

Syrup Formulation I

Dr. Rozhan Arif Muhammed

Pharmaceutics I:PHAR 301

Fall semester

Lecture 7

Date 28/11/2023

Outline

Definition

Classification

Components

Methods of preparation

Preservation

Storage

SYRUPS

■ Syrups are highly concentrated aqueous solutions of sugar or sugar substitute that traditionaly contain flavoring agent (Cherry syrup, orange syrup, raspberry syrup)

Classification

- **1.Simple Syrup**: concentrated solution of sucrose in purified water alone.
- **2.Non-Medicated Syrups**: Syrups containing flavoring agents, but not medicinal substances are called non-medicated or flavored vehicles (syrups).
- **3. Medicated Syrups**: Contain ingredients giving them therapeutic value.
- Therapeutic agents may either be directly incoporated into non-medicated syrup or maybe added as medicated syrup.

COMPONENTS OF SYRUP

- 1. Sugar (sucrose), or sugar substitute (artificial sweeteners) used to provide sweetness and viscosity.
- 2. Purified water
- 3. Antimicrobial Preservatives
- 4. Flavoring agent
- 5. Coloring agent
- 6. Viscosity Modfiers
- 7. Miscellaneous special solvents, solubilizing agents, thickeners or stabilizers.

- **■** Pharmaceutically, Syrups are classified into two:
- Sucrose Based: Concentrated solutions
- Non-Sucrose Based: Formulated with artificial sweetening agents and viscosity builders.

Pharmaceutical Classification based on their basic formula

- Sucrose- and Non-sucrose-Based Syrups:
- **Sucrose** is the sugar most frequently employed in syrups sometimes it may be replaced in whole or in part by other sugars or substances such as **sorbitol**, **glycerin**, **and propylene glycol**.
- Most syrups contain a high proportion of sucrose, usually 60% to 80%, not only because of the desirable sweetness and viscosity of such solutions but also because of their inherent stability

Sucrose

- Sucrose is the most widely used sweetener.
- It is a white crystalline powder, soluble in water and alcohol.
- It inhibits the growth of micro-organisms in solution at concentrations above 65% by reducing the water activity coefficient.
- During the preparation of sucrose solution, avoid charring and caramelization caused by heat.
- Sucrose is chemically and physically stable in the pH range of 4.0–8.0.

Sucrose

- It is frequently used in conjunction with sorbitol, glycerin, and other polyols, which reduce its tendency to crystallize.
- Sugar syrups promote significant "cap-ÿlocking"—the crystallization of the sugar on the cap and bottle thread, but the addition of glycerin (10–20%) minimizes this effect.
- Glycerin is seldom used as a single sweetener in pharmaceuticals because it has a characteristic mouth warming and burning effect

Dextrose

- Dextrose may be used as a substitute for sucrose in syrups containing strong acids in order to eliminate the discoloration associated with caramelization (hydroiodic syrup)
- The difficulty or problem with dextrose are as follows:
- 1.It forms a saturated solutions in water at 70%w/v which is less viscous than simple syrup.
- 2. Dextrose dissolves more slowly
- 3.Dextrose is less sweet

Dextrose

So, with the use of dextrose, it is necessary to improve the keeping qualities by adding:

1.Preservatives which may be glycerin in 30 to 45% which is also serves to increase viscosity.

2.Sweeting agent

Characteristics of Sorbitol

- Sorbitol solution is not irritating to the membrane of the mouth and the throat
- Unlike sucrose, it does not contribute to the formation of dental caries
- Although it is metabolized and converted into glucose it is not absorbed from the GIT as rapid as sugars, so no significant hyperglycemia is formed

Sorbitol Based Syrups

- Although it is 60% as sweet as sucrose and half as viscous as simple syrup, it has excellent "mouth feel"
- Sorbitol is compatible with other polyol and simple syrup
- Sorbitol is chemically stable and inert.
- Sorbitol inhibits the sticking and locking of bottle caps which occurs high with high concentration of sucrose, so they are usually combined
- Many drugs are more stable in sorbitol than in sucrose solution thus, may have extended shelf life

Flavorants for Syrup

- Most syrups flavored either with synthetic flavorants or with naturally occurring materials as volatile oil, vanillin, and others, to give the syrup pleasant tasting.
- Since syrups are aqueous preparations, these flavorings must possess sufficient water solubility.

Flavor and taste

■ Syrups of cinnamon, orange, citric acid, cherry, cocoa, wild cherry, or raspberry can be used to effectively mask salty and bitter tastes in a number of drug products.

Flavors that may be used to mask a salty taste include:

- 1. apricot
- 2. peach
- 3. vanilla
- 4. wintergreen mint

Colorants for Syrups

- To enhance appeal of the syrup, a coloring agent is generally used which correlates with the flavoring agents
- When used in combination with flavors, the selected color should match the flavor of the formulation, e.g., green with mint-flavored solutions, red for strawberry-flavored.

water-soluble non-reactive with other components

Sweeteners

- Non-nutritive, synthetic sweetening agents required in the formulation
- Saccharin sodium may be used in concentration of 0.1 to 0.2% but characterized by a bitter after taste.
- Others like Na cyclamate and aspartame.

Sweeteners

Non-nutritive, synthetic sweetening agents required in the formulation

- Saccharin: Sucrose substitute for DM. 500 time sweeter than sucrose...
- Aspartame: 200 times sweeter than sucrose.
- Sucralose: 600 times sweeter than sucrose

Dry Syrup

- Dry syrup preparations are powdered or granular formulations prepared for reconstitution.
- The main reason for the development of dry syrups is the instability of the active ingredient in the liquid state.
- They have to be used within a limited period after conversion

PREPARATION METHODS

- Solution with heat
- Agitation without heat
- Percolation

1. Solution with heat

This method can be used for:

- Non-volatile medications
- Thermostable ingredients
- Rapid preparations.
- Excessive heating of syrup results formation of caramel
- Caramelization: Evidenced by yellow to brown coloring due to burning of sucrose.
- Exp: Acacia syrup, NF; Cocoa Syrup, NF; Syrup USP (85% sugar, made by cold and hot process, percolation

Syrup-USP & BP

Simple Syrup

- According to USP Sucrose 85% w/v
- According to BP Sucrose 67.7 % w/w

Procedure

- 1. Add the sugar to the purified water and heat until solution is affected.
- 2. Heat stable components are added to the hot syrup
- 3. Cool and made up to volume.
- 4.If other components are heat labile, they are added after cooling like alcohol and oil.

2. Agitation without heat

- Useful when volatile agents are used in formulation
- Preparation is done in a bottle with a stopper twicethe volume of syrup desired.
- Exp. Ferrous Sulfate Syrup, Ephedrine Sulfate, Citric acid Syrup, and Glycyrrhiza Syrup

Agitation without heat

- 1. Sucrose and other formulative agents maybe dissolved in purified water.
- 2.Place the ingredients in a bottle of greater capacity than the volume of syrup.
- 3. Agitate the mixture

3. Percolation

- Purified water is passed slowly through a bed of sucrose
- Percolator is plugged at the neck with cotton ball or glass wall with sucrose on top
- Flow of percolate is regulated by suitable stopper
- Syrup devoid of particles of sucrose is ensured by recycling percolate
- Exp. Wild cherry syrup & Syrup USP

Percolation

Rx

■ Sucrose 85 gm

■ DW q.s. 100 mL

- Place sucrose in suitable percolator, the neck of which is nearly filled with packed glass wool or cotton, moistened with distilled water.
- Pour carefully a portion of distilled water over sucrose and regulate the outflow to steady drip
- Return the flow from drip back over the sucrose until the sucrose has dissolved
- Use sufficient amount of DW to complete volume to 100 mL.

Tolu Balsam syrup -flavor for cough syrup

Preservation and Storage of Syrups

■ Generally, syrups are stored at room temperature in tightly closed bottle and well-filled bottles.

Antimicrobial Preservatives

■ The amount of preservatives required in a syrup varies with the proportions of water available for microbial growth.

Preservatives include:

- 1. Benzoic acid. 0.1% to 0.2%
- 2. Sodium benzoate 0.1 to 0.2%
- 3. Combination of methyl, propyl, butyl parabens totaling 0.1%