\right)$$

$$= 8.78 \text{ in}^{2}$$

EFFECTIVE NET AREAS

If the forces are not transferred uniformly across a member cross section, there will be a transition region of uneven stress running from the connection out long the member for some distance. This is the situation shown in Fig. 3.9(a), where a single angle tension member is connected by one leg only. At the connection more of the load is carried by the connected leg, and it takes the transition distance shown in part (b) of the figure for the stress to spread uniformly across the whole angle.

- In the transition region the stress in the connected part of the member may very well exceed and go into the strain-hardening range.
- In the transition region, the shear transfer has "lagged" and the phenomenon is referred to as shear lag.

FIGURE 3.9 Shear lag.

In such a situation, the flow of tensile stress between the full member cross section and the smaller connected cross section is not 100 percent effective. As a result, the AISC Specification states that the effective net area, A_e of such a member is to be determined by multiplying an area A (which is the net area or the gross area or the directly connected area) by a reduction factor U. The use of a factor such as U accounts for the nonuniform stress distribution, in a simple manner.

$A_e = A_n U$

The value of the reduction coefficient, *U*, is affected by the cross section of the member and by the length of its connection.

Investigators have found that one measure of the effectiveness of a member such as an angle connected by one leg is the:

- 1. The distance <u>x</u>measured from the plane of the connection to the centroid of the area of the whole section.
- 2. The length of its connection,*L*.

The effect of these two parameters, \bar{x} and L, is expressed empirically with the reduction factor

FIGURE 3-10

Bolted Members

Should a tension load be transmitted by bolts, the gross area is reduced to the net area A_n of the member, and U is computed as follows:

$$U = 1 - \frac{\bar{x}}{L}$$

L is computed as follows

One line of bolts	L is the distance between the first and last bolts in
	the line.
Two or more lines of bolts	L is the length of the line with the maximum number of bolts.
Blots be staggered	L is the out-to-out dimension between the extreme
	b <mark>olts in</mark> a li <mark>ne</mark> .

NATIONAL

Table 3.2 provides a detailed list of shear lag or U factors for different situations. [This table is a copy of Table D3.1 of the AISC Specification]

Case	Description	of Element	Shear Lag Factor, U	Example				
1	All tension members load is transmitted dir cross-sectional eleme welds (except as in Ca	where the tension rectly to each of the nts by fasteners or ases 4, 5 and 6).	<i>U</i> = 1.0					
2	All tension members, HSS, where the tension to some but not all of elements by fasteners welds or by longitudin combination with tran (Alternatively, for W, may be used. For ang used.)	except plates and on load is transmitted the cross-sectional or longitudinal nal welds in nsverse welds. M, S and HP, Case 7 les, Case 8 may be	$U = 1 - \overline{x}/l$	$\overline{x} \xrightarrow{\overline{x}} \overline{x} \xrightarrow{\overline{x}} \overline{x} \xrightarrow{\overline{x}} \overline{x}$				
3	All tension members load is transmitted on welds to some but no cross-sectional eleme	where the tension lly by transverse t all of the nts.	$U = 1.0$ and $A_n = \text{ area of the directly}$ connected elements					
4	Plates where the tens transmitted by longitu	ion load is udinal welds only.	$l \ge 2wU = 1.0$ $2w > l \ge 1.5wU = 0.87$ $1.5w > l \ge wU = 0.75$					
5	Round HSS with a sin gusset plate	ngle concentric	$l \ge 1.3DU = 1.0$ $D \le l < 1.3DU = 1 - \overline{x}/l$ $\overline{x} = D/\pi$					
6	Rectangular HSS	with a single con- centric gusset plate	$l \ge H \dots U = 1 - \overline{x}/l$ $\overline{x} = \frac{B^2 + 2BH}{4(B+H)}$					
		with two side gusset plates	$l \ge H \dots U = 1 - \overline{x}/l$ $\overline{x} = \frac{B^2}{4(B+H)}$					
7	W, M, S or HP Shapes or Tees cut from these shapes. (If U is calculated per Case 2, the	with flange con- nected with 3 or more fasteners per line in the direction of loading	$b_f \ge 2/3d \dots U = 0.90$ $b_f < 2/3d \dots U = 0.85$					
	larger value is per- mitted to be used.)	with web connected with 4 or more fas- teners per line in the direction of loading	U = 0.70					
8	Single and double angles (If U is calculated per	with 4 or more fas- teners per line in the direction of loading	U = 0.80					
	Case 2, the larger value is permitted to be used.)	with 3 fasteners per line in the direction of loading (With fewer than 3 fasteners per line in the direction of loading, use Case 2.)	U = 0.60					
l = le width recta	ngth of connection, in. (m 1 of rectangular HSS men ngular HSS member, mea	(m); $w = \text{plate width, in.}$ (mber, measured 90° to the asured in the plane of the	mm); \overline{x} = eccentricity of connection plane of the connection, in. (mm) e connection, in. (mm)	h, in. (mm); $B = overall$; $H = overall$ height of				

 TABLE 3.2
 Shear Lag Factors for Connections to Tension Members

In order to calculate U for a W section connected by its flanges only, we will assume that the section is split into two structural tees. Then the value of used will be the distance from the outside edge of the flange to the c.g. of the structural tee, as shown in parts (a) and (b) of Fig. 3.11.

Example 3-6

Determine the effective area of a $W10 \times 45$ with two lines of ³/₄-in diameter bolts in each flange. There are assumed to be at least three bolts in each line 4-in on center, and the bolts are not staggered with respect to each other.

ERBIL

Solution:

$$A_n = 13.3 - 4\left(\frac{3}{4} + \frac{1}{8}\right)(0.62) = 11.13$$

Referring to tables in Manual for ond-half of a $W10 \times 45$ (or, that is a $WT5 \times 22.5$), we find that

$$\bar{x} = 0.907 in$$

Length of connection L = 8 in

From Table 3.2 (case 2)

$$U = 1 - \frac{\bar{x}}{L} = 1 - \frac{0.907}{8} = 0.89$$

But

$$b_f = 8.02 > \frac{2}{3}d = \left(\frac{2}{3}\right)10.1 = 6.73$$
 in

 $\therefore U$ from Table 3.2 (case 7) is 0.9

$$A_e = UA_n = (0.9)(11.13) = 10.02 in^2$$

Example 3-7

Determine the effective area for $L6 \times 6 \times 3/8$ that is connected at its ends with one line of four 7/8-in-diameter bolts in standard holes 3 in on center in one leg of the angle. Knowing that ($A_g = 4.38 in^2$, $\bar{y} = \bar{x} = 1.62 in$.)

Solution:

$$A_n = 4.38 - (1)\left(\frac{7}{8} + \frac{1}{8}\right)\left(\frac{3}{8}\right) = 4.00 \ in^2$$

Length of connection, L = 9 *in*.

$$U = 1 - \frac{\bar{x}}{L} = 1 - \frac{1.62}{9} = 0.82$$

From Table 3.2, case 8, for 4 or more fastenrs in the direction of loading, U = 0.80.

Use calculated U = 0.82

ERBIL

$$A_e = UA_n = (0.82)(4.00) = 3.28 in^2$$

2008

Welded Members

When tension loads are transferred by welds, the rules from AISC (Table 3.2 in this text) that are to be used to determine values for A and U (A_e as for bolted connections = AU) are as follows:

- 1. Should the load be transmitted only by longitudinal welds to other than a plate member, or by longitudinal welds in combination with transverse welds, *A* is to equal the gross area of the member A_q (Table 3.2, Case 2).
- Should a tension load be transmitted only by transverse welds, A is to equal the area of the directly connected elements and U is to equal 1.0 (Table 3.2, Case 3).
- 3. For flat plates or bars connected by longitudinal fillet welds, use the values of *U* listed in Table 3.2, Case 4.

 $\frac{\text{Length}, \ell}{A_g = \text{wt}} \qquad \frac{U}{1.0}$ $A_e = UA_g \qquad 2w > \ell > 1.5w \qquad 0.87$

1.5w > l > w

0.75

FIGURE 3.12 a

The 1×6 *in* plate shown in Fig. 3.13 is connected to a 1×10 *in* plate with longitudinal fillet welds to transfer a tensile load. Determine the effective area.

FIGURE 3.13

Solution:

$$(1.5w = 1.5 \times 6 = 9 \text{ in.}) > (L = 8 \text{ in.}) > (w = 6)$$

 $\therefore U = 0.75 \text{ from Table 3.2 case 4}$
 $A_e = UA_n = (0.75)(6.0) = 4.5 \text{ in}^2$

Sometimes an angle has one of its legs connected with both longitudinal and transverse welds, but no connections are made to the other leg.To determine U from Table 3.2 for such a case is rather puzzling. sometimes Case 2 of Table 3.2 (that is, $U = 1 - \frac{\bar{x}}{L}$) is be used for this situation. This is done in Example 3-9.

.....

Example 3-9

Compute the net area for the angle shown in the Figure below. It is welded on the end (transverse) and sides (longitudinal) of the 8-in leg only.

NATIONA

Solution:

Nominal or available tensile strength of the angle

$$U = 1 - \frac{\bar{x}}{L} = 1 - \frac{1.56}{6} = 0.74$$
$$A_e = UA_a = (0.74)(9.99) = 7.39 \text{ in}^2$$

Example Determine A_e for the 1 \times 5 in. plate shown below if (a) l = 7 in., (b) l = 8.5 in., (c) l = 11 in.

2008

Solution. $A_e = UA_e$

 $A_{g} = 1$ in. $\times 5$ in. = 5 in.²

w = 5 in., 1.5w = 7.5 in., 2w = 10 in.

- a) Since 1.5w > l > w in this case, then U = 0.75and $A_e = 0.75 \times 5 = 3.75$ in.²
- b) Since 2w > l > 1.5w in this case, then U = 0.87and $A_e = 0.87 \times 5 = 4.35$ in.²
- c) Since l > 2w, then U = 1.0 and $A_e = 5$ in.²

ERBIL

Determine A_e for the WT 5 \times 15 shown below. Example

Solution.

$$U = 1 - \frac{\overline{x}}{l}$$

 $\overline{x} = 1.1$ in. (see AISCM Properties Section)
 $l = 6$ in.
 $U = 1 - \frac{1.1}{6} = 0.82$
 $A_e = UA_g = 0.82 \times 4.42 = 3.61$ in.²
ERBIL

2008

C H A P T E R 4 Design of Tension Members

SELECTION OF SECTIONS

The determination of the net and effective areas of various tension members was presented in Chapter 3. In this chapter, the selection of members to support given tension loads is described.

The choice of member type is often affected by the type of connections used for the structure.

- Tension members consisting of angles, channels, and W or S sections will probably be used when the connections are made with bolts.
- Plates, channels, and structural tees might be used for welded structures.
- Specifications usually recommend that slenderness ratios be kept below 300. used.
- The recommended maximum slenderness ratio of 300 is not applicable to tension rods. Maximum L/r values for rods are left to the designer's judgment.
- The AASHTO Specifications provide mandatory maximum slenderness ratios of 200 for main tension members and 240 for secondary members. (A main member is defined by the AASHTO as one in which stresses result from dead and/or live loads, while secondary members are those used to brace structures or to reduce the unbraced length of other members—main or secondary.). The AASHTO also requires that the maximum slenderness ratio permitted for members subjected to stress reversal be 140.

Accoridng to the LRFD equations, the design strength of a tension member is the least of $\phi_t F_y A_g$, $\phi_t F_u A_e$. In addition, the slenderness ratio should, preferably, not exceed 300.

a. To satisfy the first of these expressions, the minimum gross area must be at least equal to

$$\min A_g = \frac{P_u}{\phi_t F_y}$$

b. To satisfy the second expression, the minimum value of A_e must be at least

$$\min A_e = \frac{P_u}{\phi_t F_u}$$

And since $A_e = UA_n$ for a bolted member, the minimum value of A_n is

$$\min A_n = \frac{\min A_e}{U} = \frac{P_u}{\phi_t F_u U}$$

Then the minimum A_g is **EXAMPLE**

 $= \min A_n + \text{ estimated area of holes}$ $= \frac{P_u}{\phi_t F_u U} + \text{ estimated ared of holes}$

The designer can substitute into above Equations, taking the larger value of so obtained for an initial size estimate. It is, however, well to notice that the maximum preferable slenderness ratio L/r is 300

$$\min r = \frac{L}{300}$$

<u>Usually, for the examples,D and L loads are specified so that we will not have to</u> <u>go through all of the load combination expressions. For such problems, then, we</u> <u>will need only to use the following load combinations:</u>

$$P_u = 1.4D$$

$$P_u = 1.2D + 1.6L$$

Example 4-1

Select a 30-ft-long W12 steel to support a tensile service dead load $P_D = 130 k$ and a tensile service live load $P_L = 110 k$. As shown in Fig. 4.1, the member is to have two lines of bolts in each flange for 7/8-in bolts (at least three in a line 4 in on center). [$F_y = 50 kis$, $F_u = 65 ksi$].

1. min
$$A_g = \frac{P_u}{\phi_t F_y} = \frac{332 \ k}{(0.9)(50 \ ksi)} = 7.38 \ in^2$$

2. min $A_g = \frac{P_u}{\phi_t F_u U}$ + estimated area of holes

Assume that U = 0.85 from Table 3.2, Case 7, and assume that flange thickness is about 0.380 in after looking at W12 sections in the LRFD Manual which have

$$\min A_g = \frac{332 \ k}{(0.75)(65 \ ksi)(0.85)} + (4)\left(\frac{7}{8}\ln + \frac{1}{8}\ln\right)(0.381 \ \text{in}) = 9.53 \ \text{in}^2 \leftarrow$$

(c) Preferable miniumum r

$$\min r = \frac{L}{300} = \frac{(12 \text{ in/ft})(30 \text{ ft})}{300} = 1.2 \text{ in}$$

Try W12 × 35 (A_g = 10.3 in², d = 12.5 in, b_f = 6.56 in.

$$t_f = 0.520 \text{ in, } r_{min} = r_y = 1.54 \text{ in}$$

ERNATIONA

Checking

(a) Gross section yielding

$$P_u < \phi_t P_n$$

$$P_n = F_y A_g = (50 \ ksi)(10.3 \ in^2) = 515 \ k$$

$$P_t P_n = (0.9)(515 \ k) = 463.5 \ k > 332 \ k \ [: OK$$

2008

(b) Tensile rupture strength

¢

From Table 3.2, case 2

 \bar{x} for half of $W12 \times 35$ or, that is, a $WT6 \times 17.5 = 1.30$ in

$$L = (2)(4 \text{ in}) = 8 \text{ in}$$
$$U = \left(1 - \frac{\bar{x}}{L}\right) = \left(1 - \frac{1.3}{8}\right) = 0.84$$

From table 3.2, case 7

$$U = 0.85, \text{ since } b_f = 6.56 < \frac{2}{3}d = \left(\frac{2}{3}\right)(12.50 \text{ in}) = 8.33 \text{ in}$$
$$A_n = 10.3 \text{ in}^2 - (4)\left(\frac{7}{8}\text{ in} + \frac{1}{8}\text{ in}\right)(0.520 \text{ in}) = 8.22 \text{ in}^2$$
$$A_e = (0.85)(8.22 \text{ in}^2) = 6.99 \text{ in}^2$$

 $P_u < \phi_t P_n$

$$P_n = F_u A_e = (65 \ ksi)(6.99 \ in^2) = 454.2 \ k$$

LRFD with $\phi_t = 0.75$

 $\phi_t P_n = (0.75)(454.2 \ k) = 340.7 \ k > 332 \ k \ [: OK]$

(c) Slenderness ratio

$$\frac{L}{r_y} = \frac{(12 \text{ in/ft})(30 \text{ ft})}{1.54} = 234 < 300[:: OK]$$

∴ OK to use W12 × 35

Example 4-2

Design a 9-ft single-angle tension member to support a dead tensile working load of 30 k and a live tensile working load of 40 k. The member is to be connected to one leg only with 7/8-in bolts (at least four in a line 3 in on center). Assume that only one bolt is to be located at any one cross section. Use $F_y = 36 \ kis$, $F_u 58 \ ksi$].

(a) considering load the necessary load combinaitons

$$P_u = 1.4D = 1.4(30 \ k) = 42k$$
$$P_u = 1.2D + 1.6L = (1.2)(30 \ k) + (1.6)(40 \ k) = 100 \ k$$

(b) computing the mininum A_g required, using LRFD equations

1. min
$$A_g = \frac{P_u}{\phi_t F_y} = \frac{100 \ k}{(0.9)(36 \ ksi)} = 3.09 \ in^2$$

2. min $A_g = \frac{P_u}{\phi_t F_y U}$ + estimated aread of holes

Assume that U = 0.8 [case 8, Table 3.2]

 $\min A_g = \frac{100}{0.75(58)(0.8)} + \left(\frac{7}{8} + \frac{1}{8}\right) t$

$$\Rightarrow \min A_g = 2.87 + t$$

(c) miniumum r

$$\min r = \frac{L}{300} = \frac{(12 in/ft)(9 ft)}{300} = 0.36 in$$

Angle	thickness	$\min A_g = 2.87 + t$	Lightest angle avaibale					
(t)		e e e e e e e e e e e e e e e e e e e	section	Area (in ²)	least <i>r</i> (in)			
5/16		3.18	$6 \times 6 \times \frac{5}{16}$	3.67	1.20			
3/8		3.25	$6 \times 3\frac{1}{2} \times \frac{3}{8}$	3.42	0.763			
7/16		3.30	$4 \times 4 \times \frac{7}{16}$	3.31	0.777			
			$5 \times 3 \times \frac{7}{16}$	3.31	0.65			
1⁄2		3.37	$4 \times 3\frac{1}{2} \times \frac{1}{2}$	<mark>3.5</mark> 0	0.716			
5/8		3.50	$4 \times 3 \times \frac{5}{8}$	3.99	0.631			

Try $4 \times 4 \times \frac{7}{16}$

Checking

(a) Gross section yielding

 $P_u < \phi_t P_n$ $P_n = F_y A_g = (36 \text{ ksi})(3.31 \text{ in}^2) = 119.1 \text{ k}$ $\phi_t P_n = (0.9)(119.1 \text{ k}) = 107.2 \text{ k} > 100 \text{ k} [\because OK]$

2008

(b) Tensile rupture strength

 \bar{x} for $4 \times 4 \times \frac{7}{16} = 1.15$ in

$$L = (3)(3 in) = 9 in$$

$$U = \left(1 - \frac{\bar{x}}{L}\right) = \left(1 - \frac{1.15}{8}\right) = 0.86$$

From table 3.2, case 8, U = 0.80

Use U = 0.86

 $A_e = UA_n = (0.86)(2.86 in^2) = 2.46 in^2$

$$P_u < \phi_t P_n$$

 $P_n = E_t A_n = (58 \, ksi)(2.46 \, in^2) = 142.7 \, k$

LRFD with $\phi_t = 0.75$

$$\phi_t P_n = (0.75)(142.7 \ k) = 107 \ k > 100 \ k \ [\because OK]$$

(c) Slenderness ratio

$$\frac{L}{r_z} = \frac{(12 \text{ in/ft})(9 \text{ ft})}{0.777} = 139 < 300[:: OK]$$

 \therefore OK to use $4 \times 4 \times \frac{7}{16}$

BUILT-UP TENSION MEMBERS

Sections D4 and J3.5 of the AISC Specification provide a set of definite rules describing how the different parts of built-up tension members are to be connected together.

RODS AND BARS

When rods and bars are used as tension members, they may be simply welded at their ends, or they may be threaded and held in place with nuts. The AISC nominal tensile design stress for threaded rods, $F_{nt} = 0.75F_u$.

The gross area of the rod area, A_D , required for a particular tensile load can be calculated as:

$$A_D \ge \frac{P_u}{\phi \ 0.75 \ F_u}$$

Example 4-3

Using the AISC Specification, select a standard threaded steel rod to support a tensile working dead load of 10 k and a tensile working live load of 20 k. [$F_u = 58 \ ksi$].

Solution

$$P_u = 1.4D = 1.4(10 \ k) = 14 \ k$$
$$P_u = 1.2D + 1.6L = (1.2)(10 \ k) + (1.6)(20 \ k) = 44 \ k$$

$$A_D \ge \frac{P_u}{\phi \ 0.75 \ F_u} = \frac{44 \ k}{(0.75)(0.75)(58 \ ksi)} = 1.35 \ in^2$$

From AISC Tables, try $1\frac{3}{8}in$ steel rod [has $A_D = 1.49in^2$]

Checking

Gross section yielding

$$P_u < \phi_t R_r$$

 $R_n = 0.75F_u A_D = (0.75)(58 \, ksi)(1.49 \, in^2) = 64.8 \, k$

$$\phi_t R_n = (0.9)(64.8 \ k) = 48.6 \ k > 44 \ k \ [: OK]$$

<u>Summary</u>

Design of Tension Members

1. min
$$A_g = \frac{P_u}{\phi_t F_y}$$

2. min $A_g = \frac{P_u}{\phi_t F_u U}$ + estimated area of holes
3. min $r = \frac{L}{300}$
 $\phi_t = 0.9$

Checking

(a) Gross section yielding

$$P_u < \phi_t P_n$$

 $P_n = F_y A_g \text{ and } \phi_t = 0.9$

(b) Tensile rupture strength

$$P_u < \phi_t P_n$$

 $P_n = F_u A_e$ and $\phi_t = 0.75$

(c) Slenderness ratio

2008

CHAPTER5

Introduction to Axially Loaded Compression Members

GENERAL

There are three general modes by which axially loaded columns can fail. These are flexural buckling, local buckling, and torsional buckling. These modes of buckling are briefly defined as follows:

- 1. Flexural buckling (also called Euler buckling): Members are subject to flexure, or bending, when they become unstable.
- 2. Local buckling occurs when some part or parts of the cross section of a column are so thin that they buckle locally in compression before the other modes of buckling can occur.
- 3. Flexural torsional buckling: Columns fail by twisting (torsion) or by a combination of torsional and flexural buckling.

SECTIONS USED FOR COLUMNS

FIGURE 5.1 Types of compression members.

THE EULER FORMULA

For a column to buckle elastically, it will have to be long and slender. Its buckling load P can be computed with the Euler formula that follows:

$$\frac{P}{A} = \frac{\pi^2 E}{(L/r)^2} = F_e$$

Example 5-1 illustrates the application of the Euler formula to a steel column. If the value obtained for a particular column exceeds the steel's proportional limit, the elastic Euler formula is not applicable.

Example 5-1

- (a) A W10 \times 22 is used as a 15-ft long pin-connected column. Using the Euler expression, determine the column's critical or buckling load. Assume that the steel has a proportional limit of 36 ksi.
- (b) Repeat part (a) if the length is changed to 8 ft.

Solution

(a) Using a 15-ft long W10 × 22 ($A = 6.49 \text{ in}^2$, $r_x = 4.27 \text{ in}$, $r_y = 1.33 \text{ in}$) Minimum $r = r_y = 1.33$ in

$$\frac{L}{r} = \frac{(12 \text{ in/ft})(15 \text{ ft})}{1.33 \text{ in}} = 135.34$$

Elastic or buckling stress $F_e = \frac{(\pi^2)(29 \times 10^3 \text{ ksi})}{(135.34)^2}$

= 15.63 ksi < the proportional limit of 36 ksi

OK column is in elastic range

Elastic or buckling load = $(15.63 \text{ ksi})(6.49 \text{ in}^2) = 101.4 \text{ k}$

(b) Using an 8-ft long W10 \times 22,

$$\frac{L}{r} = \frac{(12 \text{ in/ft})(8 \text{ ft})}{1.33 \text{ in}} = 72.18$$
$$(\pi^2)(29 \times 10^3 \text{ ksi})$$

Elastic or buckling stress $F_e = \frac{(\pi^2)(25 \times 10^{-10} \text{ ksi})}{(72.18)^2} = 54.94 \text{ ksi} > 36 \text{ ksi}$

 \therefore column is in inelastic range and Euler equation is not applicable.

END RESTRAINT AND EFFECTIVE LENGTHS OF COLUMNS

- End restraint and its effect on the load-carrying capacity of columns is a very important subject indeed.
- In steel specifications, the effective length of a column is referred to as *KL*, where *K* is the effective length factor. *K* is the number that must be multiplied by the length of the column to find its effective length.

Columns with different end conditions have entirely different effective lengths. For this initial discussion, it is assumed that no sidesway or joint translation is possible between the member ends. Sidesway or joint translation means that one or both ends of a column can move laterally with respect to each other. Should a column be connected with frictionless hinges, as shown in Fig. 5.2(a), its effective length would be equal to the actual length of the column and K would equal 1.0. If there were such a thing as a perfectly fixed-ended column, its points of inflection (or points of zero moment) would occur at its one-fourth points and its effective length would equal L / 2, as shown in Fig. 5.2(b). As a result, its K value would equal 0.50.

FIGURE 5.2 Effective length (*KL*) for columns in braced frames (sidesway prevented).

TABLE 5.1 Appro	oximate V	/alues of H	Effective Leng	th Factor, K			
Buckled shape of column is shown by dashed line		(b) ♥ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	(c) ↓↓ ↓		(e) ↓ ↓ ○	€ ↓ ↓ ↓	
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0	
Recommended design value when ideal conditions are approximated	0.65	0.80	1.2	1.0	2.10	2.0	
End condition code		 Rotation fixed and translation fixed Rotation free and translation fixed Rotation fixed and translation free Rotation free and translation free 					

ERBIL

2008

LONG, SHORT, AND INTERMEDIATE COLUMNS

A column subject to an axial compression load will shorten in the direction of the load. If the load is increased until the column buckles, the shortening will stop and the column will suddenly bend or deform laterally and may at the same time twist in a direction perpendicular to its longitudinal axis.

Columns are sometimes classed as being long, short, or intermediate. A brief discussion of each of these classifications is presented in the paragraphs to follow.

1. Long Columns	The Euler formula predicts very well the strength of long								
	columns where the axial buckling stress remains below								
	the proportional limit. Such columns will buckle								
	elastically.								
2. Short Columns	For very short columns, the failure stress will equal the								
	yield stress and no buckling will occur. (For a column to								
	fall into this class, it would have to be so short as to have								
	no practical application. Thus, no further reference is								
	made to them here.)								
3. Intermediate	For in <mark>te</mark> rmediate columns, some of the fibers will reach								
Columns	the yie <mark>ld</mark> str <mark>e</mark> ss a <mark>n</mark> d some will not.The members will fail								
	by both <mark>yielding and bu</mark> ckling, and their behavior is said to								
	be in <mark>elastic. Most columns fall in</mark> to this range.								

COLUMN FORMULAS

The AISC Specification provides one equation (the Euler equation) for long columns with elastic buckling and an empirical parabolic equation for short and intermediate columns. With these equations, a flexural buckling stress, F_{cr} , is determined for a compression member. Once this stress is computed for a particular member, it is multiplied by the cross-sectional area of the member to obtain its nominal strength P_n . The LRFD design strength of a column may be determined as follows:

$$P_n = \frac{F_{cr}A_g}{F_{cr}A_g}$$

LRFD compression strength $\phi_c P_n = \phi_c F_{cr} A_g$

 $[\phi_c = 0.90]$

The following expressions show how F_{cr} , the flexureal bucking stress f a column, may be determined

a) If $\frac{KL}{R} \le 4.71 \sqrt{\frac{E}{F_y}}$ $\Rightarrow F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$ b) If $\frac{KL}{R} > 4.71 \sqrt{\frac{E}{F_y}}$ $\Rightarrow F_{cr} = 0.877 F_e$

where $F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$

Example 5-2

a. Using the column critical stress values in Table 4-22 of the Manual, determine the LRFD design strength $\phi_c P_n$ for the column shown below, if a 50-ksi steel is used.

 P_u or P_a

ЩД

77777

 P_u or P_a

15 ft

2008

 $W12 \times 72$

- b. Repeat the problem, using Table 4-1 of the Manual.
- c. Calculate $\phi_c P_n$ using AISC equations.

Solution

From thable 5.1 K = 0.8

$$\left(\frac{KL}{r}\right)_{x} = \frac{(0.8)(12 \times 15)}{5.31} = 27.11$$
$$\left(\frac{KL}{r}\right)_{y} = \frac{(0.8)(12 \times 15)}{3.04} = 47.37 \leftarrow controls$$

From Table 4-22 (MANUAL), by stright line interpolation, $\phi_c F_{cr} = 38.19 \ ksi$ For LRFD, $\phi_c P_n = \phi_c F_{cr} A_g = (38.19)(21.1) = 805.8 \ k$

(b) from Table 4-1 (MANUAL), for KL = (0.8)(15) = 12 ft, $\Rightarrow \phi_c P_n = 807 k$

(c) Elastic critical bucking stress

$$\begin{aligned} \frac{KL}{r} \Big|_{y} &= 47.37 \text{ [from part (a)]} \\ F_{e} &= \frac{\pi^{2}E}{\left(\frac{KL}{r}\right)^{2}} = \frac{\pi^{2}(29000)}{(47.37)^{2}} = 127.55 \text{ ksi} \\ 4.71 \sqrt{\frac{E}{F_{y}}} &= \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 113.3 > \left(\frac{KL}{r}\right)_{y} = 47.37 \\ &\Rightarrow F_{cr} = \left[0.658^{\frac{F_{y}}{F_{e}}}\right] F_{y} = \left[0.658^{\left(\frac{50}{127.55}\right)}\right] 50 = 42.43 \text{ ksi} \end{aligned}$$

LRFD method, $\phi_c F_{cr} = (0.90)(42.43) = 38.19 \, ksi$

$$\phi_c P_n = \phi_c F_{cr} A_g = (38.19)(21.1) = 805.8 k$$

Example 5-3

An HSS $16 \times 16 \times \frac{1}{2}$ with $F_y = 46$ ksi is used for an 18-ft-long column with simple end supports.

- (a) Determine $\phi_c P_n$ with the appropriate AISC equations.
- (b) Repeat part (a), using Table 4-4 in the AISC Manual.

Solutuion

(a) Using an HSS

$$16 \times 16 \times \frac{1}{2} (A = 28.3 \text{ in}^2, t_{\text{wall}} = 0.465 \text{ in}, r_x = r_y = 6.31 \text{ in})$$

$$K = 1.0$$

$$\left(\frac{KL}{r}\right)_{x} = \left(\frac{KL}{r}\right)_{y} = \frac{(1.0)(12 \times 18) \text{ in}}{6.31 \text{ in}} = 34.23$$

$$< 4.71 \sqrt{\frac{E}{F_{y}}} = 4.71 \sqrt{\frac{29,000}{46}} = 118.26$$

 \therefore Use AISC Equation for F_{cr}

$$F_{e} = \frac{\pi^{2}E}{\left(\frac{KL}{r}\right)^{2}} = \frac{(\pi^{2})(29,000)}{(34.23)^{2}} = 244.28 \text{ ksi}$$
$$F_{cr} = \left[0.658^{\frac{F_{y}}{F_{c}}}\right]F_{y} = \left[0.658^{\frac{46}{244.28}}\right]46$$
$$= 42.51 \text{ ksi}$$

LRFD $\phi_c = 0.90$

 $\phi_c F_{cr} = (0.90)(42.51) = 38.26$ ksi

 $\phi_c P_n = \phi_c F_{cr} A = (38.26)(28.3) = 1082 \text{ k}$

(b) from Table 4-4 (MANUAL), for KL = (1.0)(18) = 18 ft, $\Rightarrow \phi_c P_n = 1080 k$

Example 5-4

Determine the LRFD design strength $\phi_c P_n$ for the 50 ksi axially loaded $W14 \times 90$ shown below.

Because of its considerable length, this column is braced perpendicular to its weak, or y, axis at the points shown in the figure. These connections are assumed to permit rotation of the member in a plane parallel to the plane of the flanges. At the same time, however, they are assumed to prevent translation or sidesway and twisting of the cross section about a longitudinal axis passing through the shear center of the cross section.

Solution

Using W14 × 90 ($A = 26.5 \text{ in}^2$, $r_x = 6.14 \text{ in}$, $r_y = 3.70 \text{ in}$) Determining effective lengths

$$K_x L_x = (0.80)(32) = 25.6 \text{ ft}$$

 $K_y L_y = (1.0)(10) = 10 \text{ ft} \leftarrow \text{governs for } K_y L_y$
 $K_y L_y = (0.80)(12) = 9.6 \text{ ft}$

08

Computing slenderness ratios

$$\left(\frac{KL}{r}\right)_{x} = \frac{(12)(25.6)}{6.14} = 50.03 \leftarrow \frac{KL}{r}$$
$$\left(\frac{KL}{r}\right)_{y} = \frac{(12)(10)}{3.70} = 32.43$$

 $\phi_c F_{cr} = 37.49 \text{ ksi}$ from Manual, Table 4–22, $F_y = 50 \text{ ksi}$ $\phi_c P_n = \phi_c F_{cr} A_g = (37.49)(26.5) = 993 \text{ k}$

C H A P T E R 6 Design of Axially Loaded Compression Members

INTRODUCTION

The design of columns by formulas involves a trial-and-error process. The LRFD design stress $\phi_c F_{cr}$ is not known until a column size is selected, and vice versa.

There are two method for design of compression memebers

- 1- Trial and error method (Ilustrated in Example 6-1)
- 2- AISC Tables method (Illustrated in Example 6-2)

Example 6-1 (Tiral and error method)

Using $F_y = 50 \text{ ksi}$, select the lightest W14 available for the service column loads $P_D = 130 \text{ k}$ and $P_L = 210 \text{ k}$, KL = 10 ft.

2008

ERBIL

$$P_{\mu} = 1.2(130) + 1.6(210) = 492 k$$

Assume $\frac{KL}{r} = 50$

Solution

From table 4-22, for $F_y = 50 \ ksi$ and $\frac{KL}{r} = 50$, we get $\phi_c F_{cr} = 37.5 \ ksi$

Now caclulate required area of section,

$$\therefore P_u = \phi_c F_{cr} A \Rightarrow A = \frac{P_u}{\phi_c F_{cr}}$$
$$A = \frac{492 \ k}{37.5 \ ksi} = 13.12 \ in^2$$

Try
$$W14 \times 48$$
 ($A = 14.1 in^2$, $r_x = 5.85 in$, $r_7 = 1.91 in$)

Check :

$$\frac{KL}{r} = \frac{(12)(10)}{1.91} = 62.63$$

From table 4-22, for $F_y = 50 \text{ ksi}$ and $\frac{KL}{r} = 62.63$, we get $\phi_c F_{cr} = 33.75 \text{ ksi}$

$$\phi_c P_n = \phi_c F_{cr} A_q = (33.75)(14.1) = 476 \ k < 492 \ \therefore \ NOT \ GOOD$$

Try next larger section, $W14 \times 53$ ($A = 15.6 in^2, r_x = 5.89 in, r_y = 1.92 in$) Check :

$$\frac{KL}{r} = \frac{(12)(10)}{1.92} = 62.5$$

From table 4-22, for $F_y = 50$ ksi and $\frac{KL}{r} = 62.5$, we get $\phi_c F_{cr} = 33.85$ ksi

$$\phi_c P_n = \phi_c F_{cr} A_g = (33.85)(15.6) = 528 \ k > 492 \ \therefore \ OK$$

(1) Table 4–22 (continued) Available Critical Stress for Compression Members

(2)

	<i>F_y</i> = 35k	si		F _y = 36k	si		<i>F_y</i> = 42k	si		F _y = 46ksi			F_v = 50ksi	
VI	F_{cr}/Ω_{c}	$\phi_c F_{cr}$		F_{cr}/Ω_{c}	$\phi_c F_{cr}$		F_{cr}/Ω_{c}	$\phi_{c}F_{cr}$		F_{cr}/Ω_{c}	$\phi_{c}F_{cr}$	K	F_{cr}/Ω_{c}	$\phi_c F_{cr}$
	ksi	ksi	$\frac{N}{r}$	ksi	ksi		ksi	ksi	$\frac{K}{r}$	ksi	ksi	$\frac{K}{r}$	ksi	ksi
	ASD	LRFD		ASD	LRFD		ASD	LRFD		ASD	LRFD	,	ASD	LRFD
41	19.2	28.9	41	19.7	29.7	41	22.7	34.1	41	24.6	37.0	41	26.5	39.8
42	19.2	28.8	42	19.6	29.5	42	22.6	33.9	42	24.5	36.8	42	26.3	39.5
43	19.1	28.7	43	19.6	29.4	43	22.5	33.7	43	24.3	36.6	43	26.2	39.3
44	19.0	28.5	44	19.5	29.3	44	22.3	33.6	44	24.2	36.3	44	26.0	39.1
45	18.9	28.4	45	19.4	29.1	45	22.2	33.4	45	24.0	36.1	45	25.8	38.8
46	18.8	28.3	46	19.3	29.0	46	22.1	33.2	46	23.9	35.9	46	25.6	38.5
47	18.7	28.1	47	19.2	28.9	47	22.0	33.0	47	23.8	35.7	47	25.5	38.3
48	18.6	28.0	48	19.1	28.7	48	21.8	32.8	48	23.6	35.4	48	25.3	38.0
49	18.5	27.9	49	19.0	28.5	49	21.7	32.6	49	23.4	35.2	49	25.1	37.7
50	18.4	27.7	50	18.9	28.4	50	21.6	32.4	50	23.3	35.0	50	24.9	37.5
51	18.3	27.6	51	18.8	28.3	51	21.4	32.2	51	23.1	34.8	51	24.8	37.2
52	18.3	27.4	52	18.7	28.1	52	21.3	32.0	52	23.0	34.5	52	24.6	36.9

	-	-																			G
- W12	onal	Sel	č	in. ⁶	25500	20200	18000	16000	6710 5000	5380	4710	2540	2240	1950	1230	887	405 314	57000	48600	35800	C
W14	Torsi		2	in. ⁴	12.3	7.12	5.37	4.06	5.07	3.01	2.19	1.94	1.45	1.05	0.798	0.380	0.358	243	185	108	828
		h _o		in.	3 13.6 13.5	13.5	13.4	13.3	13.5	13.3	13.2	13.3	13.2	13.1	13.6	13.5	13.5 13.4	13.9	13.6	13.2	121
	-	ľå		'n.	4.23	1417	9.14	8.11	2.85	2.80	3 2.78	2.22	2.20	2.18	1.82	9 1.7	1.31 1.27	4.13	4.U	3.93	2 8 7
ued)			Z	in	6 113	00	1 83.6	0 75.6	8 44.8	6 36.9	5 32.8	2 22.(1 19.6	<u>9</u> 17.5	5 12.1	0.0 0.0 0.0	4 5.5	7 274	2 244	4 196	
ntin pes ies	vie V V		S	n. ³	4.5 3.7	200	5.2 3.7	9.9 3.7	9.3 2.4 3.6 2.4	12 24	.5 2.4	1.3 1.9	2.8 1.9	.3 1.8	7.88 1.5	4.1 1.5.0 4.1 28.0	8.55 1.0 2.80 1.0	3.4	4. 0.0	3.3	
1 (co Shaj		•	-	n.4 i	48 84 84 84 84 84 84 84 84 84 84 84 84 8	24	22	52 4	8 8	2	7 2	57.7 1/	1.4 1:	1 2.2	26.7	19.6	7.00	00 177	00 1 1 1 20	88	
	╞		Z	n. ³	34	1 4	73 4	21 31	9 90 9 90	12	32	37.1	8.4	9.6 7	31.5	17.3	10.2 33.2	3 116		5 83 i	3
Tabl		<	L	i.	6.28 23	6.22 19	6.17 17	6.14 15	6.05 13 6.04 13	6.01 11	5.98 10	5.89	5.85	5.82	5.87	5.73 4	5.65 4	6.41 60	0.29 30 8 16 AG	6.06 42	e l'h 4
	Avie Y.	V OIVY	S	in. ³	209	173	157	143	123	12	92.1	77.8	70.2	62.6	54.6	40.0 42.0	35.3 29.0	483 405	303	33.35	5
			-	in.4	1530	1240	1110	666	881 795	722	640	541	484	428	385	291 291	245 199	4060 2550	3110	2720	
	ompact	riteria	4	tr tw	15 17.7 80 10 3	49 21.7	34 23.5	2 25.9	92 22.4 41 25.4	97 27.5	75 30.4	11 30.9	75 33.6	54 37.4	57 39.6	74 45.4	98 48.1 46 53.3	26 5.47	40 0.30 86 6 35	89 6.96	
	U U U	Inal W		b/ft 2	132 7.	109 8.	<u>99</u> 9.	90 10.	82 5. 74 6.	68 6.	61 7.	53 6.	48 6.	43	38 6.	30.5	26 23 23	336 2.	2 CN0	252 21	
	_ <												T								
		Work- able	Gage	'n.	51/2			•	5 ^{1/2}	;	-	51/2	-,	•	31/29	31/2	2 ^{3/49} 2 ^{3/49}	51/2			
	9	L		Ë	9 -		-,	•	107/8		>	107/8	,	-	6 11 ^{5/8}	>	11 ^{5/8} 11 ^{5/8}	6 9 ^{1/8}			1
	Distan	¥.	-	. :	6 1 ^{9/16}	a 11/2	5 17/16	17/16	16 11/16 11/16	6 11/16	-	-	- 9		¹³ /1	6 3/4 3/4	3/4 6 3/4	111/1	1 1 1/8	11/2	4
		×	des kat	n. in	53 2 ⁵ /1	MG 23/4	38 21/1	31 2	45 1 ¹¹ / 38 15/8	31 19/1	24 11/2	25 11/2	1/1 61	12 13/6	915 11/4	785 1 ¹ /8	820 1 ^{1/8} 735 1 ^{1/1}	55 3 ⁷ / ₈	30 37	85 3 ¹ / ₅	61 DI9
÷	•	SS,	k	i	11.6	7/8 1 4	3/4 1.5	11/16 1.	7/8 1.4 13/16 1.4	3/4 1.	5/8 1.	11/16 1.	5/8 1.	1/2 1.	1/2 0.5	^{3/8} 0.	^{7/16} 0.	215/16 3.	211/16 3.	21/4 2.	01/40 0
s s	ge	Thickne	t,	'n.	1.03 1	0.860	0.780	0.710	0.855	0.720	0.645	0.660	0.595	0.530	0.515	0.385	0.420 0.335	2.96	2.77	2.25	202
sions	Flan	Ĵ,	br	Ë	143/4	145/0	145/8	141/2	101/8	10	10	80	×	~~	63/4	6 ³ /4	5 2	133/8	13//4	13/8	41/64
-1 (o Shi nen		Wi	_		14.7	14.1	14.6	14.5	10.1	10.0	10.0	8.06	8.03	8.00	6.77	6.73	5.03 5.00	13.4	13.2	13.1 13.0	000
	q	s, t _w	8	'n.	8 5/16	1/1	1/4	1/4	2 1/4 e 1/4	1/4 1/4	8 3/16	8 3/16	16 ^{3/16}	16 3/16	16 ^{3/16}	16 3/11 4 1/8	4 1/8 4 1/8	4 7/8	12/ 8	2 7/4 8 11/1	
I	We	hicknes	tw	.e	645 5/	505 1/-	485 1/	440 7/	.510 1/.	415 7	375 3/	370 3/	340 5/	.305 ⁵ /	.310 5/	-285 ⁻ /1	.255 ¹ / .230 ¹ /	.78 13	-63 1 ³	.13 1 ¹ , 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	15
	- 	É.		-	145/8 0.	143/0	141/8 0	14 0.	141/4 0	14 / 0	137/8 0	137/8 0.	139/4 0	135/8 0	141/8 0	14 0 13 ⁷ / ₈ 0	13 ^{7/8} 0 13 ^{3/4} 0	167/8 1	163/8 1	15 ^{3/8} 1	u T
		, Det	~	-	4.7	0.4	4.2	4.0	4.3	4.0	13.9	13.9	138	13.7	14.1	5 13.8	13.9 13.7	16.8	16.3	9 15.9 15.4	T L T
a <	<u> </u>	Area	C	2.4	38.8	30.3	29.1 29.1	26.5	24.0	20.0	17.9	15.6	14.1	12.6	11.2	10.0 8.8	7.6 6.4	^h 98.8	89.6	h 74.0	
·∺ ~ <u>≽</u> Ч		a			132		66t	90t	82	1 89	61	53	48	<43°	38°	34	26°	<336	305	<279 <252	

Example 6-2 (AISC Tables method)

If you know that $P_D = 130 k$ and $P_L = 210 k$, KL = 10 ft, Use the AISC column tables (LRFD method) for the designs to follow.

- a) Select the lightest W section available for the loads, steel, $F_v = 50 \ ksi$
- b) Select the lightest satisfactory rectangular HSS sections, $F_y = 46 \ ksi$
- c) Select the lightest satisfactory square HSS sections, $F_y = 46 \ ksi$
- d) Select the lightest satisfactory round HSS section, $F_y = 42 \ ksi$.

Solution

 $P_u = 1.2(130) + 1.6(210) = 492 k$

(a)

From Table 4-1, for KL = 10 ft and $F_y = 50 ksi$ For $W8 \times 48$ we get $\phi_c P_n = 497 ksi > 492[OK]$

(b Fo	(b) From Table 4-3, for $KL = 10 \ ft$ and $F_y = 46 \ ksi$ For HSS 12 × 8 × 3/8 we get $\phi_c P_n = 498 \ ksi > 492[0K]$ Table 4–3 (continued)														
	Available Strength in Axial Compression, kips HSS12 (1) Rectangular HSS (2)														
┝															
	Sha	pe	3	/8	5/1	6 ^C	1/2	1 ^C	3/1	6 ^C	5/	8	1	12	1
	t _{design}	_n , in.	0.3	49	0.2	91	0.2	33	0.1	74	0.5	81	0.4	65	
	Wt	/ft	47	8	40	.4	32	.6	24	.8	67	.6	55	i.5	
	Desi	ian 3	P_n/Ω_c	ф _с Р _п	P_n/Ω_c	ф _с Р _п	P _n /Ω _c	¢ _c P _n	P _n /Ω _c	ф _с Р _п	P _n /Ω _c	ф _с Р _п	Ρ _/Ω_c	• <i>cP</i> _n	ļ
		- -	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI	2
		0	362	545	296	444	218	327	136	204	515	774	422	634	1
		6	351	527 521	288	433 429	213	320 317	134	201 200	484 474	728 712	398 390	598 586	
	(4)	8	342	514	283	425	209	314	132	199	462	694	380	571	
	5	9 10	337	506 498	279	420 414	207	311 307	131	198 196	449 435	674 653	370	556 539	
	tion	11	325	488	271	408	202	303	129	194	419	630	346	521	1
	yra	12	318	478	267	401	199	299	128	192	403	606	334	502	
(c Fc	:) Fro or HS	om Ta S 10	ible 4- × 10	4, for × 3/8	· <i>KL</i> = B we g Ta	= 10 ; get <i>ф</i> ble 4	ft and p _c P _n = I–4 (d F _y = = 511 (con	= 46 l ksi 2	ksi > 492 ed) th i	2[OK]	SITY			
ŝ				^					ing		 	- 1	F., = 4	16 k	si
	HSS	12–H	5 S10	AX	(1)	S	quar	es: e HS	SIOF	і, к	ips	(2))		
	Sha	pe	HSS1	2×12×	<u> </u>		Т	1,	HSS	10×10>	<	5.	-	1.0	
┢	t	, in,		16° 174		'/8 591		1/2		3/8	-	⁻ /16 0 201	_	1/4°	
+	-desig Wt	<u>",</u> /ft	2	9.8	7	6.1	6	52.3		47.8	-	40.3		32.6	
F			P_n/Ω_c	$\phi_c P_p$	P_n / Ω_c	$\phi_c P_n$	P_n/Ω_n	• <i>cP</i>	P_n/Ω	¢ ¢ P	P _n /S	$\phi_c \phi_c F$	P_/S	$\Omega_c \phi$	$_{c}P_{n}$
	Des	ign	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI	D ASE	LRF	D AS	DL	RFD
1	(3)	0	142	214	579	870	473	711	362	545	5 30	5 459	22	8 3	42
		6	141	212	565	850	462	695	354	533	3 29	449	22	4 3	37
		7	141	212	560	842	458	689	351	528	29	6 44	5 22	3 3	36
	(4)	8	141	211	555 548	834 824	454	682 675	348	523	29			2 3	34
	<u>م</u>	10	140	210	542	814	443	666	340	511	28	7 43	1 21	9 3	29
	ation	11 12	139	209	534	803	437	657	336	505	28	3 420	6 21	7 3	26
1	1		100	200	020	130		040	001	491	61		6	0	20

(d) From Table 4-5, for KL = 10 ft and $F_y = 46 ksi$ For **HSS 16.000** × **0.312** we get $\phi_c P_n = 528 ksi > 492[0K]$

ERBIL

2008

CHAPTER7

Design of Axially Loaded Compression Members (Continued)

INTRODUCTION

- In this chapter, the available axial strengths of columns used in unbraced **steel frames** are considered.
- In this chapter, the available strength of compression members, ϕP_n , will be determined in building frames calculating *KL* using the Effective Length Method.

Effective Length of a column in steel frames:

- The true effective length of a column is a property of the whole structure, of which the column is a part.
- Theoretical mathematical analyses may be used to determine effective lengths, but such procedures are too lengthy and too difficult.
- The most common method for obtaining effective lengths is to employ the charts shown in Fig. 7.1.

When we say sidesway is inhibited, we mean there is something present other than just columns and girders to prevent sidesway or the horizontal translation of the joints.That means we have a definite system of lateral bracing, or we have shear walls, see Figure 7.2. If we say that sidesway is uninhibited, we are saying that resistance to horizontal translation is supplied only by the bending strength and stiffness of the girders and beams of the frame in question, with its continuous joints.

The rotational restraint at the end of a particular column is proportional to the ratio of the sum of the column stiffnesses to the girder stiffnesses meeting at that joint, or

$$G = \frac{\sum \frac{EI}{L} \text{ for columns}}{\sum \frac{EI}{L} \text{ for girders}} = = \frac{\sum \frac{E_c I_c}{L_c}}{\sum \frac{E_g I_g}{L_a}}$$

where

E_c	Modulus of Elasticity of column
E_g	Modulus of Elasticity of girder
I _c	Moment of Inertia of column
I_g	Moment of Inertia of girder
L _c	Length column
L_g	Legnth of girder

The recommended values of *G* factors at the column bases are:

- 1. For pinned columns,G is theoretically infinite, such as when a column is connected to a footing with a frictionless hinge. Since such a connection is not frictionless, it is recommended that G be made equal to 10.
- 2. For rigid connections of columns to footings,G theoretically approaches zero, but from a practical standpoint, a value of 1.0 is recommended, because no connections are perfectly rigid.

Example 7-1

Determine the effective length factor for each of the columns of the frame shown in Fig. 7.3 if the frame is not braced against sidesway.

Solution. Stiffness factors: E is assumed to be 29,000 ksi for all members and is therefore neglected in the equation to calculate G.

-	Member	Shape	Ι	L	I/L
_	(AB	$W8 \times 24$	82.7	144	0.574
	BC	$W8 \times 24$	82.7	120	0.689
Caluma	DE	W8 imes 40	146	144	1.014
Columns) EF	W8 imes 40	146	120	1.217
	GH	$W8 \times 24$	82.7	144	0.574
	(HI	$W8 \times 24$	82.7	120	0.689
	BE	$W18 \times 50$	800	240	3.333
0.1	CF	$W16 \times 36$	448	240	1.867
Girders	EH	$W18 \times 97$	1750	360	4.861
	FI	$W16 \times 57$	758	360	2.106

G factors for each joint:

Joint	$\Sigma(I_c/L_c)/\Sigma(I_g/L_g)$	G
A	Pinned Column, $G = 10$	10.0
В	$\frac{0.574 + 0.689}{3.333}$	0.379
С	$\frac{0.689}{1.867}$	0.369
D	Pinned Column, $G = 10$	10.0
E	$\frac{1.014 + 1.217}{(3.333 + 4.861)}$	0.272
F	$\frac{1.217}{(1.867 + 2.106)}$	0.306
G	Pinned Column, $G = 10$	10.0
Н	$\frac{0.574 + 0.689}{4.861}$	0.260
Ι	$\frac{0.689}{2.106}$	0.327

Column K factors from chart [Fig. 7.1 b]

G_A	G_B	K*
10.0	0.379	1.76
0.379	0.369	1.12
10.0	0.272	1.74
0.272	0.306	1.10
10.0	0.260	1.73
0.260	0.327	1.10
	<i>G_A</i> 10.0 0.379 10.0 0.272 10.0 0.260	G_A G_B 10.00.3790.3790.36910.00.2720.2720.30610.00.2600.2600.327

*It is a little difficult to read the charts to the three decimal places shown by the author. He has used a larger copy of Fig. 7.2 for his work. For all practical design purposes, the K values can be read to two places, which can easily be accomplished with this figure.

C H A P T E R 8 Introduction to Beams

INTRODUCTION

Beams are usually said to be members that support transverse loads. They are probably thought of as being used in horizontal positions and subjected to gravity or vertical loads, but there are frequent exceptions—roof rafters, for example.

SECTIONS USED AS BEAMS

The W shapes will normally prove to be the most economical beam section, and they have largely replaced channels and S sections for beam usage.

DETERMINING THE ALLOWABLE BENDING STRESS

Bending stress, f_b , in a beam is determined by the flexure formula

$$f_b = \frac{M}{S}$$

Where *M* is bending moment.

S is section modulus

Example 8.1 calculate the maxium bending stress, f_b due to a 170 ft.k mombet about the strong axis on:

- a) $W12 \times 65$ section
- b) $W14 \times 61$ section

Solution

a) for a $W12 \times 65$ section, $S_x = 87.9 in^3$

$$f_{b,x} = \frac{170 \ ft. \ k \ \times 12 \ in./ft}{87.9 \ in^3} = 23.2 \ ksi$$

IONA,

b) for a $W14 \times 61$ section, $S_x = 92.1 in^3$

$$f_{b,x} = \frac{170 \ ft.k \ \times 12 \ in./ft}{92.1 \ in^3} = 22.1 \ ksi$$

Example 8.2 Determine the bending stress on a $W12 \times 79$ subjected to a moment of 80 ft.k about (a) the strong axis (b) the weak axis.

Soltuion

for a $W12 \times 79$ section, $S_x = 107 \text{ in}^3$, $S_y = 35.8 \text{ in}^3$

a)

$$f_{b,x} = \frac{80 \ ft. \ k \ \times 12 \ in./ft}{107 \ in^3} = 8.97 \ ksi$$

b)

$$f_{b,y} = \frac{80 \ ft. \ k \ \times 12 \ in./ft}{35.8 \ in^3} = 26.8 \ ksi$$

Tishk International University

1–23

DIMENSIONS AND PROPERTIES

DIMENSIONS AND PROPERTIES

- W12	ties	5.	in. ⁶	25500 22700	20200	16000	6710 5990 5380	4710	2540	1950	1230	887	314	57000	42000	35800	27200	20100	17200	12400	10700 9410	7330	5780	
W14 -	Torsic Prope	7	in.4	12.3 9.37	7.12	4.06	5.07 3.87 3.01	2.19	1.94	1.05	0.798 0.569	0.380	0.208	243	143	108 83.8	64.7	48.8 35.6	25.8 18.5	12.9	9.13 6.85	3.84	2.18	
	4	0	.É	13.6 13.5	3.5	3.3	3.5	3.2	3.3	3.1	3.5	3.5	3.4	3.9	3.4	3.2	2.8	2.5	2.3	2.0	1.9	1.6	1.5	
	. 4	b	.si	4.23	4.17	4.14	2.85 2.82 2.82	2.78	2.22	2.18 1	1.82 1	1.77	1.27	4.13	4.001	3.93 1	3.82	3.71	3.66 1	3.56 1	3.52 1	3.43	3.38 1	
(þ		Z	in. ³	113	92.7	83.0 75.6	44.8 40.5 36.0	32.8	22.0	17.3	12.1 10.6	8.99	4.39	74	5	2 8	2 65 5	29 F3	11 98.0	85.4	75.1 67.5	54.3	44.1	
ss s	۲-۲	-	.E	3.76	3.73	3.70	2.48 2.48	2.45	1.92	1.89	1.55 1.53	1.49	1.04	3.47	3.38	3.34 1	3.28	3.22	3.19 1	3.13	3.11	3.05	3.02	
sont ape	Axis Y	S	in. ³	74.5 67.5	61.2	2.00 49.9	29.3 26.6	21.5	14.3	11.3	7.88 6.91	5.82 3.55	2.80	171	54 143	127 115	104	93.U 82.3	72.8	56.0	49.3	35.8	29.1	
Shi (c		-	'n.	548 495	447	362	148 134	107	57.	45.	26. 23.	19.6 8.51	7.00	190	037 0	828	1 19	517	454 398	345	301	216	174	
_ ≥		Z	'n.	34	3 8	21 2	39 26	62	87.1	69.6	61.5 54.6	47.3	33.2	86	- 5 66	38 28	3 49 3	122	43	86	4 4	96:	96.8	
Tab	×	-	Ē	6.28 2 6.24 2	6.22 1	6.14 1	6.05 1 6.04 1	5.98 1	5.89	5.82	5.87	5.73	5.54	5.41 6	5.16 4	5.97 3	880 3	5.74 2	5.66 2	5.51 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 1	5.28	
	Axis X-	s	in. ³	209 190	173	143	123 112 103	92.1	8.17	62.6	54.6 48.6	42.0 35.3	29.0	483	333	353	292	232 GS	186	163	131 145	107	87.9	
		-	in.4	1530 1380	1240	666	881 795 777	640	541 APA	428	385 340	291 245	199	4060 9550	3110	2720	2140	1650	1430	1070	833 833	662	533	
	ion i	h h	t,	17.7	21.7	25.9	22.4 25.4 27.5	30.4	30.9 20.9	37.4	39.6 43.1	45.4	53.3	5.47	6.35	7.56	8.23	0.10	11.2	3.7	17.7	20.7	24.9	
	Com	à Cutt	2th	7.15	8.49	9.34 10.2	5.92 6.41	7.75	6.11 6.75	7.54	6.57	8.74 5.98	7.46	2.26	2.66	3.11	3.37	4.03	4.46	5.57	6.76	8.22	9.92	
	Nom-	¥	lb/ft	132 120	109	6	28 24 28 28 28 28 28 28 28 28 28 28 28 28 28	61	53	₽ ₽	34 38	30	8	336	279	252	210	D61	152 136	120	8 8	5 E F	65	
	Nork-	able Gage	i.	51/2		>	51/2	•	51/2 	>	31/2 ⁹ 31/2	3'/2 2 ³ /4 ⁹	23/49	51/2 									-	-section
	e Work-	7 able Gage	i.	10 5 ¹ /2		>	107/8 5 ¹ /2	 6 6	10//8 5 ¹ /2	>	11 ^{5/8} 3 ^{1/2⁹ 3^{1/2}}	11 ^{5/8} 2 ^{3/4⁹}	115/8 23/49	91/8 51/2									•	he cross-section
	listance Work-	k ₁ 7 able Gage	ц. ц.	1 ^{9/16} 10 5 ¹ /2	11/2	1 ^{7/16}	1 ^{1/16} 10 ⁷ /8 5 ¹ /2 1 ^{1/16} 1 1 ^{1/16}	 	1 10//8 5/2	>	^{13/16} 11 ^{5/8} 3 ^{1/2⁹} ^{3/4} 3 ^{1/2}	3/4 115/8 23/4 ⁹	3/4 115/8 23/49	1 ^{11/16} 9 ^{1/8} 5 ^{1/2}	15/8	11/2	17/16	1 ⁻⁷⁸ 1 ^{5/16}	11/4	1 ^{3/16}	1/8 11/8 11/2	11/16		etry of the cross-section
	Distance Work-	koet ki T able Gage	in in in	2 ⁵ /16 19/16 10 5 ¹ /2 2 ¹ /4 1 ¹ /2	23/16 11/2 21/1e 17/1e	2 17/16 V V	1 ^{11/16} 1 ^{1/16} 10 ⁷ /8 5 ^{1/2} 15/8 1 ^{1/16} 1 ^{9/16} 1 ^{1/16}	11/2 1 1	11/2 1 10/8 51/2 17/46 1 1 1	13/8 1 *	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1^{1/8}$ $3/4$ 7 $3^{1/2}$ $1^{1/8}$ $3/4$ $115/8$ $2^{3/4^{9}}$	11/16 3/4 115/8 23/49	37/8 111/16 91/8 51/2 25/e 15/e 1	33/8 15/8	3/8 1/2 2 ^{15/16} 11/2	2 ^{13/16} 1 ^{7/16}	27/16 15/16	2 ⁵ /16 1 ¹ /4 2 ¹ /8 1 ¹ /4	2 13/16 +7/- +1/-	17/8 17/8 113/16 11/8 111/- 11/-	15/8 11/16 1 1		le geometry of the cross-section n A3.1c.
	Distance Work-	kdes kdet ki T able Gage	in. in. in. in.	$1.63 2^{5/16} 1^{9/16} 10 5^{1/2} 1.54 2^{1/4} 1^{1/2}$	1.46 23/16 11/2 1 38 21/16 17/16	1.31 2 17/16 V V	1.45 11 ¹ / ₁₆ 1 ¹ / ₁₆ 10 ⁷ / ₈ 5 ¹ / ₂ 1.38 15/ ₈ 1 ¹ / ₁₆ 1.31 19/ ₁₆ 1 ¹ / ₁₆	1.24 11/2 1 1	1.25 11/2 1 10/8 5/2 1 1 1 1 1 1	1.12 13/8 1 + +	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.785 17/8 3/4 15/8 3/2 0.820 17/8 3/4 115/8 23/4 ⁹	0.735 11/16 3/4 115/8 23/49	3.55 37/8 111/16 91/8 51/2 2 30 35/8 15/8 1	3.07 3 ³ / ₈ 1 ⁵ / ₈	2.67 2 ^{15/16} 1 ^{1/2}	2.50 2 ^{13/16} 1 ^{7/16}	2.16 27/16 1 ^{5/16}	2.00 25/16 11/4 1.85 21/8 11/4	1.70 2 1 ^{3/16}	1.59 17/8 17/8 1.50 113/16 11/8 1.51 117.2 11/2	1.33 15/8 11/16 1 1.33	1.20 11/2 1 1	d with the geometry of the cross-section in Section A3.1c.
(þe	Distance Work-	tr koes koet ki T able Gage	n. in in in in	1 1.63 25/16 19/16 10 51/2 15/16 1.54 21/4 11/2 1	7/8 1.46 2 ³ /16 1 ¹ /2 3/4 1 38 2 ¹ /16 1 ⁷ /16	11/16 1.31 2 17/16 V	5 7/8 1.45 11/16 11/16 107/8 51/2 13/16 1.38 15/8 11/16 3/4 1.31 19/16 11/16	5/8 1.24 11/2 1 1	1 1//16 1.25 11/2 1 10//8 5/2 5/6 110 17/46 1 1 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3^{3/8}$ 0.785 178 $^{3/4}$ 7 $3^{7/2}$	5 ⁵ / ₁₆ 0.735 1 ¹ / ₁₆ ³ / ₄ 11 ⁵ / ₈ 2 ³ / ₄ ⁹	2 ¹⁵ /16 3.55 37/8 1 ¹¹ /16 91/8 5 ¹ /2 211/16 3.37 35/8 1 ⁵ /8	2 ^{1/2} 3.07 3 ³ /8 1 ⁵ /8	21/4 2.85 3/8 11/2 21/16 2.67 2 ¹⁵ /16 11/2	17/8 2.50 2 ¹³ /16 1 ⁷ /16	19/16 2.16 27/16 15/16	13/8 2.00 25/16 11/4 11/4 11/4 1.85 21/8 11/4	1 ¹ / ₈ 1.70 2 1 ³ / ₁₆	7/8 1.50 113/16 11/8 13/16 113/16 11/8 13/1 11/12 11/2	5 3/4 1.33 15/8 11/16 1 1	5 5/8 1.20 11/2 1 V	compared with the geometry of the cross-section softication Section A3.1c.
inued) 2S 1s	inge Distance Work-	tr kdes kdet ki T able	in. in. in. in.	1.03 1 1.63 2 ⁵ / ₁₆ 1 ⁹ / ₁₆ 10 5 ¹ / ₂ 0.940 ¹⁵ / ₁₆ 1.54 2 ¹ / ₄ 1 ¹ / ₂	0.860 7/8 1.46 2 ^{3/16} 1 ^{1/2} 0.780 3/. 1.38 2 ^{1/16} 1 ^{7/16}		0.855 7 ₈ 1.45 11 ¹ / ₁₆ 1 ¹ / ₁₆ 10 ⁷ 8 5 ¹ / ₂ 0.785 ¹³ / ₁₆ 1.38 ¹⁵ / ₆ 1 ¹ / ₁₆ 0.720 ³⁴ 1.31 ¹⁹ / ₁₆ 1 ¹ / ₁₆	0.645 5/8 1.24 11/2 1 1	0.660 ^{11/16} 1.25 1 ^{1/2} 1 10 ^{/8} 5 ^{1/2} 0.665 5/6 1 10 17/16 1	0.530 $1/2$ 1.12 $1^{3/8}$ 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.335 5/16 0.735 11/16 3/4 115/8 23/49	2.96 2 ^{15/16} 3.55 3 ^{7/8} 1 ^{11/16} 9 ^{1/8} 5 ^{1/2}	2.47 2/2 3.07 33/8 15/8	2.25 2/4 2.85 3/8 1/2 2.07 2/16 2.67 2 ¹⁵ /16 1/2	11.90 17/8 2.50 2 ^{13/16} 17/16	3 1.56 19/16 2.16 27/16 15/16	2 1.40 13/8 2.00 25/16 11/4 1.125 11/4 1.85 21/8 11/4	9 1.11 11/8 1.70 2 13/16 2 1.11 11/8 1.70 2 13/16	8/1 8/1 82.1 1.080 1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8	3 0.735 3/4 1.33 15/6 11/16	0.605 5/8 1.20 11/2 1 1	ould be compared with the geometry of the cross-section AISC Specification Section A3.1c.
continued) apes sions	Flange Distance Work-	br tr task koet ki T able	in. in. in. in. in.	143/4 1.03 1 1.63 25/16 19/16 10 51/2 145/8 0.9400 ¹⁵ /16 1.54 21/4 11/2 1	145/8 0.860 7/8 1.46 23/16 11/2 145/6 0.780 3/4 1.38 21/16 17/16	14/2 0.710 1//6 1.31 2 17/16 V	10% 0.855 7/8 1.45 11//6 17/6 17/16 5/2 10% 0.785 13/16 1.38 15/8 17/16 10 0.7201 34 1.31 19/16 17/16	10 0.645 5/8 1.24 11/2 1 1	S 8 0.660 ¹ / ₁₆ 1.25 11/2 1 10//8 5//2 1 8 0.505 5/a 1.10 17/a 1		$7 \begin{array}{[c]{c}c} 6^{3}/4 & 0.515 & 1/2 & 0.915 & 1/4 & ^{13}/16 & 11^{5}/8 & 3^{1}/2^{6} \\ 5^{3}/4 & 0.455 & 7/16 & 0.855 & 1^{3}/16 & 3/4 & \begin{array}{c} & 3^{1}/2 & \\ & 3^{1}/2 & & \end{array}$	$3 6^{3}/4$ 0.385 $^{3}/6$ 0.785 $1/6$ $^{3}/4$ 7 $3/2$ $3 5 0.420 7/6 0.820 11/6 3/4 115/6 2^{3}/4$	0 5 0.335 ^{5/16} 0.735 1 ^{1/16} ^{3/4} 11 ^{5/8} 2 ^{3/49}	13 ³ / ₈ 2.96 2 ¹⁵ / ₁₆ 3.55 3 ⁷ / ₈ 1 ¹¹ / ₁₆ 9 ¹ / ₈ 5 ¹ / ₂ 1.21/ ₂ 2.71 211/ ₁₆ 3.30 35/ ₈ 15/ ₈	13 ¹ /8 2.47 2 ¹ /2 3.07 3 ³ /8 1 ⁵ /8	13 2.25 21/4 2.85 37/8 11/2 127/8 2.07 21/16 2.67 215/16 11/2	12 ³ /4 1.90 17/8 2.50 2 ¹³ /16 17/16	12 ⁵ /8 1.74 1.74 2.30 2.76 1.78 1.78 1.25/8 1.56 19/16 2.16 27/16 15/16	12 ¹ /2 1.40 13/8 2.00 25/16 11/4 123/8 1.25 11/4 1.85 21/8 11/4	123/8 1.11 1 ^{1/8} 1.70 2 1 ^{3/16}	12/4 0.9901 1.59 1/4 1/6 12/8 0.900 7/8 1.50 113/16 1/8 112/8 0.900 13/1 113/16 1/2	12//8 0.735 3/4 1.33 15/8 11//6	12 0.605 5/8 1.20 11/2 1 V V	nents should be compared with the geometry of the cross-section oply per AISC Specification Section A3.1c.
-1 (continued) Shapes nensions	Flange Distance With Thiskness k Work-	br tr koes koet ki T able	in. in. in. in. in.	14.7 14 ³ /4 1.03 1 1.63 2 ⁵ / ₁₆ 1 ⁹ / ₁₆ 10 5 ¹ / ₂ 14.7 14 ⁵ / ₈ 0.940 ¹⁵ / ₁₆ 1.54 2 ¹ / ₄ 1 ¹ / ₂	14.6 145/8 0.860 7/8 1.46 23/16 11/2 14.6 145/6 0.780 3/4 1.28 21/46 17/46	14.5 14/2 0.710 11/16 1.31 2 17/16 V	10.1 10/6 0.855 78 1.45 11/16 1076 5/2 10.1 10% 0.785 13/6 1.38 15/6 17/16 10.1 10% 0.785 34,6 1.38 15/6 17/16 10.1 10% 0.7200 34 1.31 19/16 17/16	10.0 10 0.645 ⁵ / ₈ 1.24 1 ¹ / ₂ 1	8.06 8 0.660 ¹ / ₁₆ 1.25 1/ ₂ 1 10/ ₈ 5/ ₂ 8.03 8 0.505 5/ ₆ 110 17/ ₁₆ 1 1	8.00 8 0.530 ^{1/2} 1.12 1 ^{3/8} 1 •	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.73 6 ³ / ₄ 0.385 ^{3/8} 0.785 1 ^{1/8} ^{3/4} ⁴ ⁵ 3 ^{7/2} 5.03 5 0.420 ^{7/16} 0.820 1 ^{1/8} ³ / ₄ 115 ^{/8} 2 ³ / ₄	5.00 5 0.335 ⁵ / ₁₆ 0.735 11/ ₁₆ ³ / ₄ 11 ⁵ / ₈ 2 ³ / ₄ ⁹	13.4 133/8 2.96 2 ^{15/16} 3.55 37/8 1 ¹¹ /16 9 ¹ /8 5 ¹ /2	$13.1 13/8 2.47 2^{1/2} 3.07 3^{3/8} 1^{5/8}$	6 13.0 13 2.25 2/4 2.85 3/8 1/2 6 12.9 127/8 2.07 21/16 2.67 2 ¹⁵ /16 1/2	12.8 12 ³ /4 1.90 17/8 2.50 2 ¹³ /16 17/16 12.1 201 17/18 12/19 17/18	12.6 12 ⁵ /8 1.56 1 ⁹ /16 2.16 2 ⁷ /16 1 ⁵ /16	12.5 12/2 1.40 13/8 2.00 29/16 11/4 12.4 123/8 12.5 11/4 1.85 21/8 11/4	12.3 123/8 1.11 11/8 1.70 2 1 ^{3/16}	6 12.2 12/4 0.990 1 1.59 1/8 1/8 5 12.2 12/8 0.900 7/8 1.50 11 ³ /8 1 ¹ /8	12.1 121/6 0.735 3/4 1.33 15/6 11/16	s 12.0 12 0.605 5/s 1.20 11/2 1 V	L components should be compared with the geometry of the cross-section s may apply per AISC Specification Section A3.1c.
le 1–1 (continued) W Shapes Dimensions	Flange Distance Work-	$\frac{t_w}{2}$ br t_r $\frac{t_r}{k_{des}}$ $\frac{k_{det}}{k_{det}}$ $\frac{k_1}{k_1}$ T able	in. in. in. in. in. in. in.		1/4 14.6 145/8 0.860 7/8 1.46 23/16 11/2 1/. 14.6 145/6 0.780 3/, 1.38 21/16 17/46	1/4 14.5 141/2 0.710 11/46 1.31 2 17/16 V	V4 10.1 10/18 0.855 7/8 1.45 11/16 107/8 5/2 1 V4 10.1 10/18 0.7655 13/16 138 15/16 17/16 107/8 5/12 1 V4 10.1 10/18 0.7050 3/4 1.33 15/16 17/16	^{3/16} 10.0 10 0.645 ^{5/8} 1.24 1 ^{1/2} 1 ⁴	3/16 8.06 8 0.660 1/16 1.25 1/12 1 10/18 5/12 3/16 8.02 8 0.560 1/16 1.25 1 10/18 5/12		5 ³ / ₁₆ 6.77 6 ³ / ₁₄ 0.515 ¹ / ₂ 0.515 1 ¹ / ₄ ¹³ / ₁₆ 11 ⁵ / ₆ 3 ¹ / ₂ 3 ¹ / ₂ 3 ³ / ₁₆ 6.75 6 ³ / ₄ 0.455 ⁷ / ₁₆ 0.855 1 ³ / ₁₆ 1 3 ¹ / ₂ 1 3 ¹ / ₂	γ_{18} 6.73 6.74 0.385 γ_{18} 0.785 178 γ_{14} 7 372 γ_{18} 5.03 5 0.420 γ_{16} 0.820 178 34 1158 234	^{1/8} 5.00 5 0.335 ^{5/16} 0.735 ^{11/16} ^{3/4} ^{115/8} 2 ^{3/49}	7/8 13.4 133/8 2.96 215/16 3.55 37/8 111/16 91/6 51/2 13/2 13.2 131/1 2.71 211/16 3 30 35/6 15/6	3/4 13.1 13/8 2.47 21/2 3.07 33/8 15/8	11/16 13.0 13 2.25 2/4 2.85 3/8 11/2 11/16 12.9 127/8 2.07 21/16 2.67 2 ¹⁵ /16 11/2	6 5/8 12.8 12 ³ /4 1.90 17/8 2.50 2 ¹³ /16 17/16 17/16	16 1/2 12.6 12.6 12.6 19/16 2.16 2.16 2.16 27/16 15/16	7/16 12.5 12/12 1.40 13/8 2.00 29/16 11/4 17/1 17/4 11/4 12.4 123/8 12.5 11/4 1.85 21/8 11/4	16 3/8 12.3 123/8 1.11 11/8 1.70 2 13/16	6 5/16 12.2 12/18 0.390 1 1.59 1/18 1/18 5/16 12.2 12/18 0.300 7/8 12.0 13/14 1.51 12.12/18 0.300 7/8 12.4 11/18 1	14 12.1 12/16 0.735 34 1.33 15/6 11//6	1 3/16 12.0 12 0.605 5/8 1.20 11/2 1 V	csi. = 50 ksi. fastener components should be compared with the geometry of the cross-section fasteners may apply per AISC Specification Section A3.1c.
Table 1–1 (continued) W Shapes Dimensions	Web Flange Distance troces with Thirkness k Work-	tw Z br tr Kdes Kder F Gage	in. in. in. in. in. in. in. in.	15 5/8 5/16 14.7 143/4 1.03 1 1.63 25/16 19/16 10 57/2 10 9/16 5/16 14.7 145/8 0.940 ¹⁵ /16 1.54 2 ¹ /4 1 ¹ /2	25 1/2 1/4 14.6 145/6 0.860 7/8 1.46 23/16 11/2 be 1/2 1/2 14.6 145/6 0.780 3/2 1.38 21/2 17/2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 V/z V/4 10.1 10/% 0.855 7/% 1.45 11'/% 10'/% 5'/z 50 7/% V/a 10.1 10'/% 0.785 13/% 13.8 15/% 1/% 5//z 51 7/% V/a 10.1 10'/% 0.785 3/4 13.3 15/% 1/% 1/% 5//z	75 3/8 3/16 10.0 10 0.645 5/8 1.24 11/2 1 V	70 3/8 3/16 8.06 8 0.660 1/16 1.25 1/2 1 10/18 5/2 4.0 5/2 4.0 5/2 1 0 17/16 1 1 10/18 5/2	$5_{5_{16}}$ $3_{7_{16}}$ $8_{.000}$ $8_{.00530}$ 1_{22} 1_{12} 1_{13} 1_{14} 1_{14}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 1/4 1/6 6.73 63/4 0.385 3/6 0.785 1/6 3/4 115/6 23/4 ⁰ 55 1/4 1/6 5.03 5 0.420 7/16 0.820 11/6 3/4 115/6 23/4 ⁰	30 1/4 1/8 5.00 5 0.335 5/16 0.735 11/16 3/4 115/8 23/4 ⁸	8 13/4 7/8 13.4 133/8 2.96 215/16 3.55 37/8 111/16 97/8 51/2 15/4 13/4 120 1121/4 2 31 21/4 2 30 35/8 15/8	3 11/2 3/4 13.1 13/16 2.47 21/2 3.07 33/8 15/8	0 13/8 11/16 13:0 13 2.25 21/4 2.85 31/8 11/2 9 15/16 12:9 127/8 2.07 21/16 2.67 215/16 11/2	8 13/16 5/8 12.8 123/4 1.90 17/8 2.50 213/16 17/16	60 ¹⁵ / ₁₆ ¹ / ₁₂ ¹ / ₁₂ ¹ / ₁₂ ¹ / ₁₅ ¹ / ₁₅ ¹ / ₁₄ ¹ / ₁₄ ² / ₁₅ ² / ₁₆ ¹ / ₁₆ ¹ / ₁₆ ¹ / ₁₆ ¹ / ₁₆	70 7/s 7/16 12.5 121/2 1.40 13/s 2.00 25/16 11/4 90 ^{13/16} 7/16 12.4 123/s 1.25 11/4 1.85 21/s 11/4	10 ^{11/16} ^{3/6} 12.3 12 ^{3/6} 1.11 11/8 1.70 2 1 ^{3/16}	10 % % % 12.2 12.4 0.900 1 1.59 1/8 1/8 50 % 5/6 12.2 12/8 0.900 % 1.50 13% 1/8 1/8	70 ¹ / ₂ ¹ / ₄ 12.1 12 ¹ / ₉ 0.735 ³ / ₄ 1.33 1 ⁵ / ₈ 1 ¹ / ₁ / ₆	90 3/8 3/16 12.0 12 0.605 5/8 1.20 11/2 1 V V	$r_{\rm e}=50$ ksl. with $r_{\rm e}=50$ ksl. tation of fastener components should be compared with the geometry of the cross-section cial requirements may apply per AISC Specification Section A3.1c.
Table 1–1 (continued) W Shapes Dimensions	Web Flange Distance Thickness with Thickness K	$t_w = \frac{1}{2}$ by the transmission of transm	in. in. in. in. in. in.	◊اھ 0.645 5/ھ 5/رہ 14.7 143/م 1.03 1 1.63 25/رہ 19/رہ 10 5/2 //ہ 0.590 9/ہو 5/رہ 14.7 145/ھ 0.940 ¹⁵ /رہ 1.54 2//م 11/2	3/8 0.525 1/2 1/4 14.6 145/8 0.860 7/8 1.46 23/16 11/2 11/2 11/1 11/2 11/1 11/2 11/1 11/2 11/1 11/1 11/1 11/1	78 0.400 7/16 7/4 14.5 147/2 0.710 11/16 1.31 2 17/16 Y	1/4 0.510 1/2 1/4 10.1 101/8 0.855 7/8 1.45 111/1/6 107/8 51/2 1/8 0.4550 7/6 1/4 10.1 101/8 0.785 13/16 1.38 15/8 11/1/6 107/8 51/2 0.415 7/.6 1/4 10.1 101/8 0.785 3/4 1.31 19/16 11/16	7/8 0.375 3/8 3/16 10.0 10 0.645 5/8 1.24 11/2 1 V	7/8 0.370 3/8 3/16 8.06 8 0.560 1/1/16 1.25 1/1/2 1 10/16 5/2 30.10.244 5/10 3/10 8.021 8 0.565 5/6 1.10 17/16 1 1	74 0.305 9/16 3/16 8.00 8 0.530 1/2 11.12 13/8 1 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7/8 0.270 7/4 7/8 6.73 63/4 0.385 3/8 0.785 17/8 3/4 7 372 7/8 0.255 7/4 7/8 5.03 5 0.420 7/16 0.820 17/8 3/4 115/8 23/4 ⁰	i3/4 0.230 1/4 1/6 5.00 5 0.335 5/16 0.735 11/16 3/4 115/8 23/4 ⁰	7/8 1.78 13/4 7/8 13.4 13.4 133/8 2.96 215/16 3.55 37/8 111/16 91/8 51/2 3/1 50 15/6 13/0 143/0 741 711/16 3 30 35/6 15/6	7/8 1.53 1.12 3/4 13.1 13/18 2.47 2.72 3.07 3.6 15/8	73/6/1.40 13/8 11/16/13.0 13 2.25 21/4 2.85 31/8 11/2 1.29 15/16 11/16/12.9 12/18 2.07 21/16 2.67 215/6 11/2	3/4/1.18 13/16 5/8 12.8 123/4 1.90 17/8 2.50 2/3/16 17/16 	1/38 1.00 11/16 7/16 12.1 12.78 1.74 1.74 2.33 2.78 1.78 0.96 15/16 12.1 12.6 125/8 1.56 19/16 2.16 27/16 15/16	$3_{34}(0.870 \ 7_{8} \ 7_{7/6} \ 12.5 \ 12^{3/5} \ 1.40 \ 13^{3/8} \ 2.00 \ 2^{5/16} \ 1^{1/4}$	7/6 0.710 11/16 3/8 12.3 123/6 1.11 11/8 1.70 2 13/16	2/(8 0.610 °/s °/(s 12.2 12/4 0.9901 1.59 1/s 17/8 1/s ?9/4 0.550 °/ts 12.2 12/8 0.900 7/s 1.50 13/1 1/s	3/8 0.470 1/2 1/4 12.1 121/8 0.735 3/4 1.33 15/8 11//6	2//8 0.390 3/8 3/16 12.0 12 0.605 5/8 1.20 11/2 1 V	on with $F_{\mu} = 50$ ks. or flexure with $F_{\mu} = 50$ ks. Ind orientation of fastener components should be compared with the geometry of the cross-section 2 in. Special requirements may apply per AISC Specification Section A3.1c.
Table 1-1 (continued) W Shapes Dimensions	Depth, Web Flange Distance Distance Vork-	d interverses, $\frac{t_w}{2}$ much, interverses, $\frac{t_w}{k_{def}}$ in $\frac{t_f}{k_{def}}$ $\frac{T}{k_{def}}$ able	in i	.7 145/8 0.645 5/8 5/16 14.7 143/4 1.03 1 1.63 25/16 19/16 10 51/2 .5 141/2 0.590 9/16 5/16 14.7 145/8 0.940 ¹⁵ /16 1.54 21/4 11/2	2.3 143/8 0.525 1/2 1/4 14.6 145/8 0.860 7/8 1.46 23/16 11/2 0 141/5 0.665 1/2 1/2 14.6 145/6 0.780 3/2 1.38 21/4 17/4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3 14/4 0.510 ½ ½ 10.1 10/8 0.855 % 1.45 11/1/6 107/8 5/2 1.2 14/8 0.450 7/16 10.1 10/16 0.785 3/16 1.38 15/6 17/16 5/2 0 1.4 0.450 7/16 10.1 10/16 0.785 3/16 1.38 15/6 17/16 1	3.9 137/6 0.375 3/8 3/16 10.0 10 0.645 5/8 1.24 11/2 1 V	3.9 137/9 0.370 3/8 3/6 8.06 8 0.660 1//6 1.25 1/2 1 10//8 5/2 10 10 10 10 10 10 10 10 10 10 10 10 10	3,7 135/8 0.305 5/16 3/16 8.00 8 0.530 1/2 1.12 13/8 1 V	1, 1, 1, 1, 1, 0, 0.310 5/16 $\frac{3}{3}$ 7/16 $\frac{6}{6}$, 7/7 $\frac{6}{6}$, 0.515 1/2 0.915 1/4 13/16 115/6 $\frac{3}{2}$ 3/2 1.0 14 0.285 $\frac{5}{3}$, 9/16 $\frac{6}{6}$, 75 $\frac{6}{6}$, 0.455 $\frac{7}{16}$, 0.855 13/16 $\frac{3}{4}$, $\frac{1}{2}$ $\frac{3}{2}$	3.8 137/s 0.270 7/s 7/s 6.73 67/s 0.385 7/s 0.785 17/s 7/s 37/z 372 1.9 137/s 0.255 7/s 7/s 5.03 5 0.420 7/s 0.82017/s 3/s 115/s 23/s ⁹	3.7 139/4 0.230 1/4 1/8 5.00 5 0.335 5/16 0.735 11/16 3/4 115/8 2 ³ /4 ⁹	5.8 167/8 1.78 13.4 7/8 13.4 133% 2.96 215/16 3.55 37/8 111/16 91/8 51/2 2.0 4.63/1 4.63/1 130.4 13.3 2.96 215/16 3.55 37/8 111/16 91/8 51/2	5.9 157/8 1.53 11/2 3/4 13.1 13/8 2.47 21/2 3.07 33/8 15/8	5.4 15 ³ /811.40 1 ^{3/8} 1 ¹ //613.0 13 2.25 2/4 2.85 3/8 1 ¹ /2 5.1 15 1.29 15/6 1 ¹ /612.9 12 ³ /8 2.07 2 ¹ /6 2.67 2 ¹⁵ /6 1 ¹ /2	4.7 143/41.18 13/16 5/8 12.8 123/4 1.90 17/8 2.50 213/16 17/18	4.4 14*78 1.00 17/16 7716 12.7 12.78 1.74 174 2.33 2.78 1.78 4.0 14 0.960 15/18 1/2 12.6 125/8 1.56 19/16 2.16 27/16 15/16	3.7 133/4 0.870 7/8 7/16 12.5 129/2 1.40 13/8 2.00 25/16 17/4 3.4 133/8 0.790 ¹³ /16 7/16 12.4 123/8 1.25 11/4 1.85 21/8 11/4	3.1 13/8 0.710 11/16 3/8 12.3 123/8 1.11 11/8 1.70 2 13/16	2.9 12//6 0.610 % 7//6 12.2 12//4 0.9901 1.39 1//6 1//8 2.7 129/4 0.550 9//6 7/6 12.2 12//8 0.900 7/6 11.50 173//6 1//6	2.4 12 ³ / ₈ 0.470 ¹ / ₂ ¹ / ₄ 12.1 12 ¹ / ₈ 0.735 ³ / ₄ 1.33 1 ⁵ / ₈ 1 ¹ / ₁ / ₆	2.1 12/k 0.390 ³ /k ³ /16 12.0 12 0.605 ⁵ /k 1.20 1 ¹ /2 1 Y Y	Impression with $F_{\mu} = 50$ ksl. that from the une with $F_{\mu} = 50$ ksl. nation, and orientation of fastener components should be compared with the geometry of the cross-section ration, and orientation of fastener components should be compared with the geometry of the cross-section ration, and orientation of the cross-section ratio and the cros
Table 1–1 (continued) W Shapes Dimensions	rea, Depth, Web Flange Distance rea, Depth, Thickness K Vork-	A d minuteness, two mounts more than the knew to the the second s	in. ² in.	88.8 14.7 145/8 0.645 5/8 5/16 14.7 143/4 1.03 1 1.63 25/16 19/16 10 51/2 15.3 14.5 14/12 0.590 9/16 5/16 14.7 145/8 0.940 ¹⁵ /16 1.54 21/4 1 ¹ /2	22.0 14.3 143/8 0.525 1/2 1/4 14.6 145/8 0.860 7/8 1.46 23/6 11/2 0.000 1/6 11/6 23/6 17/6	25.1 14.2 14.78 0.400 7/2 7/4 14.5 14/2 0.710 17/6 1.31 2 17/6 V	24.0 14.3 14/14 0.510 1/2 1/4 10.1 101/8 0.855 7/8 1.45 11/1/6 107/8 51/2 21.8 14.2 14/9 0.450 7/6 1/4 10.1 101/8 0.785 13/16 1.38 15/8 11/16 107/8 51/2 11/16 1001 1.0 0.720 3/4 1.31 19/16 11/16	17.9 13.9 13 ⁷ /8 0.375 ³ /8 ³ / ₁₆ 10.0 10 0.645 ⁵ /8 1.24 1 ¹ /2 1	15.6 13.9 137/8 0.370 3/8 3/6 8.06 8 0.660 1//6 1.25 1/2 1 10//8 5/2 1/4 1.4 1.25 1/2 1 10//8 5/2 1/4 1.4 1.5 1/2 1.5 1/2 1 10//8 5/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	12.6 13.7 135/8 0.305 5/16 3/16 8.00 8 0.530 1/2 1.12 13/6 1 V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.8513.8 137/8 0.270 74 7/8 6.73 67/4 0.385 57/8 0.785 17/8 74 7 372 7.6913.9 137/8 0.255 74 7/8 5.03 5 0.420 7/16 0.82017/8 34 115/8 23/4 ⁹	6.49 13.7 13 ³ /4 0.230 ¹ /4 ¹ /8 5.00 5 0.335 ⁵ /16 0.735 1 ¹ /16 ³ /4 11 ⁵ /8 2 ³ /4 ⁹	38.8 16.8 16.8 17.8 13/4 7/8 13.4 133/8 2.96 215/16 3.55 37/8 111/16 91/8 51/2	0.00 10.5 107/8 1.05 17/8 7/16 15.2 15.4 2.47 21/2 30.7 33/8 15/8 15/8 15.9 157/8 15/2 17/2 3/4 13.1 131/8 2.47 21/2 30.7 33/8 15/8	74.0 15.4 15 ³ /81.40 1 ³ /8 ¹¹ //613.0 13 2.25 2 ¹ /4 2.85 3 ¹ /8 1 ¹ /2 37.7 15.1 15 1.29 1 ⁵ //6 ¹¹ //612.9 12 ⁷ /8 2.07 2 ¹ /16 2.67 2 ¹⁵ /1611 ²	61.8 14.7 143/41.18 13/16 5/8 12.8 12/3/4 1.90 17/8 2.50 2 ¹³ /16 17/18	25.3 14.4 142/8 1.05 17/6 12/1 12/8 1.27 12/8 1.74 12/4 12/6 12/6 12/6 12/6 12/6 12/6 12/6 12/6	44.7 13.7 133/a 0.870 7/8 7/16 12.5 12/2 1.40 13/8 2.00 25/16 17/4 39.9 13.4 133/a 0.790 ¹³ /16 7/16 12.4 12 ³ /a 12.5 11/4 1.85 21/8 11/4	35.3 13.1 13/8 0.710 ¹¹ /16 ³ /8 12.3 12.3 12.9 1.11 11/8 1.70 2 13/16	31.2 12.9 12/8 0.610 % 7/6 12.2 12/4 0.9901 1.59 1/8 1/8 28.2 12.7 129/4 0.550 9/6 7/6 12.2 12/8 0.9900 7/6 1.50 13/16 1/8	23.2 12.4 12 ^{3/6} 0.470 ¹ / ₂ ¹ / ₄ 12.1 12 ¹ / ₆ 0.735 ³ / ₄ 1.33 ¹⁵ / ₆ 1 ¹ / ₁ / ₆	19.1 112.1 112//s 0.390 3/s 3/1s 112.0 12 0.605 5/s 11.20 11/2 1 V	der for compression with $F_{\mu} = 50$ ksl. s. compact limit for flexure with $F_{\mu} = 50$ ksl. e. combination, and orientation of fastener components should be compared with the geometry of the cross-section petibility. ess greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
If If If It Table 1-1 (continued) V V If V V If V V If Dimensions	Area, Depth, Web Flange Distance Area, Depth, Thickness Midth Thickness K	tape A d introviess, tw must introview A def T able	in. ² in.	×132 38.8 14.7 145/8 0.645 5/8 5/16 14.7 143/4 1.03 1 1.63 25/16 19/16 10 51/2 ×120 35.3 14.5 141/2 0.590 9/16 5/16 14.7 145/8 0.940 ¹⁵ /16 1.54 21/4 11/2	×109 32.0 14.3 143/610.525 1/2 1/4 14.6 145/6 0.860 7/6 1.46 23/16 11/2	×39' 25.5 14.0 14 0.440 7/16 7/4 14.5 141/5 0.710 11/16 1.31 2 17/16 V	bx82 24.0 14.3 14/4 0.510 ½ ¼ 10.1 10% 0.855 % 1.45 11% 10% 5/2 x74 21.8 14.2 14/9 0.4560 7/6 1/4 10.1 10% 0.765 3/4 13% 1.38 15/6 1/16 5/2 5/2 x74 21.8 14.2 147/6 0.4560 7/6 10.1 10% 0.7655 3/4 133 15/6 17/6 5/2 5/2 x68 20.0 14.0 14.5 7/6 7/6 10.0 10 0.7201 3/4 133 19/16 17/16 5/2	x61 17.9 13.9 1376 0.375 3/8 3/16 10.0 10 0.645 5/8 1.24 11/2 1 1	Xx53 15.6 13.78 0.370 3/6 3/16 8.06 8 0.660 1/16 1.25 1/2 1 10/8 5/2	×46 14.1 13.0 1377 40.346 716 716 0.05 8 0.530 12 13/6 1 1 12.6 13.7 135/6 0.305 5/16 3/16 8.00 8 0.530 1/2 1.12 13/6 1 ♥	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	×30 ^c 8.8513.8 137/6 0.270 ¼ 1/6 6.73 6 ⁻³ 4 0.385 ^{3/8} 0.745 11/8 ^{3/4} 1 3 ^{7/2} ×26 ^c 7.6913.9 137/6 0.255 1/4 1/8 5.03 5 0.420 ⁷ /16 0.82011/8 ^{3/4} 115/6 2 ³ /4 ⁰	×22° 6.49 13.7 139/4 0.230 1/4 1/8 5.00 5 0.335 5/16 0.735 11/16 3/4 115/8 29/4 ⁰	2×336 ^h 98.8 16.8 167/8 1.78 13/4 7/8 13.4 133/8 2.96 215/16 3.55 37/8 111/16 91/8 51/2	×305 63.0 10.5 107/8 1.00 178 7/18 10.5 10.5 10.4 13.1 131/8 2.47 2/2 3.07 33/8 15/8	×252" 74.0 15.4 15%81.40 13%8 "1/i613.0 13 2.25 2/i4 2.85 3/i8 172 ×230" 67.7 15.1 15 129 15/i6 11/i612.9 12/i8 2.07 2/i6 2.67 2/i5/i6 11/2	×210 61.8 14.7 143/41.18 13/16 5/8 12.8 123/4 1.90 17/8 2.50 213/16 17/16 ×210 61.8 14.7 143/41.18 13/16 5/8 12.8 123/4 1.50 17/8 2.50 5/5.4 17/16	×190 55.8 14.4 147/81.00 17/16 7/16 12.7 12.78 1.74 174 2.59 278 179 179 25.8 179 25.0 14.0 14 0.960 15/16 1/2 12.6 125/8 1.56 19/16 2.16 2/16 15/16	×152 44.7 13.7 133/4 0.870 7/8 7/16 12.5 121/2 1.40 13/8 2.00 29/16 11/4 ×136 39.9 13.4 133/8 0.790 ^{13/16} 7/16 12.4 12 ³ /8 1.25 11/4 1.85 21/8 11/4	×120 35.3 13.1 13/6 0.710 1/16 3/8 12.3 123/8 1.11 11/8 1.70 2 13/16	×106 312 12.9 12/6 0.610 % 3/16 122 12/4 0.900 1 1.59 1/8 1/8 ×96 282 12.7 12/4 0.550 3/16 5/16 12.2 12/8 0.900 7/8 1.50 113/1 1/8	×79 23.2 12.4 123/a 0.470 1/2 1/4 12.1 121/a 0.735 3/4 1.33 15/a 11/6	×65 ¹ 19.1 12.1 12/4 0.390 ³ /8 ³ /18 12.0 12 0.605 ⁵ /8 1.20 1 ¹ /2 1 ▼	Tape is slender for compression with $F_y = 50$ ksi. The exceeds compact limit for flexure with $F_y = 50$ ksi. The exceeds comparibility and orientation of fastener components should be compared with the geometry of the cross-section ensure compatibility. The thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.

1–22