

PT201: Biomechanics

Dr. Surajo Kamilu Sulaiman PT., Ph.D.

surajo.sulaiman@tiu.edu.iq

17-10-2023

Biomechanics of Bone and Cartilage

Lecture 3

Biomechanics of Bone and Cartilage

17-10-2023

- Overview of bone
- Biomechanics of bone
- Overview of cartilage
- Biomechanics of cartilage

Objectives

• By the end of this lecture, students should understand and be able to describe the basic structure and biomechanical behaviors of the following:

≻Bone

Overview

- The skeletal system serves the following purposes
 Protects internal organs
 Provides kinematic links and muscle attachment sites
 Facilitates muscle action and body movement
- Characteristically, the bone is:
 - ≻Hardest tissue in the body
 - ≻Highly vascularized
 - Self-repairing and adapting in response to changes in mechanical demand, e.g., changes in bone mineral density

Structure of bone

- Mechanical properties of bone are determined primarily by the structural components of bone
- Structurally, the bone is made up of organic and inorganic components
- The organic components consists of cells and organic extracellular matrix (fibers and ground substances, providing flexibility to the bone)
- The inorganic components comprises minerals that make the bone hard and rigid

- Cells: Osteoblast, Osteocytes, and Osteoclast
 >Osteoblasts; Bone forming cells
 >Osteocytes; Mature bone cells
 >Osteoclasts; Bone resorption/breakdown cells
- Fibers: Type I collagen fibers
 >90% of the Extracellular Matrix
 >Tough and pliable i.e., resist stretching
 >25-30% of dry weight
 >Chief building block of the body

Types	Locations	
Туре І	Bone, skin, dentin, cornea, blood vessels, fibrocartilage and tendon	
Type II	Cartilaginous tissues	
Type III	Skin, ligaments, blood vessels	
	and internal organs	
Type IV	Basement membrane in various tissues	
Type V	Blood vessel wall, synovium, corneal stoma,	
	tendon, lung, bone, cartilage and skeletal muscle	

Common types of collagen

• Ground substance:

≻5% of Extracellular Matrix

➢Rich in glycosaminoglycan (GAGs)

➢GAGs serves as cementing substance between layers of collagen fibers

Mineral: Hydroxyapatite (HA), a calcium phosphate-based mineral (Ca₁₀(PO₄)₆(OH)₂)
 ≻60-70% of dry weight
 ≻Embedded in collagen fibers

• Water:

25% total weight of the bone
85% (in organic matrix) + 15% (in canals & cavities)
carry nutrients to bone tissues

Types of bone tissue

- There are two types of bone tissue
 - Compact
 - Spongy
- Compact and spongy bones differ in density and how tightly the tissue are packed together.
- Osteoblasts, osteocytes, and Osteoclasts contribute to bone homeostasis
- An equilibrium between osteoblasts and osteoclasts maintains bone tissue

Compact (Cortical) bone

- Compact bone consists of closely packed osteons or haversian systems
- The osteon consists of a central canal called the osteonic (haversian) canal, which is surrounded by concentric rings (lamellae) of matrix
- Between the rings of matrix, the bone cells (osteocytes) are located in spaces called lacunae
- Small channels (canaliculi) radiate from the lacunae to the osteonic (haversian) canal to provide passageways through the hard matrix

- In compact bone, the haversian systems are packed tightly together to form what appears to be a solid mass
- The osteonic canals contain blood vessels that are parallel to the long axis of the bone.
- The blood vessels interconnect, by way of perforating canals, with vessels on the surface of the bone

Spongy (Cancellous) bone

- Consists of plates (trabeculae) and bars of bone adjacent to small, irregular cavities that contain red bone marrow
- The canaliculi connect to the adjacent cavities, instead of a central haversian canal, to receive their blood supply.
- It may appear that the trabeculae are arranged in a haphazard manner, but they are organized to provide maximum strength similar to braces that are used to support a building.
- The trabeculae of spongy bone follow the lines of stress and can realign if the direction of stress changes.

Biomechanical properties of bone

- Mechanical properties of bone vary with both the type of bone (e.g., cancellous vs. cortical) and with the location of the bone (e.g., rib vs. femur)
- Bone is an anisotropic material; it has different mechanical properties in different directions
- The bone is strong to support loads in the longitudinal direction because it is used to receive loads in this direction
- Bone is also a composite material (consisting primarily of collagen and HA mineral) and behaves like a ceramic: it is stronger in compression than in tension, and it exhibits brittle fracture

- Bone is also viscoelastic: it responds differently depending on the speed to which load is applied and length of the load
- Bone collagen imparts viscoelastic behavior, as well as increase the tensile strength of the bone
- Bone is more ductile in young people and more brittle in older adults
- When bone is loaded or stressed, it tends to build up and becomes denser with use
- When activity decreases and the loads on the bone decrease, the bone loses mass through remodeling

Schematic representation of various loading modes

Schematic representation of various loading modes on bone

- Bones are subjected to different forms of loading and fail under different conditions
- Long bones (tibia and femur) sustain large compressive loads at the joint but commonly fail due to torsional forces, such as those applied to the tibia in a spiral fracture
- Vertebral fractures, on the other hand, are more commonly the result of compressive forces on the vertebral body
- Tensile forces produce avulsion fractures when ligaments or tendons are pulled away from their bony attachments

- Cartilage is a non-vascular type of supporting connective tissue that is found throughout the body
- Cartilage is a flexible connective tissue that differs from bone in several ways; it is avascular and its microarchitecture is less organized than bone
- Cartilage cells are scattered and lie firmly fixed in matrix supported by collagen and elastic fibers
- Cartilage is not innervated and therefore relies on diffusion to obtain nutrients. This causes it to heal very slowly

Types of Cartilage

- There are three types of cartilage:
 - ≻Hyaline
 - ➢ Fibrous
 - ≻ Elastic
- Hyaline cartilage is the most typical and resembles glass. Embryonically, bone begins as hyaline cartilage and later ossifies
- Fibrous cartilage has many collagen fibers and is found in the intervertebral discs and pubic symphysis
- Elastic cartilage is springy, yellow, and elastic and is found in the internal support of the external ear and in the epiglottis

Туре	Appearance	Location
Hyaline	Glassy, smooth	Covers long bones, growth plates
Fibro	Dense	Intervertebral disks, meniscus
Elastic	Yellow, opaque	Epiglottis, eustachian tube

Type and distribution of cartilage in the body

Structure of articular cartilage

- Articular cartilage is the highly specialized connective tissue of diarthrodial joints
- The principal function of articular cartilage is to:
 Provide a smooth, lubricated surface for articulation
 Facilitate the transmission of loads with a low frictional coefficient
- Articular cartilage (2-4mm thick) is composed of:
 Dense extracellular matrix (98%)
 Specialized cells called chondrocytes (2%)

• Extracellular matrix (ECM) consists of:

Water (70%-85% of the whole weight)
Collagen (type II, makes up about 60% of the dry weight of cartilage)
Proteoglycans (10%-15% of the wet weight)
Noncollagenous proteins
Glycoproteins

• Components of the ECM help to retain water within the ECM, which is critical to maintaining its unique mechanical properties

- Chondrocytes are highly specialized cells that synthesize, maintain, and degrade the extracellular matrix
- Chondrocytes originate from mesenchymal cells and vary in shape, number, and size, depending on the anatomical regions of the articular cartilage
- Chondrocytes have limited potential for replication, a factor that contributes to the limited intrinsic healing capacity of cartilage in response to injury
- Chondrocyte survival depends on an optimal chemical and mechanical environment

• Articular cartilage is often described in terms of 4 structural zones between the articular surface and the subchondral bone:

Surface or superficial tangential zone (STZ)
Intermediate or middle zone
Deep or radiate zone
Calcified zone

- Within each zone, there are 3 regions:
 - Pericellular region
 Territorial region
 Interterritorial region

Cellular organization in the zones of articular cartilage

A. cellular organization in the zones of articular cartilage; B. collagen fiber architecture

Extracellular matrix of articular cartilage

Histologic organization of the ground substance of (hyaline) articular cartilage

Biomechanical properties

- The mechanical behavior of articular cartilage depends on the interaction of its fluid and solid components
- Articular cartilage is biphasic, consisting of fluid and solid phases, which provide compressive resilience to cartilage
- Articular cartilage exhibit unique viscoelastic properties
- Articular cartilage is unique in its ability to withstand high cyclic loads, demonstrating little or no evidence of damage or degenerative change

- Repeated tensile loading (fatigue) lowers the tensile strength of cartilage
- Repeated compressive loads applied to the cartilage surface in situ also cause a decrease in tensile strength
- Exercise has both beneficial and detrimental effects on cartilage
- It produces positive biochemical changes and reduces pain and increases function in people with arthritis

- Conversely, sports injuries are significant contributors to osteoarthritis
- Activities that involve torsional loading, fast acceleration and deceleration, repetitive high impact, and high levels of participation increase the risk of developing osteoarthritis
- Articular cartilage is devoid of blood vessels, lymphatics, and nerves and is subject to a harsh biomechanical environment
- Articular cartilage has a limited capacity for intrinsic healing and repair; thus, preservation and health of articular cartilage are paramount to joint health

- Injury to articular cartilage is recognized as a cause of significant musculoskeletal morbidity
- The unique and complex structure of articular cartilage makes treatment and repair or restoration of the defects challenging
- Preservation of articular cartilage is highly dependent on maintaining its organized architecture

Contributions and Questions

References

- Levangie, P. K., & Norkin, C. C. (2005). *Joint Structure and Function: A Comprehensive Analysis* (4th ed.). F. A. Davis Company.
- Neumann, D. A. (2017). *Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation* (3rd ed.). Elsevier.
- Norkin, C. C., & White, D. J. (2016). *Measurement of Joint Motion: A Guide to Goniometry* (5th ed.). F. A. Davis Company.
- Oatis, C. A. (2009). *Kinesiology: The Mechanics and Pathomechanics of Human Movement* (2nd ed.). Lippincott Williams & Wilkins.

