

TISHK INTERNATIONAL UNIVERSITY FACULTY OF APPLIED SCIENCE Physiotherapy Department

Autumn Semester 2023-2024 Course Name : **Biochemistry (Theory)** Stage : 2 Lecture 2&3: Carbohydrates Lecture: Dr. Soma Majedi / Ph.D. in Organic Chemistry

Carbohydrates

Starch

 ✓ Carbohydrates are primarily produced by <u>plants</u> and form a very large group of <u>naturally occurring organic</u> <u>compounds</u>.
 ➢ Examples: Cane sugar, Glucose, Carbon

- ✓ Most of them have a general formula: $C_x(H_2O)_y$ and were considered as **hydrates of carbon**. (Old definition)
- ✓ The molecular formula of glucose $(C_6H_{12}O_6)$ fits into this general formula, $C_6(H_2O)_6$.
- ***** Sacharride: another word for sugar.

Functions of Carbohydrates

✤ Dietary **Source** of **energy** (4 C/g) for all organisms. Example:

glucose metabolism	CO ₂ + H ₂ O + Energy ATP
--------------------	---

Prevents the breakdown of proteins for energy.

- They supply energy and serve as **Storage** form of **energy** (glycogen).
- Participate in the Structure of the cell membrane. <u>Structural</u> material of <u>plants</u> (Cellulose) or exoskeleton of <u>insects</u> (Chitin) and <u>bacteria</u>.
- ✤ Participate in the structure of DNA & RNA.

Functions of Carbohydrates (Continue)

- Carbohydrates are **Precursors** for many organic compounds (fats, amino acids).
- Carbohydrates are utilized as raw materials for several <u>Industries</u>. For e.g., paper, plastics, drugs (e.g., Streptomycin), etc.
- Help with fat metabolism. If the body has enough energy for its immediate needs, it stores extra energy as fat.

Classification of Carbohydrate

- There are **two** major types of carbs or sugars (based on the **number** of **sugar molecules**):
- ✓ Simple
- ✓ Complex
- Simple carbs: Contain one or two sugar molecules:
- Monosaccharide
- Disaccharide

Complex carbs: Have **three** or **more** sugar molecules:

- ✤ Oligosaccharide (3-10)
- Polysaccharide

Classification of Carbohydrate

- Monosaccharides can be indicated by names composed of a stem denoting the number of Carbon atoms and the suffix -ose.
- For example, **triose**, **tetrose**, **pentose**, and **hexose** signify monosaccharides with, respectively, **three**, **four**, **five**, and **six** carbon atoms.
- > Monosaccharides are also classified as aldoses or ketoses.
- Those monosaccharides that contain an aldehyde functional group are called aldoses; those containing a ketone functional group on the second carbon atom are ketoses.

Number of carbons

Three carbons: triose Four carbons: tetrose Five carbons: pentose Six carbons: hexose Seven carbons: heptose

etc.

- Combining these classification systems gives general names that indicate both the type of carbonyl group and the number of carbon atoms in a molecule.
- Thus, monosaccharides are described as **aldotetroses**, **aldopentoses**, **ketopentoses**, **ketoheptoses**, and so forth.

Carbohydrates are polyhydroxy aldehydes and ketones.

Aldehydes (–CHO) and Ketones (=CO) constitute the major groups in Carbohydrates.

Sorbitol, Xylitol, Lactitol, Isomalt, Maltitol

Conversion Forms of Carbohydrates: Fischer form, Haworth form

D-Galactose (Glucose's Isomer) (open-chain form)

Famous Disaccharide

Famous Disaccharide

A Disaccharide formed from two units of Glucose

- In general, a glycosidic bond is the covalent bond between <u>two monosaccharides</u> to form a disaccharide.
- It is formed by a condensation reaction to a <u>hydroxyl group</u> of an organic compound which may or may not be another carbohydrate.

HÒ

 ✤ A substance with a <u>glycosidic</u> <u>bond</u> is called a <u>glycoside</u>.

Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in <u>animals</u>, <u>fungi</u>, and <u>bacteria</u>.

Starch is formed from alpha glucose.

- *Starch can be straight or branched and is used as energy storage for plants.
- **Cellulose** is the main substance in the **walls of plant cells**, helping <u>plants</u> to remain stiff and upright.

- Humans cannot digest cellulose, but it is important in the diet as fibre.
- Amylose, is an unbranched (linear) polysaccharide
- Amylopectin, is a branched polysaccharide.
- Both the forms of Starch are polymers of α-D-glucose.
- Natural Starch contains 10-20% Amylose and 80-90% Amylopectin.

ERIE 2008	Cellulose	Starch		Chusenen
		Amylose	Amylopectin	Glycogen
Source	Plant	Plant	Plant	Animal
Subunit	β-glucose	a-glucose	a-glucose	a-glucose
Bonds	1-4	1-4	1-4 and 1-6	1-4 and 1-6
Branches	No	No	Yes (~per 20 subunits)	Yes (~per 10 subunits)
Diagram	<u>60000</u>	5.5.5.5	5-5-5-5	5-5-5-5
Shape		2000	- Here	

Classification of Carbohydrates (based on their reducing nature)

- Reducing Sugars
 Non-reducing sugars
- **1. Reducing Sugars:** Sugars in which their **functional groups** are **free**, are called reducing sugars (All monosaccharaides & most disaccharides).
- ✓ All Monosaccharides (aldose & ketose) are reducing sugars that have <u>free</u> Aldehyde or Ketone group. (Glucose, Fructose, Maltose, Lactose etc.)
- ✓ All those carbohydrates which reduce <u>Fehling's solution</u> and <u>Tollens'</u> reagent are referred to as reducing sugars.

Classification of Carbohydrates (based on their reducing nature)

- 2. Non-reducing sugars (Such as <u>all Polysaccharides</u> & <u>Sucrose</u>)
- > Do not have **free Aldehyde** or **Ketone** group.
- > Do not reduce Fehling's solution and Tollens' reagent

In Disaccharides, if the reducing groups of monosaccharides i.e., aldehydic or ketonic groups are bonded, these are non-reducing sugars Example: Sucrose

Properties of Monosaccharides

> Physical Properties

- Colorless Crystalline compounds Readily soluble in water Sweetish
- Solubility of sugars
- Monosaccharide & Disaccharide are <u>soluble</u> in water because <u>water is a polar</u> <u>substance</u> (Hydrogen bond between water & sugars).
- **Polysaccharide** is <u>insoluble</u> in water, because, it has <u>high molecular weight</u>, which give colloidal solutions in water.

How are carbohydrates digested?

Carbohydrates take a journey starting with the intake at the **mouth** and ending with elimination from **colon**.

1. Mouth

The Saliva secreted from salivary glands releases an enzyme called **Amylase**, which **catalyze** the **hydrolysis** of α -1-4 glycosidic bonds in polysaccharides to simpler sugars

2. Stomach

The carbohydrates travel through **esophagus** to **stomach**. Stomach makes acid to kill bacteria in the chyme.

3. Small Intestine & Pancreas & Liver

The chyme then goes into the **first part of the small intestine (duodenum)**. This causes the pancreas to release **pancreatic amylase**. This enzyme breaks down the chyme **into Dextrin, Lactase, Sucrase, and Maltose**.

- The enzymes break down the sugars even further into monosaccharides or single sugars.
- Single sugars are the ones that are finally absorbed into the small intestine.
- Once Single sugars absorbed, they're processed more by the liver and stored as Glycogen.
- \succ Other glucose is moved through the body by the bloodstream.
- The hormone insulin is released from the pancreas and allows the glucose to be used as energy.

4. Colon

- Anything that's left over after these digestive processes goes to the **colon**. It's then broken down by **intestinal bacteria**.
- **Fiber** is contained in many carbohydrates and cannot be digested by the body. **Fiber** reaches the colon and is then eliminated with stools.

The role of carbohydrates in physical and movement diseases

1. Muscle growth with carbohydrates

In sports, we must say that you need carbohydrates to build muscle. **Protein alone is not enough!** Gaining muscle mass requires more calories, muscle training also requires macronutrients including carbohydrates. **On the other hand, endurance under intense training requires glycogen.**

2. Peripheral diabetic neuropathy

It is the **most common type of neuropathy** in which the peripheral nerves of the brain and spinal cord are damaged. **Diabetic peripheral neuropathy** typically affects the nerves of the **feet** and **hands** and can include motor neuropathy, sensory neuropathy, or both. Nerve damage that mainly affects the legs and sometimes the hands and arms is called peripheral neuropathy.

3. Autonomic neuropathy

In this type, the **nerves controlling internal organs** are **damaged**. In addition, autonomic neuropathy causes problems with **heart rate**, **blood pressure**, **digestive system**, **bladder**, **genitals**, **sweat glands**, **eyes**.

4. focal neuropathy

In this type of disease, single nerves are usually damaged in the nerves of the **hands**, **head**, **legs** and **feet**.

5. Proximal neuropathy

It is a rare type of nerve damage that causes weakness of the nerves in the **pelvis**, **thigh** and **buttocks**. This type of diabetic neuropathy usually involves one side of the body and rarely spreads to the other side. Proximal neuropathy often causes **severe pain** and possible **weight loss**.

6. High carbohydrate diets are associated with an increased risk of PD.

Group discussion

- 1. Define and give examples of the following terms: (polysaccharide, aldose, ketose, glycoside bond, glycoprotein).
- 2. How does glycogen differ from cellulose?
- 3. Which of the following, if any, are D-glucose epimers: (D-mannose, D-galactose or D-ribose)
- 4. Dehydration of glucose with fructose
- 5. Dehydration of two glucose unit
- 6. Dehydration of glucose and galactose
- 7. How you explain if somebody have lactose intolerance?
- 8. Why in maltose and lactos is hemiacetal but sucrose is hemiketal?
- 9. Reducing sugar vs non reducing sugar and give ex.
- 10. Can we add further sugar into all disaccharides, why?
- 11. Difference between amylose, glycogen an amylopectin?
- 12. Difference between glycogen and starch.

- Carbohydrates: The Essential Molecules of Life, 2nd Edition, by Robert V. Stick, Spencer Williams
- Carbohydrate Chemistry: Proven Synthetic Methods, Volume 5 1st Edition, by Paul Kosma, Tanja M. Wrodnigg, Arnold Stütz.

